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Abstract
There is wide agreement that cell fusion is a physiological 
process in cells in mammalian bone, muscle and 
placenta. In other organs, such as the cerebellum, cell 
fusion is controversial. The liver contains a considerable 
number of polyploid cells: They are commonly believed 
to originate by genome endoreplication, although 
the contribution of cell fusion to polyploidization has 
not been excluded. Here, we address the topic of cell 
fusion in the liver from a historical point of view. We 
discuss experimental evidence clearly supporting the 
hypothesis that cell fusion occurs in the liver, specifically 
when bone marrow cells were injected into mice 
and shown to rescue genetic hepatic degenerative 
defects. Those experiments-carried out in the latter 
half of the last century-were initially interpreted to 
show “transdifferentiation”, but are now believed to 
demonstrate fusion between donor macrophages 
and host hepatocytes, raising the possibility that 
physiologically polyploid cells, such as hepatocytes, 
could originate, at least partially, through homotypic 
cell fusion. In support of the homotypic cell fusion 
hypothesis, we present new data generated using a 
chimera-based model, a much simpler model than those 
previously used. Cell fusion as a road to polyploidization 
in the liver has not been extensively investigated, and 
its contribution to a variety of conditions, such as viral 
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infections, carcinogenesis and aging, remains unclear.

Key words: Cell fusion; Hepatocytes; TdTomato; Lineage 
tracing; Chimeras; Extracellular vesicles
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Core tip: About 70% of hepatocytes are polyploid, 
arising either from genome duplication without division 
(endoreplication) or from cell fusion. Experiments with 
chimeric mice containing two cell populations each 
bearing a different genetic marker had shown that 
some liver cells express markers of both genomes, 
suggesting that cell fusion occurred. Here, we review 
the data in the literature and describe new experiments 
using a chimeric model that confirms that cell fusion 
contributes to liver polyploidy. We argue that the role 
of cell fusion in pathological conditions, such as viral 
hepatitis and neoplastic transformation, is worth further 
study.

Lizier M, Castelli A, Montagna C, Lucchini F, Vezzoni P, 
Faggioli F. Cell fusion in the liver, revisited. World J Hepatol 
2018; 10(2): 213-221  Available from: URL: http://www.
wjgnet.com/1948-5182/full/v10/i2/213.htm  DOI: http://dx.doi.
org/10.4254/wjh.v10.i2.213

INTRODUCTION
Mammalian cells are usually diploid, with the exception 
of mature gametes, which are haploid. Interestingly, 
a few tissues contain polyploid cells, such as muscle 
cells, osteoclasts, hepatocytes, megakaryocytes and 
trophoblasts[1]. A common feature in all these tissues 
is the presence of a diploid progenitor cell that at some 
point during the differentiation/maturation process 
becomes polyploid. Polyploidization can be explained by 
two main mechanisms: endoreplication and cell fusion. 
Endoreplication occurs when the genome is duplicated 
without cell division, whereas cell fusion occurs between 
two different cells, either of the same or of a different 
identity. In the latter case, the genomes from two 
different cell types-which can come even from different 
species-fuse within the same membrane and, therefore, 
coexist within the same cell[2]. For both mechanisms, 
the outcome is a polyploid cell. 

POLYPLOIDY IN NORMAL CELLS
It is generally recognized that polyploidization in normal 
organisms is adaptive since it helps specialized cells 
acquire the ability to perform new, specific functions[3]. 
For example, osteoclasts are large multinucleated cells 
that perform the difficult task of resorbing bone matrix. 
This specialized function cannot be accomplished, for 
example, by mononucleated TRAP+ osteoclasts as this 

214 February 27, 2018|Volume 10|Issue 2|WJH|www.wjgnet.com

Lizier M et al.  Fusion in liver

leads to osteopetrosis, a disease in which bone is not 
degraded[4]. Among the other types of polyploid cells, 
there is agreement that muscle cells and trophoblasts 
are products of cell fusion. In contrast, megakaryocytes 
are polyploid cells generated by genome duplication 
followed by aborted cytokinesis[5].

Polyploid liver cells are usually considered to be 
formed by endoreplication of the genome[6,7]. This 
conclusion was originally based on the seminal work of 
Mintz and colleagues, who pioneered the use of chimeric 
mice to study gene expression[8]. In the chimeric 
mouse, cells with two different genomes coexist in a 
single organism. If a cell fuses with another having a 
different genome, the resultant cell will contain markers 
of both. In their studies, Mintz and colleagues concluded 
that fusion occurred in muscle but not in the liver[8-10]. 
However, they had to rely mainly on the analysis of 
isoforms expressed by tissue-specific enzymes because 
single-cell markers were not yet available. Contrary to 
osteoclasts, trophoblasts and muscle cells, whose nuclei 
maintain their individuality, polyploid liver cells can be bi- 
or mono-nuclear. 

Specific cell cycle genes, such as Cdk1, are involved 
in polyploidy formation and maintenance in liver[11]. 
Interestingly, after partial hepatectomy, quiescent hepa
tocytes can start proliferating again: deletion of cyclin-
dependent kinase 1 (Cdk1), 2 (Cdk2), cyclin E1 or E2 
individual genes does not limit liver regeneration, but 
concomitant ablation of Cdk2 and Cyclin E1 reduces liver 
regeneration, suggesting partial overlapping function of 
some cell cycle genes[11,12].

TRANSDIFFERENTIATION AND FUSION: 
A DEBATE NOT YET SETTLED
The study of cell fusion in the liver began while inves
tigating the existence of lineage transdifferentiation. 
The possibility of cell transdifferentiation was raised 
at the end of the last century in a paper published in 
Science[13] in which the authors, after having trans
planted neural stem cells transgenic for the beta-
galactosidase (βgal) gene into wild-type mice, detected 
βgal+ cells in peripheral blood. Their interpretation was 
that neural cells had transdifferentiated into cells of the 
hematological lineage. This plasticity was surprising to 
many but, because the report was published just after 
the birth of Dolly the sheep, looked plausible[14]. We 
must emphasize here that that work had nothing to 
do with the reprogramming approach reported several 
years later by Yamanaka, who, in contrast, obtained 
reprogramming by forced expression of intracellular 
transcription factors[15]. The plasticity of neuronal stem 
cells was claimed by Bjornson et al[13] to occur by simple 
exposure to endogenous factors present in vivo. 

Essentially, studies on plasticity were performed 
by transplanting cells from a mouse transgenic for an 
easily detectable marker gene (e.g., βgal) into a non-
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transgenic animal. The appearance of βgal-marked 
cells in an organ different from the tissue of origin was 
interpreted to be the result of transdifferentiation. The 
Science paper in which cells of the nervous system were 
suggested to acquire a hematological fate, was rapidly 
followed by other examples of transdifferentiation 
involving cells of several other lineages, including blood, 
brain, muscle, kidney and heart[16-25]. 

Due to the high potential for translation to the clinic, 
bone marrow cells (BMCs) escalated to center stage. 
BMCs are easily obtained, extensively investigated, 
routinely transplanted and well-characterized in humans. 
If simple transplantation protocols allowed the rescue 
of degenerative defects in organs such as brain, kidney 
or liver, we would have a sort of panacea in hand. 
Unfortunately, although many clinics-mostly in the 
United States-still advertise these kinds of treatments[26], 
transdifferentiation as originally proposed in the Science 
paper has not been confirmed by subsequent, more 
controlled studies[27-32].  Indeed, although a limited 
transdifferentiation capacity of some cells cannot be 
completely ruled out, more-recent studies have shown 
that transdifferentiation is often an experimental 
artifact. As stated above, transdifferentiation was 
claimed to occur if, after a given lineage (for example, 
hematopoietic cells) expressing a reporter gene was 
transplanted into a wild type mouse, cells of other 
lineages (for example, brain) were found to coexpress 
the reporter gene with accepted markers of their 
lineage. While βgal was initially used as a marker, most 
subsequent papers exploited fluorescent reporter genes 
that could be easily traced in vivo. It was assumed that 
all fluorescent cells found in a normal, non-transgenic, 
mouse had to be the progeny of transgenic donor cells: 
Hence, if they were found in other organs, they must 
have derived from original cells that had acquired a new 
fate by transdifferentiation.

In addition to trivial technical artifacts, cell fusion 
was raised to explain some of these results: in the 
experimental design discussed above, fusion between 
any cells of the host with transplanted donor cells could 
have provided the former with the reporter gene. It is 
difficult to discriminate between the two possibilities-
transdifferentiation and cell fusion-with simple marker 
analysis.

As mentioned above, transdifferentiation of BMCs 
would be an attractive approach for regenerative 
medicine. Heart, brain and liver are heavily affected by 
degenerative genetic diseases that have a huge impact 
on human health; they would all greatly benefit from 
cell fusion-based therapies using exogenous cells, if that 
mechanism indeed occurs in vivo. Certainly, exogenous 
cells could provide defective endogenous ones with 
the missing genetic component while maintaining the 
differentiation status of the mature cell.  

With regard to the liver, several reports in which 
BMCs were transplanted into recipient mice in the hope 
of inducing hepatocyte transdifferentiation showed that 

cells bearing donor-derived cellular markers could be 
found in host livers[18-21]. These “transdifferentiated” 
cells increased in number when the host livers were 
either injured (partial hepatectomy) or affected by 
a chronic degenerative genetic defect. However, the 
results were challenged by scientists who were unable 
to reproduce the transdifferentiation of hematological 
cells into non-hematological ones[33-36]. Cell fusion 
was shown to occur in vivo, so several reports investi
gated fusion events in a variety of other models. In 
the liver, the most spectacular experiments were 
performed by Grompe’s group on the classical model 
of fumarylacetoacetate hydrolase (Fah) deficiency[37]. 
Mice recessive for a Fah mutation are models for 
tyrosinemia type Ⅰ, a severe genetic disease leading 
to liver failure in humans. Grompe and coworkers 
showed that bone marrow transplants in these mice 
led to the generation of liver cells bearing the donor 
marker, and demonstrated that this event was not due 
to transdifferentiation of hematological into hepatic 
lineage cells. Instead, these marker-carrier liver cells 
originated from cell fusion between donor bone marrow 
and resident hepatocytes, leading to polyploid cells that 
were not easily distinguishable from true hepatocytes in 
that the latter could also be polyploid. Due to the growth 
advantage shown by normal hepatocytes over diseased 
ones, the approach was so efficient that several mice 
were essentially cured. Results were confirmed by 
further studies[38-40], which also pointed to macrophages 
as the hematological cell responsible for fusion[41,42]. 
These results are in agreement with macrophages 
being physiologically prone to cell fusion[43]. In a 
review of 77 published studies on the generation of 
hepatocytes by hematopoietic cells transplanted in 
liver, the authors concluded that cell fusion was the 
mechanism involved[44]. Cell fusion is enhanced by the 
presence of liver injury or chronic disease, such as in 
the Fah model, since in a well-controlled study in which 
BMCs were injected into normal recipients, only 7 out 
of 470000 liver cells examined bore donor markers as a 
result of cell fusion[34]. In addition to BMCs, other types 
of cells, such as mesenchymal or amniotic stem cells 
and cells differentiated from pluripotent stem cells, can 
fuse with cells in injured livers, even when injected into 
a different species[45]. Human umbilical cord blood cells 
have also been reported to fuse with hepatocytes of 
immunocompromised mice[46], although no evidence of 
cell fusion was reported in other studies[47-49]. Moreover, 
cell fusion and transdifferentiation have been claimed to 
coexist[50].

The cell fusion-based explanation was found to hold 
also in other similar experimental settings[34,37,39,51,52] 
(reviewed in[27,53,54]). However, the possibility that 
at least in some cases, especially when an injury is 
applied to the recipient organ, bone marrow donor 
cells could be directed toward a different fate has not 
been completely ruled out, since several reports of well 
controlled differentiation have been published[55-64]. 

Lizier M et al.  Fusion in liver



independent strategies. Briefly, they performed PCR 
amplification on single hepatocytes with primers specific 
for each reporter gene, finding cells displaying both 
markers only in chimeric mice, in a percentage close to 
10% of cells bearing at least one marker. In addition, 
the authors used fluorescent in situ hybridization 
(FISH) to investigate the sex chromosome content of 
hepatocytes in XY◄═►XX chimeric mice. They reasoned 
that, if fusion occurred between a female and a male 
cell, some binucleated cells containing Y chromosome(s) 
only in one of the two nuclei would be detected. 
Similarly, if mononucleated polyploid hepatocytes were 
analyzed, they should contain only X chromosomes in 
various numbers in the case they derived from the XX 
component of the chimeric mouse, or as many X as Y 
chromosomes if derived from an XY cell. In contrast, if 
the mononucleated polyploid hepatocytes were products 
of a cell fusion event between a female and a male cell, 
an unbalanced complement of X and Y chromosomes 
would be found. In the end, sex chromosome patterns 
were detected that were clearly indicative of cell fusion 
in binucleated as well as mononucleated hepatocytes in 
about 5%-10% of cells[71].

These results are at odds with those presented by 
Willenbring et al[41]. This discrepancy could be explained 
by the different approaches used, since that of Faggioli 
et al[71] mimics normal liver development, while the one 
used by Willenbring et al[41] involves the injection of 
exogenous hepatocytes into damaged liver and complex 
transplantation experiments. As mentioned before, 
this could ultimately lead to underestimation of fusion 
events in the latter study.

We are not aware of recent studies investigating 
cell fusion in normal liver, although replication of the 
chimera studies would not be too time consuming. 
Apparently, fusion is neither considered to occur 
frequently nor to be of physiological relevance. For 
this reason, while performing a study on the role of 
cell fusion in cancer[72], we addressed cell fusion with 
an even simpler approach based on the production of 
chimeric Cre: tdTomato mice. Morulae derived from 
mice transgenic for Cre recombinase under the control 
of a constitutive promoter were fused to morulae from 
mice transgenic for an inactive floxable tdTomato gene 
that is activated only if Cre recombinase is expressed in 
the same cell (Figure 1A). Cells from the two morulae 
will develop independently and no cell will be tdTomato-
positive unless fusion with a Cre-containing cell has 
occurred (see the schematic representation in Figure 
1B).

This approach-which has been widely used for 
lineage and transplantation studies-has the advantages 
of having an undetectable background if cell fusion does 
not occur, no interference between the two fluorescent 
reporter genes, and simple assessment in liver sections 
with well-validated tdTomato-specific antibodies. In 
addition, leakiness of the promoter, which sometimes 
occurs in Cre-based conditional mice, does not affect 
this model. 
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CELL FUSION IN THE NORMAL LIVER
The discovery that cell fusion can cure a degenerative 
disease of the liver prompted Grompe’s group to 
investigate whether cell fusion occurs also in the 
disease-free state. The experimental plan to address 
this was as follows: they transplanted 1 × 105 wild-
type (Fah+/+) hepatocytes into each of four Fah−/−

/βgal+ recipients. After more than 80% of the liver 
was repopulated, 1 × 105 hepatocytes were serially 
transplanted into each of two Fah−/− recipients and the 
liver was again repopulated to a donor contribution 
of more than 80%. Then they analyzed 3 × 107 Fah+ 
hepatocytes, but were unable to find a single Fah+/βgal+ 
cell. They concluded that the frequency of cell fusion, if 
any, was very low[41]. 

It must be taken into considerations that the 
protocol involved damaged livers and injections of adult 
cells. However, although complex, the approach looks 
suitable to address the question of cell fusion in the 
disease-free liver. The only caveat is that, if the originally 
transplanted wild-type cells were mature hepatocytes 
(the age of the mice used was not specified), then it is 
possible that they represent polyploid cells that were 
already fully differentiated and functional and, therefore, 
less prone to fuse. This is because at this stage they 
have already achieved the benefits of being large cells 
with multiple genomes. 

Apart from the original studies by Mintz and 
colleagues already cited, other studies investigating 
whether cell fusion occurs in the normal liver are 
lacking. Cell fusion has occasionally been reported 
to occur in hepatocytes or in hepatic tumor lines 
cultured in vitro[65-67]. Yet, this does not prove that 
the mechanism is physiologically relevant in vivo. For 
these reasons, Faggioli and coworkers devised and 
implemented a relatively simple but straightforward 
protocol based on chimeric mice, as originally proposed 
by Mintz’s group[8-10]. Embryo-derived mouse chimeras 
are mice born from embryonal cells carrying different 
genomes[68]. They can be created either by morula 
aggregation or by injection of embryonic stem cells 
(ESCs) into blastocysts, and they can be exploited for 
the study of cell fusion. If each of the two aggregated 
morulae contains a different reporter gene, then cells 
positive for both reporters will definitively be fused cells.

Faggioli et al[71] reasoned that by aggregating 
morulae from two different strains of transgenic mice 
expressing either green fluorescent protein (GFP)[69], 
or the βgal protein (Rosa 26 mouse[70]), the outcome 
would be animals that display two genetically distinct 
liver cell populations, each bearing a single marker 
(either GFP or βgal); any cell displaying both markers 
must be the result of cell fusion. With the appropriate 
controls, they identified three populations: GFP+/βgal−; 
GFP−/βgal+; and GFP+/βgal+. The percentage of double-
positive cells in the chimeric samples was estimated to 
be about 25%. 

The authors confirmed their results with two other 
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Analysis performed to date on two chimeric mice 
has clearly identified the presence of tdTomato-positive 
cells in the liver (Figure 2). Positivity was not detected 
in wild-type mice or in inactive tdTomato mice. As 
expected, the progeny of tdTomato-Cre mice crosses 
were positive in all tissues. 

Fused cells are distributed all over the liver 
parenchyma, but are often found in clusters. This is in 
keeping with cell fusion occurring in cells maintaining 
their proliferative capacity, giving rise to a progeny 
that expands but remains in close proximity to their 
original location. This is in agreement with other studies 
showing hepatocytes originating form clonally derived 
clusters in postnatal liver[73,74].

However, the devil is in the detail and we are always 
at risk of artifacts[75]. In the chimeric experimental 
design, coexpression in the same cell of two reporter 
genes originally expressed independently by two distinct 
cells is commonly accepted as proof of a fusion event. 
This assumption was used in our original work on cell 
fusion[71]. However, the detection of fluorescence is 
prone to artifacts caused by endogenous background 
fluorescence, a phenomenon especially marked in liver; 
in the case of βgal, endogenous enzymatic activity 
can also lead to misinterpretation. In addition, it has 
become increasingly appreciated over the last ten years 

that transfer of materials-including RNA and proteins-
between cells via extracellular vesicles is a frequent 
phenomenon[76-78]. Therefore, it cannot be excluded that 
in the Cre-tdTomato approach aforementioned, RNA 
encoding Cre recombinase or tdTomato could have been 
transferred from the Cre+ cell to the tdTomato one, and 
thus activating the reporter locus leading to expression 
of the reporter protein. Even the transfer of a few RNA 
or protein molecules over a very short period of time 
can activate the tdTomato gene, which then would 
become permanently expressed. However, the Cre-Lox 
and GFP systems have been widely used, in general 
giving consistent results for expression and expected 
specificity. Unfortunately, with the technologies available 
to date there is no way of discriminating fusion events 
from vesicle-mediated transfer in vivo while maintaining 
physiological conditions. In this regard, it is worth 
mentioning that several recent papers analyzing the 
fate of GFP+ cells transplanted into mouse retina 
have reported the detection of GFP+ cells that did 
not originate from the donor[79-81]. This suggests that 
GFP activity was leaked into the intracellular space 
and absorbed by endogenous cells or was transferred 
to them by extracellular vesicles–fusion can be 
excluded since retinal cells were normal in size and not 
polyploid. This is troubling if true, and some lineage 
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Figure 1  Schematic representation of the Cre: TdTomato approach here described. A: Depiction of the transgene carried by the tdTomato mouse (JAX 007905). 
The transgene is inserted in the Rosa26 locus and contains a Tomato gene (tdTomato) under the control of a constitutive promoter. Between the promoter and the 
gene there is a stop cassette flanked by two loxP sequences in the same orientation that prevents tdTomato transcription in this configuration. If the stop cassette 
is removed by exposure to the Cre recombinase, the tdTomato gene becomes expressed and its expression is maintained through the cell life; B: The generation of 
mouse chimeras by aggregation of one Cre+ morula (Cre, black-circled cells) derived from CMV-Cre mice (JAX 006054) with a tdTomato one (iTom, red-circled cells) 
is shown. The aggregated morulae are transferred to females and the progeny analyzed at three months of age. tdTomato expression should occur only if a Cre+ cell 
fuses with a tdTomato one (full red hepatocyte), whereas if no fusion occurs only tdTomato-negative cells are seen.
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or transplantation studies based on the detection of 
reporter genes should be carefully re-examined. 

Techniques based on in situ hybridization with 
probes specific for sex chromosomes can be used to 
demonstrate cell fusion[71], since the presence of an 
XY nucleus as well as an XX one in a binucleated cell 
should definitively be due to cell fusion. This technique-
which does not allow the analysis of live cells-has been 
used in studies on the ploidy of hepatocytes, with 
the caveat that the analysis might be complicated by 
the aneuploidy shown by some normal human and 
murine liver cells[82-85]. In any case, it will be difficult to 
investigate cell fusion in man: in theory, transplantation 
of male hepatocytes in female hosts performed for 
regenerative liver diseases could detect cell fusion, but 
this is a very rare occurrence and would require biopsies 
or post-mortem examination. 

CONCLUSION
Cell fusion in the liver is still controversial. Thus, 
replication of previous studies with appropriate mouse 
chimeras is welcomed. Endoreplication and cell fusion 
are not mutually exclusive, as suggested by Gentric 
and Desdouets[86]. We strongly believe that fusion in the 
liver should be studied in order to confirm and explain 
this phenomenon. If established, this will open several 
new lines of investigation. For example, is cell fusion 
or endoreplication preferred in different contexts, or 
are they interchangeable? What is the fusion potential 
of hepatocytes with a DNA content higher than 4n? 
Are there hepatocytes with unbalanced or uneven-n 
chromosome numbers, and are there fusion products 

between one diploid and one tetraploid cell? Does 
cell fusion occur in species other than rodents, and 
particularly in man? Can fused cells participate in the 
ploidy reduction occurring after partial hepatectomy? 
Are HBV or HCV infections, which are themselves 
fusogenic viruses, able to change hepatocyte ploidy and 
binuclearity[87], or do other metabolic stresses[88] affect 
endoreplication or fusion? Does cell fusion play a role in 
HCV-mediated liver carcinogenesis[89]?
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