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Abstract
Primary biliary cirrhosis (PBC) is a disease of unknown 
etiology leading to progressive destruction of small 
intrahepatic bile ducts and eventually to liver cirrhosis 
and failure. It is characterised by female predominance 
and serum auto-antibodies to mitochondrial antigens 
target ing the E2 components of the 2-oxoacid 
dehydrogenase complex. Although they are associated 
with disease pathogenesis, no concrete evidence has 
been presented so far. Epidemiological data indicate 
that a geographical clustering of cases and possible 
environmental factors are implicated in pathogenesis. 
A number of genetic factors play a role in determining 
disease susceptibility or progression, although no 
definitive conclusion has been reached so far. A key 
factor to immune pathogenesis is considered to be 
the breakdown of immune tolerance, either through 
molecular mimicry or through the so called determinant 
density model. In this review, the available data 
regarding the pathogenesis of primary biliary cirrhosis 
are described and discussed. A new unifying hypothesis 
based on early endothelin overproduction in primary 
biliary cirrhosis (PBC) is presented and discussed. 

© 2006 The WJG Press. All rights reserved.

Key words: Primary biliary cirrhosis; Pathogenesis

Kouroumalis E, Notas G. Pathogenesis of primary biliary 
cirrhosis: A unifying model. World J Gastroenterol 2006; 
12(15): 2320-2327

 http://www.wjgnet.com/1007-9327/12/2320.asp

INTRODUCTION
Primary biliary cirrhosis (PBC) is a chronic cholestatic 
disease of  unknown aetiology characterized by progressive 
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destruction of  small intrahepatic bile ducts eventually 
leading to cirrhosis. It is considered to be an autoimmune 
disease due mostly to the presence of  well characterized 
auto-antibodies. These auto-antibodies target the 
components of  2-oxoacid dehydrogenase complexes. 
Antibodies against components of  the nuclear pore 
complex have also been described. The disease may be 
considered as an example of  the vanishing bile duct 
syndrome. 

Although auto-antigens have been molecularly 
identified and epitope-mapped and auto-reactive T and 
B cells have been characterized, the exact mechanism of  
liver tissue damage remains unclear. Recent reviews have 
summarised the present theories of  PBC pathogenesis [1,2]. 
In this review, we first examined the evidence and then the 
current models concerning disease pathogenesis. Finally, 
a unifying hypothesis based on recent observations is 
proposed.

PRIMARY BILIARY CIRRHOSIS AS A 
GENETIC AND ENVIRONMENTAL DISEASE
Following earlier case reports of  familial cases of  PBC, 
a more comprehensive cohort study has estimated the 
sibling relative risk for PBC at 10.5, similar to other 
classical autoimmune diseases [3]. Recently, a pairwise 
concordance rate of  0.63 for PBC in monozygotic twin 
pairs has been published [4], which is one of  the highest 
reported in autoimmunity. Taken together these reports 
indicate a significant genetic contribution to the disease 
pathogenesis. However, studies on specific genes have 
provided only weak associations. Extensive reviews on 
genetic factors in PBC have been recently published [5, 6]. 

Geographical disease clusters have been reported [7-9] and 
provide evidence for an as yet unidentified environmental 
factor in PBC pathogenesis. Although these studies are 
criticized and the case control studies are not able to 
identify putative environmental factors [10,11], there is 
enough evidence that environmental susceptibility does 
play a role.

PRIMARY BILIARY CIRRHOSIS AS A 
HUMORAL IMMUNE RESPONSE DISEASE
High titers of  antibodies against mitochondrial elements 
are characteristic of  the disease. Anti-mitochondrial 
antibodies (AMA) target the E2 component of  the 
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pyrurate dehydrogenase complex (PDC-E2), which 
belongs to the family of  the 2-oxoacid dehydrogenase 
complexes (2-OADC) [12]. The main epitopes have been 
localised within the inner lipoyl-binding domain of  the 
subunit overlapping amino acids 212-226. The AMA 
response is polyclonal and these antibodies also react with 
the dihydrolipoamide dehydrogenase binding protein [13].

Based on the in vitro fact that 2-OADC activity is 
inhibited by AMA and 10% of  the portal B cells produce 
antibodies reactive with PDC [14,15], a pathogenetic role of  
AMA has been proposed. 

Sera from over 50% of  patients do contain AMA with 
a different specificity. They react with the E1α component 
of  PDC [16]. Their reactivity is directed to the C-terminus of  
the molecule which contains the active site of  the enzyme 
and therefore these antibodies are also inhibitory of  
PDC activity [17,18]. Antibodies against the branched chain 
of  2-oxoacid dehydrogenase complex E1α have also been 
identified [19]. Auto antibodies against the nuclear pore proteins 
gp210 and p62 are associated with more active or severe 
disease [20]. Perhaps the best evidence for the pathogenetic 
role of  auto antibodies in PBC comes from the description 
of  secretory IgA anti-PDC in saliva, bile and urine of  patients 
which retain their enzyme inhibitory capacity [21-24]. 

In PBC, both biliary epithelial cells and salivary 
epithelial cells (the main targets of  the disease process) 
demonstrate an apical surface up-regulation of  PDC 
or an antigen cross reacting with it [25]. This expression 
appears earlier than the reported up-regulation of  other 
surface molecules like MHC class II, or ICAM-1 [26]. It 
seems, however, that PDC is released from apoptotic 
mitochondria to the cytoplasm within six hours of  the 
induction of  apoptosis and that auto-reactive epitopes are 
present on the still intact cell surface at later time points 
during the process of  apoptosis [27]. However, convincing 
evidence for a role of  AMA in the pathogenesis of  PBC 
has yet to be produced [28]. Moreover, the very existence 
of  the so called autoimmune cholangitis or AMA-negative 
PBC, a disease similar in every aspect to PBC but without 
detectable AMA, strongly argues against a pathogenetic 
role of  AMA.

T CELL RESPONSES IN PBC
CD4 and CD8 T-cells reactive with PDC have been 
identified in the peripheral blood and liver of  PBC 
patients [29-31]. These cells are reactive with the native 
human antigen [32, 33]. PDC- E2 specific T-cells are present 
in the liver of  PBC patients [29, 34], mostly during the 
earliest disease states [30, 31]. Epitope mapping studies 
have identified HLA DR4*0101-restricted T cell epitope, 
spanning residues 163-176 of  PDC-E2 [35, 36]. Recently 
HLA-A2-restricted CD8 T cell lines reactive with 
PDC-E2 residues 159-167 have been characterised [37, 38]. 
Interestingly, CD8 T cells from livers of  PBC patients 
demonstrate cytotoxicity against PDC-E2 159-167 pulsed 
autologous cells [39].

APOPTOSIS IN PBC
There is concrete evidence that apoptosis is possibly the 
most important mechanism of  biliary epithelial cell loss. 
Markers of  ongoing apoptosis have been reported within 
affected portal tracts [40,41], including down regulation of  
the anti-apoptotic protein bcl-2 [42]. Apoptosis is considered 
the result of  the attack of  effector cells like CD8 T 
cells [39]. Interestingly, in vitro caspase cleavage of  PDC-E2 
has been shown to generate immunologically active protein 
fragments [43].

ROLE OF REACTIVE OXYGEN SPECIES 
(R0S) in PBC
Data on the role of  oxidative stress in the pathogenesis 
of  PBC are scarce. In the damaged bile ducts of  PBC, 
glutathione-S-transferase expression is markedly reduced, 
reflecting reduction of  intracellular glutathione, while 
perinuclear expression of  4-hydroxynonenal is increased, 
reflecting active lipid peroxidation associated with 
biliary epithelial damages [44]. Levels of  the antioxidant 
vitamin E have been found to be decreased in PBC, 
together with other fat soluble vitamins [45-47], while serum 
total antioxidant capacity (measured with an enhanced 
chemiluminescent  technique) is significantly reduced in 
PBC patients [48].

A number of  antioxidant substances including retinol, 
alpha-tocopherol, total carotenoids, lutein, zeaxanthin, 
lycopene, alpha and beta-carotene are reduced in PBC 
patients compared to normal controls [49]. However, we 
have reported highly corrected total antioxidant capacity 
in PBC [50], a fact that may reflect a compensatory but 
probably not sufficient increase to counteract an increased 
ROS production.

Evidence for a role of  ROS in the liver damage of  
PBC is provided by in vitro reports that ursodeoxycholic 
acid (UDCA), a drug commonly used in PBC, has 
extensive ROS scavenging properties and prevents 
mitochondrial oxidative stress and lipid peroxidation in a 
dose-dependent manner [51-53]. Finally, evidence from the 
rat bile duct-ligated model may have relevance to PBC. 

Lipid peroxidation is a relatively late event in this 
model and a close link seems to exist between lipid 
peroxidation and the activation of  inf lammatory 
cells [54,55]. Free radicals triggering hepatic injury in this 
model, involve overproduction of  the pro-inflammatory 
cytok ines  TNFα ,  IL-6  and IL-1b v ia  enhanced 
activation of  nuclear factor kB [56]. Moreover, in vitro 
experiments have shown that several bile acids including 
taurochenodeoxycholic acid and taurocholic acid cause 
hepatocyte injury with a concomitant generation of  
hydroperoxide by mitochondria [57,58] and also induce 
hepatocyte apoptosis in a time- and concentration-
dependent manner via ROS generation by mitochondria [59]. 
An increased bile acid concentration is a feature of  at least 
late PBC. 
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these low TCR affinity T-cells, are unable to activate T 
cells. However, enrichment of  APC presentation of  self-
PDC-derived epitopes could give sufficient low affinity 
presentation to overcome a triggering threshold and 
induce a proper CD4 T-cell activation.  

In this model also, the initial trigger of  antibody 
response cross-reaction with self-PDC could be either 
viral or bacterial epitopes with a structural homology to 
PDC. An interesting feature of  this model is that the state 
of  activation of  APC mediated through toll-like receptors 
may determine the efficacy of  antigen presentation 
and promote tolerance breakdown [67]. Peripheral blood 
monocytes from PBC patients produce higher levels of  
pro-inflammatory cytokines (TNFα, IL1b, IL-6, IL-8) 
when they are challenged with specific ligands for TLR2, 
TLR3, TLR4, TLR5 and TLR9. These findings indicate 
that monocytes in PBC (and possibly APC) are hyper-
responsive to signalling through TLRs, a fact that may help 
in tolerance breakdown. 

PATHOGENESIS OF PRIMARY BILIARY 
CIRRHOSIS: A UNIFYING HYPOTHESIS
We recently reported a significant increase of  endothelins, 
particularly ET2 (and to a lesser extent of  ET1) both in 
peripheral blood and in the hepatic vein, occurring at an 
early stage of  the disease. Moreover, UDCA treatment 
caused a significant reduction of  all three endothelins, its 
effect being most pronounced in early stage PBC. 

Based on our observations, a new unifying hypothesis 
for the pathogenesis of  PBC is proposed (Figure 1). In 
this model, there is a primary dysfunction of  endothelial 
cells overproducing ET-2 (and to a lesser extent ET-1). 
This could be a primary genetically determined event. 
Endothelial cells express scavenger receptor type B [68] and 
internalise foreign antigens. Indeed lipoteicholic acid, a 
strongly antigenic component of  gram positive bacteria, 
has been found in endothelial cells [68], while Helicobacter 
and lipopolysaccharide have also been described in PBC 
livers [69, 70]. ET2 may in turn stimulate Kupffer cells to 
produce pro-inflammatory cytokines, such as IL-1 and 
IL-6 from mouse peritoneal macrophages (but not TNFα 
or NO in this particular model) [71]. ET2 is also a potent 
macrophage chemoattractant [72] via the ETB receptor. ET2 
shares the similar peptide sequence with CXC chemokines.

In accordance with this hypothesis, macrophages 
constitute 30% of  the cellular infiltrate on portal areas and 
around damaged bile ducts [73]. Activated macrophages 
have also been observed by electron microscopy near 
epithelial cells of  the bile ductules and seem to develop 
into epitheliod cells [74]. Epitheliod granulomata of  PBC 
patients contain most MCP2 and MCP3 positive cells at 
their edge and more than 60% of  them co-express CD68, 
indicating that they are derived from macrophages [75].

In  s t ag es  3  and  4 ,  PBC Kuppfer  ce l l s  and 
myofibroblasts are increased in periportal and periseptal 
areas, possibly indicating that Kupffer cells interact with 
stellate cells and lead to fibrosis [76], thus forming the 
connecting element to the development of  cirrhosis. 

CURRENT VIEWS ON THE PATHOGENESIS 
OF PBC
There are two fundamental facts that should be interpreted 
in every model trying to explain the pathogenesis of  
PBC. First, the PBC auto-antigen PDC is located on the 
inner surface of  the inner mitochondrial membrane and 
is therefore normally separated from the extra-cellular 
immune system by three membranes. It is difficult to 
understand how such an antigen is exposed to antigen 
presenting cells, eliciting an autoimmune reaction. Second, 
PBC is a disease with very limited tissue distribution, yet 
the putative autoimmune response is directed at an antigen 
with an extremely widespread localization. 

So far,  the models developed to explain the 
pathogenesis of  PBC suggest that the key step in disease 
pathogenesis is the breakdown of  T cell self-tolerance 
to PDC, since the induction of  anti-PDC antibodies is 
not enough by themselves to produce liver disease [60]. 
The mechanisms of  the disease pathogenesis have been 
elegantly reviewed elsewhere [61].

Molecular mimicry model of self-tolerance breakdown 
Infection, either viral or bacterial, can either directly 
induce apoptosis of  biliary epithelial cells or more 
probably trigger an immune attack on epithelial cells as a 
result of  molecular mimicry. A T-cell response is initiated 
and mediated by toll-like receptor interaction with a 
pathogen epitope cross-reactive with a self-PDC epitope. 
An immune attack on biliary epithelial cells is mediated 
by these T-cells leading to apoptosis. However, the 
evidence for the initiating micro-organism is conflicting. 
Studies implicating mycobacteria as the source of  cross-
reactive targets are not reproducible and recent reports on 
Chlamydia pneumoniae as the potential microbial factor 
require confirmation [62]. 

Non PDC-E2 microbial sequences with a high 
degree of  similarity to PDC-E2 212-226 epitope, mostly 
E coli mimics, are described as the major targets of  
cross-reactivity with human PDC in the sera of  PBC 
patients [63]. Recently, the cross-reactive target has been 
reported to be the myobacterial hsp65 sharing a common 
motif  with PDC-E2 212-226 epitope [64]. IG G3 antibodies 
to mimics from Lactobacillus delbrueckii with the same 
motif  cross-reactive target can react with the PDC-E2 
212-226 epitope in PBC sera [65]. Therefore, this motif  may 
be a candidate epitope in the molecular mimicry model.

An alternative explanation for the molecular mimicry 
model would be a retroviral infection. The retroviral 
etiology of  PBC has been recently reviewed in detail [28], 
but still remains controversial [66].

Determinant density model 
This model has been described in detail by Jones [1]. 
According to this model, potentially self-PDC reactive T 
cells survive negative selection in the thymus, because their 
T cell receptor (TCR) shows low affinity for the complex 
of  self-peptide and MHC. Sporadic self-PDC-derived 
epitopes presented by antigen presenting cells (APC) to 
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Endothelins also cause contraction of  stellate cells [77] 
and possibly help their differentiation to myofibroblasts. 
This contradiction may play an important role in the 
development of  early portal hypertension in PBC as has 
been suggested in rats with biliary cirrhosis [61, 76-78].

Intrahepatic bile ducts receive their blood supply 
from a periductal network of  minute vessels, known 
as the peribiliary vascular plexus (PVP). This plexus 
originates from hepatic artery branches accompanying 
its intrahepatic bile duct [79] and drains mostly into the 
sinusoids [80]. The peribiliary space also contains dendritic 
cells and stellate cells. Insufficient perfusion of  this system 
can cause profound bile duct damage [81]. ETs and NO 
seem to be the principal molecules that regulate circulation 
of  the PVP [82]. It is suggested in our model that patients 
with PBC have damage to the biliary endothelium as 
an initiative event caused by ischaemia due to ET-2 
driven vasoconstriction. There is direct evidence that the 
peribiliary capillary plexus is indeed damaged in PBC. It 
was reported that the peribiliary plexus is significantly 
reduced in PBC (and interestingly also in auto-immune 
hepatitis), while there is proliferation of  the plexus in other 
liver diseases [83]. There are also other reports indicating 
vascular impairment in PBC [61,78]. The increased circulating 
ET-2, observed both in early and late stage PBC seems to 
be specific for this disease, since it has not been found in 
the disease control groups of  cirrhotics and patients with 
chronic viral liver disease.

Biliary ischemia might then lead to apoptosis of  

biliary epithelial cells, which is indeed a mechanism 
proposed for biliary epithelial destruction in PBC [84, 85]. 
Moreover biliary epithelial cells (BEC) undergoing 
apoptosis release the pyruvate dehydrogenase complex 
(PDC) from mitochondria into the cytoplasm as early as 
6 hours after induction of  apoptosis and auto-reactive 
epitopes are present in BEC, while other cells efficiently 
delete cytoplasmic PDC by glutathione [43,86]. Such a 
mechanism may also explain the similarities between 
PBC and graft vs host disease (GVHD) [87-90]. GVHD is 
associated with endothelial cell injury [91] and IL-1 has 
been implicated in its pathogenesis [92]. More importantly, 
in GVHD after small bowel transplantation, ET1 levels 
are increased before the induction of  GVHD and have 
been histochemically shown to be increased in endothelial 
and epithelial cells some days before GVHD, implicating 
a pathogenetic significance [93]. Immunoreactive epitopes, 
self-PDC generated during apoptosis, possibly through the 
action of  caspase 3 [43] are taken up by either the peribiliary 
dendritic cells or by BEC expressing MHC II (this could 
be either genetically determined or alternatively be caused 
by pro-inflammatory cytokines [94]). In the first instance this 
leads to the production of  auto-antibodies and possible 
the determinant density model as elegantly described by 
Jones [1].

There are many questions that have yet to be 
answered regarding the above suggested model of  liver 
injury in PBC. The most important issue is that the 
increased concentration of  ET-2 has been found in 

Figure 1 Figure 1 Occurrence of late and early 
events in the unifying model. The fundamental 
early defect in PBC is the overproduction of 
ET2 by endothelial cells (1) possibly driven 
by virus [95-98]  or other microbial pathogens in 
genetically predisposed individuals. ET2 is 
a chemoattractant for Kupffer cells and also 
causes contraction of stellate cells leading to 
early portal hypertension. ET2 leads to ischemic 
damage of BEC (2) through constriction of 
the PVP with resultant BEC mitochondrial 
dysfunction and membrane disruption by 
ROS generation and eventually apoptosis 
leading to the vanishing bile duct syndrome. 
Mitochondrial antigens possibly generated 
through caspase cleavage, are presented by 
hyper-responsive liver dendritic cells (APC) 
(3) and lead to immune cell accumulation and 
AMA production. The second fundamental 
defect occurring later in the disease process is 
the production of ROS. Together with ingestion 
of BEC apoptotic bodies, ROS drives the 
accumulated Kupffer cells to produce more 
ROS and pro-inflammatory cytokines and 
TGFβ, which in turn leads to fibrosis. ROS 
is also produced after development of the 
vanishing bile duct syndrome as a result of 
bile acid retention. Finally through antioxidant 
depletion or through an insufficient increase 
of antioxidants ROS leads to lipid peroxidation 
and further BEC apoptosis and mitochondrial 
dysfunction. Genetically determined control 
may be exercised at levels 1,2 and 3.
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systemic circulation. This means that the vasoconstriction 
and the consequent ischemic injury ought to happen 
in many organs apart from liver and PVP. A possible 
explanation for this selectivity is an increased expression 
of  ET receptors in the PVP of  PBC patients but this 
suggestion needs to be further studied.

The suggested model is diagrammatically outlined in 
Figure 1. However, the proposed model has the following 
advantages. It implicates both innate and adaptive 
immunity. The former is the initiating event while the 
latter is the element that causes perpetuation of  the disease 
even after disappearance of  the initial event (if  this is 
environmental infections). It explains the role of  infective 
agents and the similarity of  PBC with graft vs host disease. 
Interaction of  endothelial and Kupffer cells with stellate 
cells explains the progress to fibrosis and cirrhosis. It 
predicts that most infiltrating cells should be CD4 helper 
T cells participating in B cell differentiation as it is indeed 
the case [31-35] but the role of  CD8 is limited [37,38]. Since 
AMA production is a secondary phenomenon rather than 
pathogenetically related to liver damage, the presence of  
AMA negative PBC is also explained. Ursodeoxycholate 
(UDCA) may act mostly as an R0S scavenger preventing 
the mitochondrial oxidative stress. Most importantly, 
it offers 3 levels for a genetically determined control, 
namely the level of  endothelial cells (and possibly Kupffer 
cells), the level of  perivascular plexus and ET receptor 
expression, and the level of  peribiliary dendritic cells that 
might be genetically hyper-responsive. All of  them may 
well be estrogen dependent, thus explaining the extreme 
female prevalence of  the disease, but this requires further 
research.
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