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Abstract
Hepatitis C (HCV)-infected patients have a poorer sur-
vival post-liver transplantation compared to patients 
transplanted for other indications, since HCV recurrence 
post-transplant is universal and commonly follows an 
aggressive course. There is increasing evidence that 
in the non-transplant setting, induction of hepatocyte 
apoptosis is one of the main mechanisms by which 
HCV drives liver inflammation and fibrosis, and that 
HCV proteins directly promote apoptosis. Recent stud-
ies have shown that post-liver transplant, there is a 
link between high levels of HCV replication, enhanced 
hepatocyte apoptosis and the subsequent develop-
ment of rapidly progressive liver fibrosis. Although the 
responsible mechanisms remain unclear, it is likely that 
immunosuppressive drugs play an important role. It is 

well known that immunosuppressants impair immune 
control of HCV, thereby allowing increased viral replica-
tion. However there is also evidence that immunosup-
pressants may directly induce apoptosis and this may 
be facilitated by the presence of high levels of HCV 
replication. Thus HCV and immunosuppressants may 
synergistically interact to further enhance apoptosis 
and drive more rapid fibrosis. These findings suggest 
that modulation of apoptosis within the liver either by 
changing immunosuppressive therapy or the use of 
apoptosis inhibitors may help prevent fibrosis progres-
sion in patients with post-transplant HCV disease. 

© 2012 Baishideng. All rights reserved.
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INTRODUCTION
Hepatitis C (HCV)-related liver failure is now the com-
monest indication for liver transplantation in the United 
States, Australia and Europe[��1�]. HCV-infected patients 
have a poorer survival post-transplantation compared 
to patients transplanted for other indications[��2]. This is 
because HCV recurrence occurs in virtually all patients 
and commonly follows an aggressive course, with 20% 
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or more of  patients developing cirrhosis within 5 years 
of  transplantation[3]. The cause of  this accelerated disease 
has not been fully elucidated, but risk factors include 
advanced donor age, early high HCV viral load post-
transplant[4], acute graft rejection and treatment thereof, 
and the degree of  immunosuppression[5].

In the non-transplant setting, induction of  hepatocyte 
apoptosis is one of  the main mechanisms via which HCV 
drives liver inflammation and fibrosis[6]. Recent evidence 
suggests a link between high levels of  HCV replication, 
high rates of  apoptosis and the subsequent development 
of  rapidly progressive graft injury and fibrosis after liver 
transplantation[7]. The mechanisms responsible for this 
high levels of  apoptosis found in aggressive post-liver 
transplant HCV disease remain unclear. It is well known 
that immunosuppressants impair immune control of  
HCV, thereby allowing increased viral replication. There 
is also recent evidence that some commonly used im-
munosuppressants may directly induce apoptosis and this 
may be facilitated by the presence of  high levels of  HCV 
replication. This suggests that HCV and immunosuppres-
sants may synergistically interact to enhance apoptosis 
and drive rapid fibrosis.

OVERVIEW OF APOPTOSIS
Apoptosis is a highly regulated physiological process that 
plays an important role in organogenesis and the main-
tenance of  tissue homeostasis[8]. Cells posing a threat to 
the integrity of  an organ, such as virus-infected cells, may 
be eliminated by apoptosis, which occurs by two major 
pathways - extrinsic and intrinsic. The extrinsic pathway 
is activated when death ligands [tumor necrosis factor 
(TNF), FasL/CD95L and TRAIL] secreted by cells of  
the immune system in response to foreign (for example, 
viral) antigens bind to their respective cell surface recep-
tors, to trigger signaling pathways that result in the activa-
tion of  caspases[9]. The caspases are a class of  enzymes 
responsible for the execution of  apoptosis within the cell. 
In the intrinsic pathway, intracellular apoptotic stimuli, 
such as viral antigens, cause disruption of  mitochondrial 
membrane integrity, releasing cytochrome c that activates 
the caspase pathway[10]. The integrity of  the outer mi-
tochondrial membrane is predominantly maintained by 
anti-apoptotic members of  the Bcl-2 family (e.g., Bcl-2 
and Bcl-xL), which antagonize pro-apoptotic members 
(for example, Bax and Bak).

LINK BETWEEN HEPATOCYTE 
APOPTOSIS AND LIVER FIBROSIS
There are increasing amounts of  experimental data im-
plicating apoptosis as a driving force for fibrogenesis 
in a range of  different liver diseases, including alcohol-
related and cholestatic liver diseases and viral hepatitis[11�]. 
Apoptotic hepatocytes are engulfed and cleared by both 
Kupffer cells and hepatic stellate cells (HSCs). Activated 
HSCs are the primary cell type responsible for promoting 

fibrogenesis within the damaged liver, and the uptake of  
apoptotic bodies by HSCs result in their activation and 
secretion of  the key pro-fibrogenic cytokine transforming 
growth factor-β (TGF-β)[12]. In activated HSCs, TGF-β 
induces a marked upregulation of  genes encoding fibril-
lar collagens and other extracellular matrix components, 
resulting in the abnormal deposition of  collagen within 
the liver[13]. Kupffer cells, which are the resident liver 
macrophages, upon ingestion of  apoptotic hepatocytes, 
also secrete TGF-β, thereby promoting a pro-fibrogenic 
response in activated HSCs[14]. Furthermore, TGF-β it-
self  induces hepatocyte apoptosis via two independent 
pathways, SMAD and DAXX[15], thus providing a positive 
feedback loop that could further potentiate apoptosis-
induced fibrosis. In support of  these in vitro observations, 
inhibition of  apoptosis reduces hepatic inflammation and 
fibrosis in experimental models of  fibrotic liver disease[16].

HEPATITIS C AND HEPATOCYTE 
APOPTOSIS
In HCV infection, hepatocyte apoptosis is an important 
part of  the host anti-viral defense mechanism since it 
interrupts viral replication and assists in the elimina-
tion of  virus-infected cells. However, in keeping with 
the observed effects of  apoptosis in laboratory studies, 
there is now evidence to suggest that the severity of  liver 
damage in chronic HCV is associated with the degree 
of  hepatocyte apoptosis[6]. Furthermore, the degree of  
apoptosis correlates with the level of  viraemia[17]. Bantel 
and colleagues have studied a serum apoptosis biomarker, 
the proteolytic neoepitope of  the caspase substrate cyto-
keratin-18, as a means of  determining caspase activity to 
monitor liver injury and predict the progression of  he-
patic fibrosis in HCV-infected patients[18]. This biomarker 
was markedly elevated in the sera of  HCV-infected pa-
tients compared to healthy controls, and in patients with 
normal transaminase levels, raised serum caspase activity 
was associated with advanced fibrosis on liver biopsy.

Hepatocyte apoptotic rates on liver biopsy are signifi-
cantly greater in HCV-positive patients post-liver trans-
plant compared to the non-transplant setting, with the se-
verity of  liver inflammation correlating with the level of  
hepatocyte apoptosis[7], and HCV viral load is known to 
be higher post-liver transplantation[19]. Thus one potential 
explanation for accelerated fibrosis post-transplantation 
is that the high levels of  HCV replication that occurs due 
to impaired immune control of  HCV replication may 
drive increased hepatocyte apoptosis. 

How then does HCV affect apoptosis? One likely 
mechanism is that virus-specific cytotoxic T-cells may in-
duce apoptosis of  HCV-infected hepatocytes by upregu-
lating death receptor ligands (TNF, FasL/CD95L and 
TRAIL), by producing antiviral cytokines (for example, 
interferon-γ), and by direct cell killing with perforins and 
granzymes[20]. HCV infection is also associated with an 
upregulation of  death receptors on hepatocytes, and the 
levels of�����������������������������������������       Fas/CD95 and FasL/CD95L have been shown 
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to increase in parallel with the severity of  inflammation 
and disease progression[���21].

There is also considerable experimental evidence that 
HCV structural proteins can directly influence hepato-
cyte apoptosis. HCV core protein has been reported to 
sensitize hepatocytes to TNF-α-[22] and FasL/CD95L-[23] 
mediated apoptosis, by interacting with the cytoplasmic 
domains of  TNFR1 and Fas/CD95 to enhance down-
stream signaling events. It also induces oxidative stress, 
enhances mitochondrial-mediated hepatocyte apopto-
sis[24] and upregulates TGF-β1 gene expression, thereby 
promoting apoptosis and fibrogenesis. However, the 
expression of  core protein has also been shown to have a 
number of  possible anti-apoptotic effects. These include 
inhibition of  TNF-α- and Fas/CD95-mediated apoptosis 
through the upregulation NF-κB[25], and interaction with 
cFLIP, an endogenous caspase-8 inhibitor[26]. Core pro-
tein has also been reported to promote the anti-apoptotic 
Bcl-xL expression, inhibit interferon-α-mediated STAT1 
signaling and activate STAT3, thereby protecting infected 
hepatocytes from T-cell-mediated apoptosis[27]. Both the 
E1 and E2 glycoproteins of  HCV have been shown to 
induce hepatocyte apoptosis[28], with the E2 protein noted 
to activate the mitochondrial caspase pathway. However, 

E2 protein has also been shown to inhibit interferon-α-
mediated STAT1 signaling and TRAIL-induced apop-
tosis, as well as enhance the proliferation of  transfected 
Huh7 human hepatoma cells[29]. The data on the effect 
of  HCV on caspase-independent apoptosis are lacking. 
One study showed that core protein expression pro-
moted apoptosis-like caspase-independent cell death in 
osteosarcoma-derived cells[30], but the effect in liver cells 
is unknown.

The non-structural proteins of  HCV have also been 
shown to affect hepatocyte apoptosis. By using a NS3-5B 
subgenomic replicon of  HCV, Huh7.5 human hepatoma 
cells were shown to be sensitized to TRAIL-induced 
apoptosis[31]. Accumulation of  NS4A on mitochondria 
has been found to promote mitochondrial-mediated 
apoptosis[32]. Similarly, the HCV protease NS3, can induce 
apoptosis in a caspase 8-dependent manner. On the other 
hand, NS2 has been found to inhibit the mitochondrial 
release of  cytochrome c, thereby inhibiting mitochon-
drial-mediated apoptosis[33]. NS5A inhibits interferon-α-
mediated STAT1 signaling[34] and protects hepatocytes 
against interferon-α- and TNF-α-mediated apoptosis. 
NS5A also prevents apoptosis by activating NF-κB, in-
hibiting TGF-β, and upregulating STAT3 expression to 

Figure 1  Where the hepatitis C proteins and immunosuppressants are thought to interact with the apoptotic pathways within the hepatocyte. CyA: Cyclo-
sporine; FK506: Tacrolimus; MMF: Mycophenolate mofetil; Sirol: Sirolimus; TNF-α: Tumor necrosis factor-alpha.
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promote hepatocyte proliferation[35].
Thus HCV proteins have been shown to have a num-

ber of  both pro- and anti-apoptotic effects in cultured 
hepatocytes but the net of  contribution of  these changes 
to hepatocyte apoptotic rates and liver fibrosis in vivo 
remains unclear. The discrepancies in these effects may 
be partly explained by differences in experimental condi-
tions, cell types, apoptotic stimuli and HCV genotype-
specific proteins expressed in various in vitro systems 
that may not mimic the true in vivo situation. Our current 
understanding of  how the HCV proteins interact with 
apoptotic pathways within the hepatocyte is summarized 
in Figure 1.

HEPATITIS C AND APOPTOSIS OF 
OTHER LIVER CELL TYPES
Activated HSCs are the key cell type promoting fibro-
genesis in the liver. HSC activation is increased in pa-
tients with chronic HCV infection and the degree of  
activation correlates with necroinflammatory grade and 
fibrosis stage[36]. Interestingly, patients with chronic HCV 
infection have elevated plasma levels of  TGF-β1 and 
increased expression of  TGF-β1 in the liver, while the 
clearance of  HCV infection with anti-viral treatment is 
associated with normalization of  plasma TGF-β1 lev-
els[37]. This argues for an important role of  TGF-β in 
HCV-mediated HSC activation and liver fibrogenesis.

Normally, hepatocytes do not express TGF-β, but 
hepatocytes exposed to HCV non-structural proteins 
upregulate TGF-β expression, resulting in the activation 
of  HSCs[38]. HSCs express CD81 and LDL receptor, the 
putative receptors for HCV, and may perhaps be infected 
by HCV in vivo[39]. Expression of  HCV core and non-
structural proteins in HSCs was found to activate HSCs, 
resulting in upregulation of  TGF-β and procollagen 1 
expression[39]. The interaction of  HCV E2 glycoprotein 
with HSCs is noted to upregulate HSC expression of  
matrix metalloproteinase 2, thus facilitating hepatic fibro-
genesis.

Activated HSCs are primarily cleared by apoptosis, 
a process that would normally restrict the fibrogenic re-
sponse within an inflamed liver. However, in patients with 
chronic HCV and advanced fibrosis, HSC apoptosis is 
reduced compared to patients with mild fibrosis[40]. This 
suggests that the inhibition of  HSC apoptosis by HCV 
may contribute to the progression of  liver fibrosis in this 
disease. Also, HCV-infected patients who are noted to 
have a high number of  activated HSCs in liver biopsies 
done several months after liver transplantation developed 
advanced fibrosis within 2 years of  transplantation, indi-
cating that the degree of  HSC activation may be an early 
predictor of  post-transplant rapid fibrosis[41].

Kupffer cells have an integral role in the development 
of  chronic liver inflammation in response to hepatocyte 
injury. Activated Kupffer cells contribute to HSC activa-
tion and thereby promote liver fibrosis. The interaction 
between HCV core protein and toll-like receptor (TLR) 

2 on human Kupffer cells has been shown to upregulate 
cell surface programmed death-ligand 1 (PD-L1). The 
binding of  Kupffer cell PD-L1 to PD-1 receptors on 
T-cells promotes T-cell apoptosis, thereby impairing the 
host adaptive anti-viral response[42]. HCV core protein 
has also been shown to inhibit TLR3-mediated induction 
of  interferon-α, interferon-β and TRAIL, and this may 
impair the anti-viral activity of  Kupffer cells[42]. HCV has 
not been shown to affect Kupffer cell apoptosis.

IMMUNOSUPPRESSIVE DRUGS AND 
APOPTOSIS
The aim of  post-liver transplant immunosuppression is 
to dampen the adaptive immune response and prevent 
graft rejection. However, robust CD4+ and cytotoxic 
CD8+ T-cell responses play a central role in controlling 
HCV replication.  The experimental evidence that the 
increased HCV viraemia that occurs post-transplant may 
directly drive higher rates of  apoptosis suggests a likely 
link between immunosuppressive drug therapy, the re-
sultant loss of  immune control of  HCV replication, and 
apoptosis-induced liver injury and fibrosis.

It is has been suggested that the overall level of  im-
munosuppression, rather than the individual agent, is as-
sociated with the level of  HCV viraemia and the degree 
of  hepatic injury on liver biopsy in patients with post-
transplant HCV recurrence[43]. Thus the use of  pulse 
methylprednisolone for the treatment of  acute graft re-
jection has been shown to dramatically elevate HCV viral 
load[43], while OKT3, another highly potent immunosup-
pressant used to treat steroid-refractory acute rejection, 
has been shown to accelerate HCV-associated liver fibro-
sis.

However, there is emerging evidence that individual 
immunosuppressive drugs used in long-term mainte-
nance therapy may also have individual specific effects 
on both HCV replication and HCV-mediated liver injury. 
Some groups have shown that cyclosporine therapy is as-
sociated with less severe histological recurrence and im-
proved graft survival post-liver transplantation compared 
to tacrolimus[44]. One possible explanation for this effect 
is that cyclosporine is known to inhibit HCV replication 
in vitro by the inhibition of  NS2 and NS5A[45]. Tacrolimus, 
on the other hand exhibits no anti-viral effect in vitro and 
in fact impairs interferon-α activity by interfering with 
STAT-1 phosphorylation, and thus, may promote viral 
replication and persistence[46]. Mycophenolic acid (MPA), 
the active metabolite of  mycophenolate mofetil (MMF), 
inhibits HCV replication in Huh7 human hepatoma cells 
without inhibiting cell proliferation or inducing apopto-
sis[47]. A synergistic inhibition of  viral replication has also 
been shown when MPA was combined with cyclosporine 
or interferon-α[48].

In addition to their possible effects on viral replica-
tion, there is increasing evidence that some of  the im-
munosuppressive agents may also directly contribute to 
apoptosis. Figure 1 summarizes our current understand-

Lim EJ et al . Apoptosis in post-liver transplant hepatitis C
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ing of  where individual immunosuppressants interact 
with intracellular apoptotic pathways. 

Cyclosporine has been shown to prevent hepatocyte 
necrosis in mice exposed to concanavalin A[49], but data 
on its effect on hepatocyte apoptosis are lacking. Cy-
closporine is noted to cause apoptosis of  renal vascular 
endothelial cells via endoplasmic reticulum stress, as well 
as fibrosis of  the renal tubulointerstitium by upregulating 
TGF-β expression[50]. These findings raise concerns that 
similar effects may occur within the liver. Indeed, cyclo-
sporine has been found to promote hepatocyte expres-
sion of  pro-apoptotic Bak in a rat model of  liver injury[51]. 
On the other hand, cyclosporine has also been shown to 
prevent apoptosis of  human gingival fibroblasts by inhib-
iting Bax and upregulating anti-apoptotic Bcl-2[52], as well 
as reducing mitochondrial permeability and inhibiting 
cytochrome c release in human platelets and rat vascular 
endothelial cells in vitro[53]. In an animal model of  colitis, 
cyclosporine was found to have a protective role against 
epithelial apoptosis through the upregulation of  anti-
apoptotic cFLIP and inhibition of  caspase-8 activity[54]. 

Tacrolimus has also been shown to have both pro-
apoptotic and anti-apoptotic effects in various cell lines 
in culture. Treatment with tacrolimus promotes Jurkat 
T-cell G0/G1 phase cell cycle arrest and the generation 
of  reactive oxygen species, mitochondrial dysfunction 
and thereby apoptosis[55]. In contrast, in human islet cells 
exposed to pro-inflammatory cytokines such as IL-1 
and interferon-γ, tacrolimus has an anti-apoptotic effect, 
causing a reduction in TNF-α and down-regulation of  
caspase-3, -8 and -9[56]. Tacrolimus has also been shown 
to promote hepatic expression of  anti-apoptotic Bcl-2 in 
a rat model of  liver injury[51]. However the effect of  ta-
crolimus on apoptosis in human liver is unknown.

After solid organ transplantation, treatment with 
MMF has been associated with increased mucosal apop-
tosis in the upper gastrointestinal tract and colon, pro-
ducing an appearance similar to graft-vs-host disease[57]. 
While MMF has been shown to induce apoptosis via 
promoting endoplasmic reticulum stress and increasing 
caspase-3 activity in human pancreatic islet cells[58], the 
opposite effect has been observed in renal transplant 
recipients, where reduced apoptosis of  renal tubular 
epithelial, glomerular and interstitial cells was noted[59]. 
MMF has also been shown to reduce pancreatic β-cell 
apoptosis in a rodent model of  diabetes, and reduce he-
patocyte oxidative stress and apoptosis in a rat model of  
ischaemia/reperfusion injury[60]. The effect of  MMF on 
human hepatocyte apoptosis is currently unknown.

Sirolimus has been found to induce apoptosis in acute 
lymphoblastic leukemia cells by inhibiting the PI3K/Akt 
pathway[61]. It also induces apoptosis in vascular smooth 
muscle cells by activating caspase-3 and inhibiting NF-κB 
nuclear translocation[62]. However, sirolimus is known to 
inhibit HSC proliferation in vitro, reduce TGF-β expres-
sion and inhibit collagen deposition, thereby reducing 
hepatic fibrosis in a rat model of  liver injury[63]. Indeed, 
sirolimus has also been shown to reduce liver fibrogen-

esis, improve liver function and enhance survival in rats 
with established cirrhosis[64]. Huh7 hepatoma cells trans-
fected with the HCV-1b genome have upregulated PI3K-
Akt-mTOR signaling[65], possibly rendering HCV-infected 
cells more resistant to apoptosis. Sirolimus, by inhibiting 
the mTOR pathway, has been shown to inhibit NS5A 
phosphorylation, thereby inhibiting HCV replication[66]. 
Sirolimus-based maintenance immunosuppression has 
been associated with lower HCV RNA levels at 12 mo 
following liver transplantation and improved patient sur-
vival at 6 years compared to calcineurin inhibitors[67].

THERAPEUTIC IMPLICATIONS
Understanding the role of  hepatocyte apoptosis in the 
pathogenesis of  post-transplant HCV-mediated liver 
injury and the likely contributing role of  the immunosup-
pressive agents has a number of  important therapeutic 
implications. It is hoped that increased knowledge of  
the pro- or anti-apoptotic effects of  different immuno-
suppressive agents and whether they exacerbate HCV-
induced apoptosis may allow the development of  im-
munosuppressive regimes that minimize this aspect of  
HCV-mediated liver injury. In this regard, sirolimus is of  
particular interest given its possible anti-apoptotic and 
anti-fibrotic effects both in vitro and in animal models.

These findings also suggest a possible therapeutic role 
for apoptosis inhibitors in post-transplant HCV. There 
is increasing experimental and clinical experience with 
the use of  this class of  compounds in liver disease. The 
pan-caspase inhibitor IDN-6556 was found to reduce 
hepatocyte apoptosis and liver fibrosis in bile duct-ligated 
mice[���16�], and improve liver function tests in patients with 
hepatic dysfunction[6��8�]. VX-166, another pan-caspase in-
hibitor, has been shown to reduce hepatocyte caspase-3 
expression and apoptosis, thereby decreasing hepatic 
fibrosis in a murine model of  non-alcoholic steatohepa-
titis[���69�]. Given the evidence linking HCV-induced hepato-
cyte apoptosis with liver fibrosis, 2 randomized, double-
blind, placebo-controlled studies have been conducted 
using pan-caspase inhibitors in patients with chronic 
HCV, one using PF-03491390[7��0�] and the other using 
IDN-6556[7��1�]. In both studies, the orally administered 
pan-caspase inhibitors were well tolerated with minimal 
adverse effects and showed significant reductions in se-
rum transaminases. Besides directly targeting caspases, 
compounds that inhibit other components of  the apop-
totic pathway upstream to caspases are currently in de-
velopment. There are currently no drugs that inhibit the 
caspase-independent apoptotic pathway in the literature.

Conversely, the promotion of  HSC apoptosis may 
also act to reduce hepatic fibrosis. Cortex Dictamni ex-
tract was noted to induce apoptosis of  activated HSCs, 
resulting in decreased hepatic collagen deposition and 
attenuated fibrosis in a murine model of  liver injury[7��2�]. 
Another compound, 2’,4’,6’-tris(methoxymethoxy) chal-
cone, is noted to induce apoptosis of  activated HSCs by 
enhancing FasL/CD95L expression without affecting 
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hepatocyte apoptosis[7��3�]. The tyrosine kinase inhibitor 
sorafenib has also been found to increase HSC expres-
sion of  caspase-3 and induce HSC apoptosis resulting in 
reduced hepatic collagen deposition and fibrosis in bile 
duct-ligated rats[7��4�]. These compounds raise the possibility 
of  treatment to reduce the population of  activated HSCs 
within the transplanted liver in HCV-recurrence.

I�������������������������������������������������      n conclusion�������������������������������������     , t����������������������������������    he management of  post-liver trans-
plant HCV disease remains one of  the major challenges 
in transplant medicine. Enhanced hepatocyte apoptosis 
appears to contribute to much of  the liver injury that 
drives rapid liver fibrosis in this disease, and in the near 
future clinically useful serum biomarkers of  apoptosis 
may be available to monitor for this. The precise mecha-
nisms that drive this accelerated hepatocyte apoptosis 
post-transplant require further study, but it appears that 
both HCV itself  and immunosuppressants play contribu-
tory and possibly synergistic roles. In the future as the 
effects of  various immunosuppressive agents on HCV-
induced liver cell apoptosis are clarified, a combination 
of  fine-tuning immunosuppressive regimens as well as 
the manipulation of  apoptosis within the liver represents 
novel therapeutic possibilities for the management of  this 
complex disease.
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