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Abstract
The immune system plays a pivotal role in defending our body from invading
pathogens  and in  surveillance  against  cancer.  While  most  cells  that  acquire
mutations  are  detected  and  destroyed  by  immunocytes,  a  small  number  of
transformed cells succeed in evading immune destruction by inhibiting immune
checkpoint regulatory pathways, leading to suppression of anti-cancer immune
responses. Under normal conditions, immune checkpoint receptors maintain self-
tolerance, prevent immunopathology, and regulate overall immune homeostasis.
However, their skewed activation by cancer cells may lead to the suppression of
nascent anti-tumor immunity and the promotion of tumor growth. Discovering
the role  of  immune checkpoints  in  cancer  and understanding their  mode of
operation  has  led  to  the  development  of  novel  strategies  for  cancer
immunotherapy, which are based on the intervention or blockade of immune
checkpoint-regulated pathways. Clinical studies have demonstrated that immune
checkpoint co-inhibitory receptor-blocking antibodies can revert tumor-induced
immunosuppression  and  augment  overall  anti-tumor  immunity.  These
antibodies induced durable clinical responses and unprecedented therapeutic
benefits  in  multiple  types  of  malignancies.  Although  immune  checkpoint
inhibitors have revolutionized cancer therapy, the clinical benefits of these drugs
have  been  limited  to  subsets  of  cancer  patients  and  treatments  frequently
associated with a unique spectrum of toxicities, termed immune-related adverse
events. Future discoveries of novel immune checkpoint receptors, identification
of new prognostic and predictive biomarkers, and improvement of combination
therapies  are  likely  to  boost  the  success  rate  of  cancer  immunotherapy and
increase the survival rates of patients with different types of cancers.

Key words:  Immune checkpoint;  Immunotherapy; Cancer; Autoimmune diseases; T
lymphocytes
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tolerance,  prevent  immunopathology,  and  regulate  overall  immune  homeostasis.
However, skewed activation of these receptors by cancer cells may lead to suppression
of nascent anti-tumor immunity and promote tumor cell growth. Clinical studies have
demonstrated that blocking inhibitory immune checkpoint receptors induced durable
clinical  responses  and  unprecedented  therapeutic  benefits  in  multiple  types  of
malignancies. The present editorial addresses some of the major immune checkpoint
receptor  targets  in  cancer  immunotherapy,  discusses  some of  the  side  effects  and
limitations in their utilization, and highlights some of the future challenges in the field.

Isakov N. Cancer immunotherapy by targeting immune checkpoint receptors. World
J Immunol 2018; 8(1): 1-11
URL: https://www.wjgnet.com/2219-2824/full/v8/i1/1.htm
DOI: https://dx.doi.org/10.5411/wji.v8.i1.1

INTRODUCTION
T lymphocytes include several functionally distinct cell populations that are essential
for combating virally-infected and neoplastic cells. A large fraction of the T cells in
healthy individuals are naive resting cells that require antigen priming to acquire
effector functions. The priming process involves the engagement of multiple T cell
surface receptors that activate signaling pathways, leading to T cell proliferation,
differentiation and acquisition of effector functions. A signal from the T cell antigen
receptor (TCR) is sine qua non for the activation process, as it provides the very early
activation step and ensures that only T cell clones specific to the appropriate antigen
are  expanded.  The  TCR  interacts  with  a  peptide  antigen-loaded  major
histocompatibility complex (MHC) molecule on the surface of antigen presenting cells
(APCs). T cell activation and responsiveness are carefully regulated by a number of
accessory co-stimulatory and co-inhibitory cell  surface proteins,  termed immune
checkpoint receptors, that can be triggered by cognate ligands on the surface of APC
or target cells. The balance between signals provided by the TCR and the immune
checkpoint receptors determines the cell’s ability to respond and differentiate into a
fully active immunocyte.

The immune checkpoint receptors are implicated in immune response initiation
and the regulation of their intensity and duration. Two of the best studied T cell-
specific co-inhibitory receptors are the cytotoxic T lymphocyte associated antigen-4
(CTLA-4) and programed cell death-1 (PD-1). The main function of these co-inhibitory
receptors is to maintain self-tolerance and prevent autoimmunity. Furthermore, they
participate  in  the  termination  of  T  cell-mediated  immune  responses  and  limit
collateral tissue injury during anti-microbial immune responses.

Recent  studies  demonstrated  that  different  types  of  cancers  utilize  immune
checkpoints to their own benefit. By activating co-inhibitory receptors, these tumors
can suppress T cell-mediated functions and promote their own escape from immune
destruction. The appreciation of the regulatory role and the mode of operation of
immune checkpoints in cancer diseases have led to the development of new strategies
for cancer immunotherapy based on immune checkpoint blockade. Multiple clinical
studies have demonstrated that immune checkpoint blocking antibodies can be highly
efficient in inducing durable clinical responses in different types of malignancies.

Nevertheless, the clinical benefits of these antibodies have been limited to subsets
of  cancer  patients  and  treatments  that  are  frequently  associated  with  a  unique
spectrum of toxicities, termed immune-related adverse events.

CTLA-4: Where it all begins
CTLA-4 (CD152) is the prototypic immune checkpoint receptor and the most studied
in  the  context  of  cancer  immunotherapy.  It  is  a  disulfide-linked  homodimeric
transmembrane glycoprotein expressed exclusively on T cells, and it participates in
the  repression  of  T  cell  proliferation,  cell  cycle  progression  and  cytokine
production[1,2].  The  CTLA-4  protein  is  highly  homologous  to  the  co-stimulatory
molecule CD28, and both receptors utilize the same ligands, CD80 (B7.1) and CD86
(B7.2), which are expressed on the surface of APCs[3-5].

CD28 co-stimulation is necessary for maximal T cell activation. It promotes T cell
expansion via  interleukin-2 (IL-2)-dependent and independent mechanisms[6],  but
requires  a  primary  signal  (signal  1)  in  the  T  cell,  which  is  generated  by  TCR
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engagement with MHC-bound cognate antigens on APCs (Figure 1).
In contrast to CD28, which is constitutively expressed on both resting and activated

T cells, CTL4 is only marginally expressed on the outer surface of resting T cells and
localizes predominantly in intracellular stores. In response to antigen stimulation,
CTLA-4 is temporarily transported to the outer cell membrane of the memory and
regulatory T cells[7]. At this stage, CTLA-4 can out-compete CD28 for ligand binding
and  induce  T  cell  suppression  via  several  independent  mechanisms[8-10].  One
mechanism relates to the fact that CTLA-4 has a higher binding affinity for both
ligands.  Its  transient  expression  on  the  surface  of  T  cells  prevents  CD28  from
interacting  with  CD80/CD86  and  delivering  co-stimulatory  signals[11].  Another
mechanism reflects the ability of CTLA-4 to directly deliver inhibitory signals to
effector  T  cells  through  its  cytoplasmic  tail,  which  associates  with  signaling
proteins[12]. Furthermore, CTLA-4 can suppress T cell responses by upregulating the
activity of Treg cells. The engagement of CTLA-4 on Tregs delivers activating signals
that enhance their suppressive activity and inhibit antitumor immunity[8,13].

The  role  of  CTLA-4  in  maintaining  T-cell  activation  under  control  is  well
demonstrated  in  studies  of  CTLA-4-deficient  mice  generated  by  homologous
recombination. These mice suffer from a CD4+ T cell-mediated lymphoproliferative
disease that is driven by excessive CD28 signaling[14-16]. CTLA-4-deficient mice also
exhibit  impaired  dif ferentiat ion  of  Treg  cel ls ,  result ing  in  massive
lymphoproliferation, splenomegaly and lymphadenopathy, including multiorgan
lymphocyte  infiltration  and tissue  destruction[17].  These  results  substantiate  the
inhibitory role of CTLA-4 in the regulation of both Th and Treg development and
function and in immune homeostasis.

Studies on the biological role of CTLA-4 and its involvement in the suppression of
T cell functions laid the groundwork for the development of new strategies for cancer
immunotherapy, which are based on CTLA-4 blockade[13].

The most studied CTLA-4 blocking antibody that  was used in clinical  trials  is
Ipilimumab (Yervoy®,  Bristol-Myers  Squibb),  which showed significant  survival
benefit for patients with advanced metastatic melanoma. In early 2011, Ipilimumab
was the first anti-immune checkpoint antibody to be approved by the United States
Food and Drug Administration (commonly known as the FDA) for the treatment of
melanoma[18,19]. Ipilimumab enhances antitumor immunity by blocking the negative
effects of CTLA-4 and augmenting effector cytotoxic T cell functions.

Clinical trials with a second anti-CTLA-4 antibody, tremelimumab (ticilimumab,
CP-675,20, Pfizer and AstraZeneca), demonstrated its effectiveness in patients with
melanoma [20],  refractory  metastatic  colorectal  cancer [21],  and  hepatocellular
carcinoma[22].

Additional clinical trials using a variety of CTLA-4 blocking drugs, either alone or
in combination therapy, are being conducted on patients with a wide range of tumors.
Combination of anti-CTLA-4 antibodies with immunotherapy, chemotherapy, or
radiotherapy was found to improve long-term survival of cancer patients suffering
from different types of malignancies[23-26].

PD-1/PD-L1 pathway
The PD-1 immune checkpoint receptor is expressed on activated T cells and helps to
preserve self-tolerance and the prevention of autoimmunity. It was initially cloned in
1992 in a search for molecules involved in the negative selection of thymocytes that
undergo programed cell death[27]. The role of PD-1 as an immune checkpoint became
clear in 2000 upon identification of its physiological ligand, programed cell death
ligand-1 (PD-L1), which is expressed on APCs and on some tumor cells[28].  These
tumors can co-opt the PD-1/PD-L1 pathway by upregulating PD-L1 expression as a
mechanism  of  immune  resistance [29 ].  Preclinical  studies  in  animal  models
demonstrated that targeting the PD-1/PD-L1 pathway can serve as another promising
immunotherapeutic  strategy  for  augmenting  endogenous  T  cell  antitumor
immunity[30].

PD-1
In addition to its  fundamental  role in maintaining self-tolerance and preventing
autoimmunity,  the PD-1 (CD279) immune checkpoint receptor is  also critical  for
terminating immune responses. Its absence or down-regulation may cause tolerance
breakdown or induction of autoimmune responses. PD-1 is expressed on activated T
lymphocytes, and upon engagement with its ligand, it delivers signals that counteract
the TCR-induced signals and inhibit IL2 production and T cell proliferation.

PD-1-mediated intervention with TCR-coupled signals involves the inhibition of
ZAP70 binding to CD3, which down-regulates ZAP70 phosphorylation and catalytic
activity.  This occurs concomitantly with a reduction in the phosphorylation and
activity of  protein kinase C-theta (PKCθ),  which attenuates the NF-κB and AP-1
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Figure 1

Figure 1  T cells are subjected to co-stimulatory and co-inhibitory signals through interactions of their plasma membrane receptors with ligands on the
surface of antigen presenting cells (dendritic cells and macrophages), as well as tumor cells.  Targeting of the co-inhibitory receptors by specific antibodies
block the receptor-coupled inhibitory signals and enhance T cell proliferation and cytokine production to augment overall antitumor T cell responses. A: A productive
interaction of T cells with antigen presenting cells (APCs) results in rapid delivery of stimulatory signals, leading to T cell activation; B: T cell activation leads to surface
expression of cytotoxic T lymphocyte associated antigen-4 (CTLA-4). Interactions between CTLA-4 and programed cell death-1 (PD-1) co-inhibitory immune
checkpoint receptors with the CD80/86 and PD-L1 ligands, respectively, on the APC surface result in the delivery of inhibitory signals that downregulate T cell
activation and cytokine production; C: Targeting of CTLA-4 and PD-1 co-inhibitory receptors on T cells or the PD-1 ligand PD-L1 on the APC (or tumor cells) can block
the inhibitory signals, increase the intensity and efficacy of anti-tumor T cell responses, and induce durable clinical responses and therapeutic benefits in cancer
patients.

transcription factors[31]. As a result, PD-1 signals can promote apoptosis of antigen-
specific  effector  T-cells  and  induce  opposite  effects  on  Tregs,  leading  to  their
exemption from programmed cell  death[32,33].  One possible  explanation for  these
contrasting effects might rely on the spatially-regulated distinct functions of PKCθ in
these two cell types[34-36]. Thus, PKCθ is recruited to the center of the immunological
synapse  of  activated  effector  T-cells [34,35],  but  is  sequestered  away  from  the
immunological  synapse  of  Tregs,  instead  concentrating  on  the  opposite  pole[36].
Therefore, it is highly probable that PKCθ activation in the temporally-organized
distinct  subcellular  structures  will  result  in  PKCθ-mediated phosphorylation of
different substrate proteins that regulate distinct biological processes.

Although signaling through PD-1 helps  maintain  homeostasis  in  the  immune
system, PD-1-induced signals in cancer patients may facilitate tumor progression by
suppressing effector T cell functions, particularly the induction of effective anti-tumor
immunity[37].

The realization that PD-1 blockade might help boost the immune system in cancer
patients has led to the development of an array of PD-1 targeting drugs that have
already demonstrated remarkable clinical success in experimental models and in
cancer patients.

In December 2014, the first monoclonal anti-PD-1 antibody to gain FDA approval
was nivolumab (Opdivo®, Bristol-Myers Squibb), which was used in a clinical trial
(CA209037) in metastatic melanoma patients that had deteriorated after CTLA-4-
blocking antibody treatment.  The  overall  objective  response  rate  of  the  PD-L1+
melanoma  patients  was  approximately  40%.  In  2015,  nivolumab  received  FDA
approval for the treatment of patients with metastatic squamous non-small cell lung
cancer (commonly known as NSCLC) and metastatic renal cell carcinoma, whereby
the treatment extended the overall  survival rate of cancer patients in both study
groups.

In recent years, nivolumab received additional FDA approval for the treatment of a
wide range of cancers.

A combination therapy of nivolumab and ipilimumab, which simultaneously target
PD-1  and  CTLA-4,  was  also  used  in  clinical  studies  and  found  to  improve  the
outcome of patients with melanoma[38-40] and other types of solid tumors[41-43].

In August 2016, pembrolizumab (Keytruda®, Merck Sharp and Dohme Corp.) was
the  second anti-PD-1  antibody that  received FDA approval  for  the  treatment  of
metastatic head and neck squamous cell carcinoma patients. Several clinical studies
are being conducted with pembrolizumab in patients with head and neck cancer
(NCT02454179, NCT02707588), in addition to multiple clinical studies that evaluate
the efficacy of newly designed PD-1-targeting drugs in a wide range of cancers.

PD-L1
PD-L1  [CD274;  also  known  as  B7  homolog  1(B7-H1)]  is  a  40  kDa  type  I
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transmembrane  protein  that  serves  as  a  ligand  for  PD-1 [44].  Under  normal
physiological conditions, PD-L1 plays a vital role in the regulation of Treg functions
and suppression of immunity during pregnancy and autoimmune diseases[45,46].

Upregulation of PD-L1 on APCs delivers inhibitory signals to PD-1+ T cells, which
keep  immune  responses  at  bay  by  terminating  them  once  antigens  have  been
eliminated.

However, some tumors can disrupt this equilibrium and manipulate the PD-1/PD-
L1 checkpoint pathways by expressing PD-L1 and delivering signals that turn off
effector T cells[47].

Observations that support this mechanism were made in several studies where
high PD-L1 expression on the tumor cells correlated with reduced immune responses,
increased tumor aggressiveness and relatively poor survival[48,49].

Checkpoint inhibitors that target PD-L1 can therefore prevent its interaction with
PD-1, restore T-cell activation, and amplify antitumor immunity[47,50].

The first FDA-approved anti-PD-L1 antibody atezolizumab (Tecentriq®, Genentech)
was authorized in 2016 for the treatment of metastatic non-small cell lung cancer and
advanced and metastatic urothelial carcinoma[50,51]. The clinical results indicated that
tumors  with  a  high  frequency  of  PD-L1+  tumor  infiltrating  immune  cells
demonstrated particularly high response rates.

Two additional anti-PD-L1 antibodies, avelumab (Bavencio®, Merck KGaA, Pfizer
and Eli Lilly) and durvalumab (Imfinzi®, AstraZeneca), received FDA approval in
2017  for  the  treatment  of  Merkel-cell  carcinoma  and  advanced  bladder  cancer,
respectively. Additional PD-L1 blocking antibodies are currently being evaluated for
the treatment of a wide range of cancers in multiple clinical trials[52-54].

Additional T cell-associated co-inhibitory pathways
Cancer immunotherapies directed against the CTLA-4- and PD-1/PD-L1 co-inhibitory
receptors exhibited undisputed efficacy in selected types of cancer diseases, but many
patients were nonresponsive to these therapies, and several tumor types are refractory
to these therapies.  To increase the repertoire of drug targets in different cancers,
scientists are searching for additional immune checkpoint receptors and testing their
usefulness as drug targets in cancer immunotherapy.

The T cell immunoglobulin and ITIM domain (TIGIT) protein is a novel inhibitory
receptor discovered in a genomic search for genes expressed in T cells. Their protein
domain  structure  represents  a  potential  inhibitory  receptor[55].  The  expression
mechanism of TIGIT on the outer surface of T cells is somewhat similar to that of
CTLA-4, as it is upregulated by T cell activation and is transient in nature.

Other inhibitory receptors are constitutively expressed on “exhausted” T cells in
patients  with  chronic  cancer[56],  including  lymphocyte  activation  gene  3  (LAG3;
CD223) and T cell immunoglobulin and mucin-containing molecule-3 (TIM-3; CD366).

The newly identified inhibitory receptors are being analyzed for their effectiveness
as blocking antibody targets,  while other surface proteins,  such as CD137, CD27,
ICOS, and GITR activating receptors, are being evaluated for their effectiveness as
agonistic targets that amplify anti-cancer immune responses[57].

TIGIT
TIGIT  (also  known as  WUCAM,  Vstm3,  VSIG9)  is  part  of  the  CD28  family-like
receptors that are expressed on T cells and various other hematopoietic cells[55,58,59].
TIGIT agonists include CD155 (poliovirus receptor-PVR) and CD122 (PVRL2, nectin-
2), which are expressed by immune and non-immune cells, as well as tumor cells[55].
TIGIT is a co-inhibitory receptor with a role in tolerance induction and autoimmunity.
In general, TIGIT-/- mice were found to be more sensitive to immunization with
myelin oligodendrocyte glycoprotein peptide than wild-type mice, and they develop
more severe experimental autoimmune encephalomyelitis (EAE). In contrast, TIGIT
transgenic mice are less  sensitive to immunization with myelin oligodendrocyte
glycoprotein and develop reduced symptoms of EAE[58,60].  TIGIT-/- mice develop
severe autoimmune responses in a model of collagen-induced arthritis and graft-
versus-host  disease,  similar  to  the  effects  induced  by  anti-TIGIT  blocking
antibodies [58 ],  indicating  that  TIGIT  functions  as  an  immunoreceptor  that
downregulates T cell-mediated immunity.

The  mechanism  of  action  of  TIGIT  and  the  membrane  receptor  CD226  is
reminiscent of that of the CTLA-4/CD28 receptor pair, with TIGIT fulfilling the role of
the co-inhibitory receptor that counterbalances co-stimulation mediated by CD226.
Furthermore, TIGIT/CD226 expression kinetics are similar to those of CTLA-4/CD28,
with the co-inhibitory receptor being expressed only following T cell activation, in
contrast to the co-stimulatory receptor, which is constitutively expressed on resting T
cells[55,58,59].

TIGIT expression on peripheral blood lymphocytes and in lymphoid organs of
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tumor bearing mice is relatively poor, but it is highly expressed on tumor infiltrating
lymphocytes, including Tregs, in both mouse and humans[61,62].

The observations that TIGIT may impose negative effects on anti-tumor responses
were made in studies in which tumor growth in TIGIT-deficient mice were retarded
compared to tumor growth in wild type mice[61], and that co-blockade of TIGIT and
PD-1  had  an  additive  positive  effect  on  lymphoid  cell  functions  in  melanoma
patients[63]. Further studies revealed that the progression of multiple myeloma in mice
and humans was associated with high TIGIT expression in CD8+ T cells that exhibited
reduced functions, while targeting of TIGIT with monoclonal antibodies increased the
effector function of CD8+ T cells and prolonged the survival of multiple myeloma
patients[64].

In  another  set  of  studies,  TIGIT,  but  not  CTLA-4  or  PD-1,  was  found  to  be
associated with natural killer (NK) cell exhaustion in mice and humans with colon
cancer[65]. Blockade of TIGIT prevented NK cell exhaustion and promoted NK cell-
dependent and T cell-mediated anti-tumor immunity[65].

The knowledge accumulated thus far on the immune-inhibitory role of TIGIT in
tumor bearing mice and human cancer patients suggests that future designed TIGIT-
directed blocking strategies could lead to the development of highly effective and
improved anti-cancer therapies.

A phase I clinical trial using anti-TIGIT monoclonal antibodies (MTIG7192A) in
patients with advanced or metastatic tumors is in progress (NCT02794571).

Another phase I clinical trial (NCT03119428) in patients with locally advanced or
metastatic solid tumors investigates the safety and pharmacokinetics of the OMP-
313M32 antibody, which blocks TIGIT binding to PVR.

TIM-3
TIM-3 [also known as Hepatitis A virus cellular receptor 2 (HAVCR2)] belongs to the
TIM family of cell surface receptor proteins, which consists of eight members (TIM-1-
8) in mice and three members (TIM-1, TIM-3, and TIM-4) in humans[66]. The individual
TIM proteins differ in molecular structure and expression patterns, as well as in their
regulatory functions and impact on T-cell responses[66]. TIM-3 is expressed on T cells
and additional hematopoietic cell types[67-69] and utilize the C-type lectin galectin-9 as
its ligand.

Ligation  of  the  TIM-3  receptor  in  vitro  initiates  signals  that  suppress  T  cell
responses, and in vivo administration of anti-TIM-3 antibodies increase the severity of
clinical symptoms in a mouse model of EAE[70]. Because EAE is a T helper 1 (Th1)-
dependent autoimmune disease, it has been suggested that TIM-3 plays a role in the
induction of autoimmune diseases by regulating macrophage functions[70].

Additional studies demonstrated that both TIM-3-deficient mice and wild-type
mice treated with a TIM-3-Ig fusion protein exhibited defects in the induction of
antigen-specific tolerance[71,72]. These studies and others indicated that TIM-3 is an
immune checkpoint receptor that functions to specifically limit the duration and
magnitude  of  T  cell-mediated immune responses  and contributes  to  the  overall
maintenance of immune tolerance[71,72].

TIM-3 is  expressed on a large fraction of  T cells  in cancer  patients  where it  is
predominantly upregulated in tumor-infiltrating lymphocytes[73-75]. In addition, TIM-3
expression was found on various types of cancer cells where increased expression was
frequently associated with disease progression and shorter survival[73-75].

Preclinical studies in cancer patients demonstrated that TIM-3+ T cells exhibited the
most  suppressed  phenotype  and  were  among  the  most  severely  exhausted
lymphocytes[76,77].

In addition, a large fraction of TIM-3+ T cells in cancer patients co-expressed PD-1,
and  the  dual  receptor-expressing  T  cells  exhibited  greater  immune  function
impairments compared to T cells that expressed PD-1 alone[76-78].

These investigations and additional studies support the hypothesis that TIM-3- and
PD-1-coupled signaling pathways cooperate to induce severe T cell anergy or active T
cell suppression in cancer diseases.

In contrast to CTLA-4 and PD-1, TIM-3 does not utilize immunoreceptor tyrosine-
based inhibition motifs (commonly known as ITIM) or immunoreceptor tyrosine-
based switch motifs (also known as ITSM) to transduce its signals. It  is therefore
suggested that TIM-3 is unlikely to be functionally redundant with other ITIM/ITSM-
containing checkpoint receptors and that targeting of TIM-3 might have additive or
synergistic effects with those induced by anti-CTLA-4 or PD-1 antibodies.

In agreement with this hypothesis, targeting the TIM-3 pathway was found to have
modest  antitumor effects  in  various experimental  models  and preclinical  cancer
studies[79,80].  However,  the  combination of  anti-TIM-3 and anti-PD-1 monoclonal
antibodies had a synergistic effect in suppressing tumor growth[73,76,81,82].

Multiple clinical trials (NCT03489343; NCT02817633; NCT03099109; NCT03066648)
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using a variety of anti-TIM-3 monoclonal antibodies (such as LY3321367, MBG453 and
TSR-022)  alone  or  in  combination  with  anti-PD-1  or  anti-PD-L1  antibodies  are
currently in progress in different types of leukemia and solid tumors.

LAG3
LAG3 is a CD4-related 70 kDa type I transmembrane glycoprotein that is expressed
on activated CD4+ and CD8+ T lymphocytes[83]. It binds MHC-II with a high affinity
compared to  CD4,  suggesting that  it  might  function as  a  CD4 competitor[84]  and
negatively regulate TCR-induced signals leading to T cell activation[85,86].

A negative regulatory role of LAG3 was demonstrated in human peripheral blood
cells, when anti-LAG-3 blocking antibody combined with superantigen stimulation
led to the increased proliferation of CD4+ and CD8+ T cells[87]. LAG3 was found to
synergize with PD-1 in downregulating T cell  functions and promoting immune
evasion by cancer cells[88]. Furthermore, dual anti-LAG3/anti-PD-1 antibody treatment
cured most mice of established fibrosarcoma tumors that were otherwise resistant to
single antibody treatment[88].

Several LAG3-targeted therapies are currently at various stages of preclinical and
clinical development. Combination therapies of anti-LAG-3 and anti-PD-1 antibodies
showed promising results in melanoma patients who had relapsed or were refractory
to anti-PD-1/PD-L1 antibody therapy.

Multiple clinical trials (NCT02658981; NCT03489369; NCT02061761; NCT03250832)
using a variety of LAG3 blocking reagents [such as TSR-033, Sym022, and BMS-986016
(relatlimab) monoclonal antibodies or a soluble LAG-3Ig fusion protein (IMP321)]
alone or in combination with a variety of other drugs are currently in progress in
different types of hematological malignancies and solid tumors.

Adverse effects of immune checkpoint therapy
Although immune checkpoint targeting has shown a great deal of promise in treating
a wide range of cancers, drug-induced side-effects termed “immune-related adverse
events’’ (irAEs) have been observed in numerous patients due to non-tumor-specific
activation of T cells by the immune checkpoint blocking antibodies.

Side effects of immune checkpoint therapy range from mild to severe and may
include fatigue, cough, fever, diarrhea, nausea, loss of appetite, skin rash, itching and
nerve inflammation. In addition, the irAEs may affect multiple organs and systems,
including the gastrointestinal tract, liver, kidney, central nervous system, endocrine
glands, and the pulmonary, cardiovascular and hematological systems.

The frequency and severity of irAEs usually correlate with antibody dosage. The
median time of onset of irAEs is about ten weeks after the start of treatment, although
it varies with respect to the affected tissues and between individual patients and may
occur even after cessation of immune checkpoint therapy.

While the occurrence of irAEs normally indicates that the immune checkpoint
blockade has activated the patient’s immune system, its correlation with improved
antitumor immunity remains controversial, and the general assumption is that irAEs
are not required for obtaining an effective anti-tumor response.

Although the majority of irAEs are completely reversible, immunosuppression
using glucocorticoids or other drugs is  recommended in cases of  severe adverse
events. This temporary immunosuppression was found to have no influence on the
overall survival rate[89].

The discovery of  additional  biomarkers  and the  development  of  new tools  to
predict the patient’s risk of developing irAEs will facilitate the application of the full
therapeutic potential of immune checkpoint-targeting drugs.

CONCLUSION
Immune checkpoints consist of inhibitory and stimulatory pathways that are essential
for maintaining self-tolerance and to assist with the regulation of immune responses.

Co-inhibitory immune checkpoint receptors are often activated in cancer cells and
enable tumor progression by dampening antitumor immune responses.

Antibody-mediated cancer immunotherapy based on the blockade of the signaling
axis between co-inhibitory receptors and their ligands has shown remarkable clinical
success in patients with different types of cancers.

The most effective reagents thus far are antibodies directed against CTLA-4, PD-1
and PD-L1 receptors, while other antibodies that react with receptors, such as TIGIT,
TIM-3 and LAG3, are under evaluation.

While immune checkpoint blockade therapy has revolutionized oncology care, only
a subset of treated cancer patients shows durable responses.

One reason relates to the inherent limitations of the antibody molecules that have
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poor tissue and tumor penetrance and harmful Fc-effector functions that deplete
immune cells.  These limitations can be partially  overcome by using genetically-
modified smaller sized antibodies (nanobodies; monomeric variable fragments of
Camelid heavy-chain antibodies) or antibodies that lack their Fc portion. Another
option is using smaller, high affinity non-antibody molecules directed against selected
immune checkpoint receptors that function as soluble agonists. Such molecules can be
designed to have a higher affinity to immune checkpoint receptors compared to
physiological ligands, to have superior tumor penetration due to their smaller size,
and to have no effect on Fc-mediated T cell depletion[90].

At  present,  immune checkpoint  therapy is  aided only by a  limited number of
biomarkers that can accurately predict optimal therapy for patients with different
types  of  cancers.  However,  intense  investigations  are  ongoing to  identify  novel
biomarkers for immune checkpoint therapy that will increase treatment specificity
and selectivity, minimize the risk of toxicity, and serve as non-redundant targets that
can maximize the potential of combination therapies.
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