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Abstract
BACKGROUND 
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy.

AIM 
To predict early recurrence (ER) and overall survival (OS) in patients with HCC 
after radical resection using deep learning-based radiomics (DLR).

METHODS 
A total of 414 consecutive patients with HCC who underwent surgical resection 
with available preoperative grayscale and contrast-enhanced ultrasound images 
were enrolled. The clinical, DLR, and clinical + DLR models were then designed 
to predict ER and OS.

RESULTS 
The DLR model for predicting ER showed satisfactory clinical benefits [area under 
the curve (AUC)] = 0.819 and 0.568 in the training and testing cohorts, 
respectively), similar to the clinical model (AUC = 0.580 and 0.520 in the training 
and testing cohorts, respectively; P > 0.05). The C-index of the clinical + DLR 
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model in the prediction of OS in the training and testing cohorts was 0.800 and 0.759, respectively. 
The clinical + DLR model and the DLR model outperformed the clinical model in the training and 
testing cohorts (P < 0.001 for all). We divided patients into four categories by dichotomizing 
predicted ER and OS. For patients in class 1 (high ER rate and low risk of OS), retreatment 
(microwave ablation) after recurrence was associated with improved survival (hazard ratio = 
7.895, P = 0.005).

CONCLUSION 
Compared to the clinical model, the clinical + DLR model significantly improves the accuracy of 
predicting OS in HCC patients after radical resection.

Key Words: Hepatocellular carcinoma; Deep learning; Overall survival; Early recurrence; Contrast-enhanced 
ultrasound

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Multivariate Cox regression analysis confirmed that age [hazard ratio (HR) = 1.01], carbohydrate 
antigen 19-9 (HR = 0.60), tumor size (HR = 1.11), echogenicity (HR = 0.82), and deep learning-based 
radiomics (DLR, HR = 4.33) were independent predictors of survival outcome (P < 0.05 for all). The 
concordance index of the clinical + DLR model in the training and testing cohorts was 0.800 and 0.759, 
respectively. We divided patients into four categories by dichotomizing predicted early recurrence and 
survival outcome. We found that for patients with class 1 (high early recurrence rate and low risk of 
survival outcome), retreatment after recurrence was associated with improved survival.

Citation: Huang Z, Shu Z, Zhu RH, Xin JY, Wu LL, Wang HZ, Chen J, Zhang ZW, Luo HC, Li KY. Deep 
learning-based radiomics based on contrast-enhanced ultrasound predicts early recurrence and survival outcome in 
hepatocellular carcinoma. World J Gastrointest Oncol 2022; 14(12): 2380-2392
URL: https://www.wjgnet.com/1948-5204/full/v14/i12/2380.htm
DOI: https://dx.doi.org/10.4251/wjgo.v14.i12.2380

INTRODUCTION
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy[1]. Surgical resection is 
considered the mainstream intervention for early HCC treatment[2], and its therapeutic effect has 
gradually improved in recent years. However, the postoperative recurrence rate of HCC remains as 
high as 60% at the 5-year follow-up[3], and the 5-year average survival rate is less than 32%[4]. Previous 
studies have reported that the prognosis of patients with early recurrence (ER) of HCC (within 1 year) 
after surgical resection is poorer than that of patients with late recurrence (> 1 year)[5]. Therefore, to 
develop future treatment strategies, there is an urgent need to improve the identification of patients at 
high risk of recurrence and poor prognosis; this may help identify those who may benefit from adjuvant 
systemic therapy.

Clinical biomarkers, such as tumor burden, associated with postoperative recurrence and outcomes 
have been identified[6]. However, the model based on these clinical biomarkers could not provide 
sufficient predictive power, and quantifiable measures and radiological information were not included 
in the model, which could provide essential information. Therefore, new representations of biomarker 
technology must be urgently explored to predict postoperative recurrence and patient outcomes more 
accurately.

Medical imaging is a potential method for HCC diagnosis[7]. A previous study has developed a 
model that used clinical and contrast-enhanced computed tomography-based radiographic features to 
accurately predict the ER of HCC after surgical resection[8]. Ultrasonography is widely used in HCC 
examination as it is cost-effective, widely available, and time-saving and provides real-time results. 
More importantly, contrast-enhanced ultrasonography (CEUS) can visualize the microcirculatory 
perfusion of HCC in real-time[9]. The microbubble contrast agent can be safely used in patients with 
decreased renal function[10].

Accurate prediction of early HCC recurrence and patient outcome is required to make clinical 
decisions before surgical resection. Traditional imaging features are relatively poor indicators of tumor 
heterogeneity (e.g., microvascular invasion and recurrence), are poor predictors of clinical outcomes
[11], and are highly subjective, difficult to quantify, and challenging to apply further. Radiomics 
analysis transforms raw images into countable quantitative features and interprets tumor patho-
physiology[12]. Neural network mining to link these features to biological and clinical endpoints can 
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help develop models to predict patient outcomes, thereby improving prediction-based cancer 
management[13]. Deep learning-based radiomics (DLR) has been applied to patients with HCC and has 
achieved promising results in predicting microvascular invasion and response to transarterial 
chemoembolization[14,15].

This study aimed to predict ER and overall survival (OS) in patients with HCC after radical resection 
by establishing a DLR model using ultrasonographic and CEUS images.

MATERIALS AND METHODS
Patients
The institutional review board of our institution approved this retrospective study and waived the 
requirement to obtain written informed consent of all participants.

We retrospectively screened 5466 patients with HCC meeting the Milan criteria who underwent 
curative resection for HCC at our institution between January 2008 and December 2018. HCC was 
diagnosed based on pathological findings[16]. The exclusion criteria were as follows: (1) CEUS not 
performed; (2) recurrent lesions or a history of radiofrequency ablation, microwave ablation, or 
transcatheter arterial chemoembolization before CEUS; and (3) incomplete follow-up. A total of 5052 
patients were excluded, leaving 414 in the final analysis (Supplementary Figure 1). Clinical features, 
including basic patient information, biological test results, and treatment-related information, were 
obtained from patient records.

CEUS has the following clinical indications: Patients at risk for HCC in whom ultrasound screening is 
positive for liver nodules according to current clinical practice standards as well as the World 
Federation for Ultrasound in Medicine and Biology (WFUMB), European Federation of Societies for 
Ultrasound in Medicine and Biology (EFSUMB), and CEUS Liver Imaging Reporting and Data System 
guidelines; focal liver lesions observed on single-phase CT or unenhanced MRI performed for other 
clinical purposes; indeterminate focal liver lesions observed multiphase contrast-enhanced CT or MRI; 
and definite HCC on CT or MRI images in reparation for or during tissue sampling, surgical resection, 
or percutaneous ablation treatment.

Ultrasonographic examination
CEUS was performed using a GE Logiq 9 scanner (GE Healthcare, Wauwatosa, WI, United States) with 
a 25-MHz frequency range transducer and a 3-5 L probe. Contrast agent (2.4 mL, SonoVue, Bracco, 
Milan, Italy) was injected intravenously, followed by flushing with 10 mL of 0.9% saline. Continuous 
observation of three-stage contrast enhancement was performed, including the arterial phase (0-30 s), 
portal phase (31-120 s), and late phase (121-360 s). CEUS inspections were recorded as video clips for 
analysis. For the CEUS image used for research, a frame of image with peak contrast intensity of the 
lesion was selected, that is, the frame of image with the maximum intensity was selected by quantit-
atively analyzing the enhanced intensity of the lesion in 0-360 s.

Two sonographers (one with more than 8 years of experience in CEUS and the other with more than 5 
years of experience) who were blinded to the pathology results evaluated each lesion. In the event of a 
difference of opinion between the two readers, the final decision was made by a third blinded 
sonographer (with more than 20 years of CEUS experience). Tumor size, number, and satellite nodules 
on CEUS were evaluated. Nodules close to the primary tumor (< 3 cm) were designated as satellite 
nodules. During the late phase, the presence of perfusion defects surrounding HCC lesions was 
evaluated. If a nodule exhibited hypoechogenicity compared with the surrounding enhanced liver 
parenchyma, it was defined as the “presence of a perfusion defect of satellite nodules.” The degree of 
enhancement of each lesion was compared with that of the surrounding normal liver tissue and 
classified as hyper-enhanced, iso-enhanced, or hypo-enhanced.

Follow-up protocol
The patients were followed up at 1 mo, 3 mo, 6 mo, 9 mo, and 12 mo after operation, and every 3-6 mo 
after 12 mo. At each follow-up, serum alpha-fetoprotein levels were measured and imaging (contrast-
enhanced computed tomography, CEUS, or contrast-enhanced MRI) was performed. ER was defined as 
intrahepatic and/or extrahepatic recurrence of HCC within 1 year after resection. Given that an 
increasing serum alpha-fetoprotein level alone does not necessarily mean recurrence, recurrence was 
confirmed by radiological evidence of a new tumor. All patients were followed up until death, ER, or for 
at least 1 year after curative resection. OS was calculated as the time interval between the date of 
surgery and the date of death or last follow-up.

Model construction and validation
Image quantification (radiomics feature extraction and DLR feature extraction of grayscale image and 
CEUS image, which was a frame of image with peak contrast intensity of the lesion (Supple-
mentary Figure 2), OS prognostic model construction and validation (including the development of 

https://f6publishing.blob.core.windows.net/667b146c-53a4-4165-a33a-50329200c88d/WJGO-14-2380-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/667b146c-53a4-4165-a33a-50329200c88d/WJGO-14-2380-supplementary-material.pdf
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Huang Z et al. Deep learning-based radiomics

WJGO https://www.wjgnet.com 2383 December 15, 2022 Volume 14 Issue 12

DLR score and OS prognostic model using clinical variables and DLR score, and validation of the 
prognostic models), and construction and validation of the model for ER prediction are shown in the 
Supplementary material. We also assessed the ability of the DLR model to improve the ability of three 
clinicians (with 11, 5, and 2 years of experience, respectively) to predict ER, with or without the 
assistance of the DLR model. To demonstrate the impact of the DLR model on clinician-individualized 
assessment performance, three clinicians independently reassessed each patient’s ER status on the same 
day after accounting for the DLR model predictions.

Statistical analysis
Differences in the distribution of clinical variables of the training and testing cohorts were assessed by 
Fisher's exact test or the chi-square test for categorical data and the nonparametric Mann-Whitney test 
for continuous data. To evaluate the predictive performance of different models, we plotted the receiver 
operating characteristic (ROC) curve and calculated the area under the ROC curve (AUC). Accuracy, 
sensitivity, and specificity were calculated from the confusion matrix to quantitatively evaluate the 
predictive models. For prognostic models predicting ER, we used Kaplan-Meier analysis and the log-
rank test to assess survival differences in prognostic clinical variables and radiological characteristics 
between the training and test sets. Interclass correlation coefficients (ICCs) were calculated for inter-
observer and intra-observer agreement. A two-tailed P-value less than 0.05 was considered statistically 
significant. All statistical analyses and graphic production were completed with Python (version 3.8) 
and R (version 3.6.1).

RESULTS
Demographic characteristics
A total of 414 patients were included in this study, of which 289 and 125 were assigned to the training 
and testing cohorts, respectively. Mean age of the 414 patients was 53 (45-60) years, and 375 (90.6) were 
male. The demographic characteristics of patients in the training and testing cohorts were comparable 
(Table 1; P > 0.05). During a median follow-up period of 68 mo (range, 1-137 mo), 217 (52.4%) patients 
developed recurrence after curative surgical resection.

Prediction models for ER
We considered 414 grayscale ultrasonographic images and 414 peak contrast intensities of CEUS 
images. A total of 11270 radiological features were extracted from 414 patients. After univariate logistic 
regression selection, 898 features were retained. After the selection of the maximum relevance minimum 
redundancy, 8 features were selected as candidate features, and a preoperative ER prediction model was 
designed using L1-regularized logistic regression machine learning. Inter-observer ICC for measuring 
DLR features ranged from 0.633 to 0.989. Intra-observer ICC for measuring DLR features ranged from 
0.689 to 0.927. The DLR model had an AUC of 0.819 in the training cohort with a 74% accuracy and an 
AUC of 0.568 in the test cohort with a 58% accuracy.

In this study, the presence of satellites was selected to construct a clinical model based on the 
constants and satellites (Table 2). The clinical model had an AUC of 0.58 in the training cohort with a 
56% accuracy and an AUC of 0.52 in the test cohort with a 56% accuracy.

We constructed a clinical + DLR model, including the presence of satellites and radiomics/DL 
features. The AUC, accuracy, sensitivity, and specificity of the clinical + DLR model were 0.83, 73%, 
71%, and 76%, respectively; the corresponding values in the testing cohort were 0.57, 59%, 62%, and 
56%. The DLR model exhibited good classification performance based on ROC curves (Figure 1) and 
satisfactory clinical benefit (Figure 1), similar to those of the satellite lesion-based clinical model (P > 
0.05). Prediction accuracy did not improve when clinical variables were combined with the DLR model 
(AUC: 0.830 for the clinical + DLR model vs 0.819 for the DLR model in the training cohort; AUC: 0.572 
for the clinical + DLR model vs 0.568 for the DLR model in the testing cohort).

In univariate Fine-Gray regression analysis, satellite nodules, DLR model, and multiple lesions were 
significantly associated with ER. Using these variables, we performed a multivariate Fine-Gray 
competitive risk regression analysis. This analysis showed that the DLR model remained a strong 
independent predictor of ER after adjusting for clinical variables [odds ratio (OR) = 132.847, P < 0.001].

We found that human performance in predicting ER was significantly enhanced after integrating the 
DLR model. For clinician 1, the sensitivity increased significantly from 0.250 to 0.856 in the training 
cohort and from 0.230 to 0.812 in the testing cohort. Likewise, for clinicians 2 and 3, the sensitivity of 
both testing cohorts increased significantly (0.248 to 0.855 and 0.268 to 0.818 in the training cohort; 0.289 
to 0.784 and 0.307 to 0.823 in the testing cohort). Scores were consistent across clinicians with a κ value 
of 0.76-0.89 and were significantly improved by the integrated DLR model, with a κ value of 0.93-0.97.

Prognostic model for OS
We obtained 11270 radiomics/DL features from patient images and selected them through univariate 

https://f6publishing.blob.core.windows.net/667b146c-53a4-4165-a33a-50329200c88d/WJGO-14-2380-supplementary-material.pdf
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Table 1 Patient characteristics

Study population (n = 414) Training cohort (n = 289) Testing cohort (n = 125) P value

Age, yr 53.00 (45.00- 60.00) 52.059 ± 12.190 53.216 ± 11.380 0.1988

Gender, n (%)

Male 375 (90.6) 262 (90.7) 113 (90.4) 0.9196

BMI, kg/m2 24.50 ± 4.20 24.10 ± 3.20 24.70 ± 3.40 0.1889

HBsAg-positive, n (%) 375 (90.6) 264 (91.3) 111 (88.8) 0.5274

AFP > 7 ng/mL, n (%) 292 (70.5) 205 (70.9) 87 (69.6) 0.8761

CEA > 5 ng/ml, n (%) 31 (7.5) 24 (8.3) 7 (5.6) 0.4494

CA125 > 40 ng/mL, n (%) 15 (3.6) 8 (2.8) 7 (5.6) 0.2588

CA199 > 34 ng/mL, n (%) 46 (11.1) 295 (10.0) 17 (13.6) 0.3738

WBC count, /μL 6262 ± 1985 6232 ± 1756 6354 ± 2125 0.5668

ALT, U/L 49 ± 36 48 ± 39 51 ± 41 0.1654

AST, U/L 51 ± 35 49 ± 36 53 ± 42 0.2358

Liver cirrhosis, n (%) 345 (83.3) 244 (84.4) 101 (80.8) 0.3630

Microvascular invasion, n (%) 312 (75.4) 211 (73.0) 101 (80.8) 0.0910

Tumor size, cm

x 2.40 [1.70-3.68] 2.957 ± 1.850 3.120 ± 2.050 0.3689

y 2.00 [1.42-3.10] 2.480 ± 1.490 2.670 ± 1.960 0.4820

Gray-scale echogenicity 0.5954

Hyperechoic 46 (11.1) 35 (12.1) 11 (8.8)

Medium 4 (1.0) 3 (1.0) 1 (0.8)

Hypoechoic 364 (87.9) 251 (86.9) 113 (90.4)

Arterial phase 0.4639

Hyperenhancement 403 (97.3) 283 (97.9) 120 (96.0)

Isoenhancement 8 (1.9) 4 (1.4) 4 (3.2)

Hypoenhancement 3 (0.7) 2 (0.7) 1 (0.8)

Portal phase 0.6669

Hyperenhancement 15 (3.5) 12 (4.2) 3 (2.4)

Isoenhancement 232 (56.0) 162 (56.1) 70 (56.0)

Hypoenhancement 167 (40.3) 115 (39.8) 52 (41.6)

Late phase 0.1300

Hyperenhancement 2 (0.5) 1 (0.3) 1 (0.8)

Isoenhancement 79 (19.1) 46 (15.9) 33 (90.4)

Hypoenhancement 333 (80.4) 232 (80.3) 101 (80.8)

Enhancing capsules 45 (10.9) 36 (12.5) 9 (7.2) 0.1598

Unsmooth margins 97 (23.4) 64 (22.19) 33 (26.4) 0.4168

Retreatment after recurrence 168 (40.3) 118 (40.5) 50 (40.0) 0.9270

BMI: Body mass index; AFP: Alpha-fetoprotein; CEA: Carcinoembryonic antigen; CA125: Carbohydrate antigen 125; CA19-9: Carbohydrate antigen 19-9; 
BCLC: Barcelona-clinic liver cancer; WBC: White blood cell; HBsAg: Hepatitis B surface antigen; ALT: Alanine aminotransferase; AST: Aspartate 
aminotransferase.
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Table 2 Univariate and multivariable analyses of early recurrence of hepatocellular carcinoma patients

Univariate cox regression Multivariate logistic regression

HR [0.025 0.975] P HR [0.025 0.975] P

Age, yr 0.991 0.971 1.011 0.383

Gender 1.005 0.463 2.181 0.990

HBsAg-positive 1.138 0.472 2.740 0.773

AFP 0.622 0.361 1.071 0.087 0.709 0.406 1.239 0.227

CEA 0.944 0.352 2.535 0.910

CA125 1.811 0.424 7.752 0.423

CA19-9 1.636 0.727 3.684 0.234

ALT, U/L 1.248 0.697 2.321 0.267

AST, U/L 1.566 0.397 2.108 0.675

FIB-4 score 1.212 0.431 1.986 0.742

Liver cirrhosis 1.142 0.506 2.121 0.657

Tumor size x 1.000 0.882 1.143 0.951

Tumor size y 0.988 0.856 1.142 0.873

Gray-scale echogenicity 0.731 0.493 1.087 0.121

Arterial phase 
enhancement

0.924 0.351 2.438 0.874

Portal phase enhancement 1.321 0.832 2.100 0.238

Portal phase enhancement 0.982 0.512 1.885 0.957

Enhancing capsules 0.930 0.413 2.096 0.862

Satellite nodules 4.843 1.917 12.244 0.001 4.194 1.368 12.871 0.012

Unsmooth margins 0.839 0.462 1.522 0.563

Constant 0.990 0.707 1.387 0.953

Fibrosis-4 score: Age (years) × aspartate aminotransferase (U/L) / [platelet count (109/L) × alanine aminotransferase (U/L)]1/2. 
HR: Hazard ratio; AFP: Alpha-fetoprotein; CEA: Carcinoembryonic antigen; CA125: Carbohydrate antigen 125; CA19-9: Carbohydrate antigen 19-9; ALT: 
Alanine aminotransferase; AST: Aspartate aminotransferase; FIB-4 score: Fibrosis-4 score; HBsAg: Hepatitis B surface antigen.

Cox proportional hazards regression, with 50 features with a Harrell’s concordance index (C-index) > 
0.58. Multivariate Cox regression with L1 penalization calculates survival hazard values and builds 
high-risk and low-risk groups based on hazard values. The optimal stratification threshold for X-tile 
generation was 0.52. Kaplan-Meier curves showed significant differences between the low- and high-
risk subgroups in the training and testing cohorts (Figure 2). Inter-observer ICC for measuring DLR 
features ranged from 0.611 to 0.976. Intra-observer ICC for measuring DLR features ranged from 0.699 
to 0.912. The C-indices in the training and testing cohorts were 0.792 and 0.741, respectively. Calibration 
curves at 1, 3, and 5 years showed good agreement between DLR model estimates and actual 
observations in the training and testing cohorts.

In univariate analysis, nine significant factors, including five clinical variables (age, sex, carcinoem-
bryonic antigen, carbohydrate antigen 125, and carbohydrate antigen 19-9), three semantic imaging 
features (tumor size x, tumor size y, and unsmooth margins), and DLR, were significantly associated 
with OS (P < 0.05) (Supplementary Table 1). Multivariate Cox regression analysis confirmed that age 
[hazard ratio (HR) = 1.01, 95% confidence interval (CI): 1.00-1.03, P = 0.02], carbohydrate antigen 19-9 
(HR = 0.6, 95%CI: 0.04-1.03, P = 0.007), tumor size y (HR = 1.11, 95%CI: 1.03-1.19, P = 0.001), and DLR 
(HR = 4.33, 95%CI: 3.45-5.45, P < 0.005) were independent predictors of OS (Table 3). Based on the 
multivariate Cox regression analysis of assigned coefficients, these independent predictor variables 
were linearly combined to build a clinical and clinical + DLR model. Kaplan-Meier curves showed 
significant differences between the low- and high-risk subgroups in the training and testing cohorts 
(Figure 2). The C-indices of the clinical model in the training and testing cohorts were 0.566 and 0.565, 
respectively. The C-indices of the clinical + DLR model in the training and testing cohorts were 0.800 
and 0.759, respectively. The clinical + DLR model and DLR model outperformed the clinical model in 
the training cohort (P < 0.001 and P < 0.001, respectively). Similar results were observed in the testing 

https://f6publishing.blob.core.windows.net/667b146c-53a4-4165-a33a-50329200c88d/WJGO-14-2380-supplementary-material.pdf
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Table 3 Univariate and multivariable analyses of overall survival of hepatocellular carcinoma patients

Univariate cox regression Multivariate logistic regression

HR [0.025 0.975] P HR [0.025 0.975] P

Age, yr 1.020 1.000 1.030 0.010 1.02 1.00 1.03 0.01

Gender 1.570 1.030 2.390 0.030 1.42 0.89 2.26 0.14

HBsAg-positive 1.600 1.030 2.490 0.040 1.32 0.82 2.12 0.25

AFP 1.100 0.830 1.460 0.500

CEA 0.760 0.460 1.270 0.300

CA125 0.580 0.280 1.220 0.150

CA19-9 0.630 0.420 0.950 0.030 0.65 0.41 1.03 0.07

ALT, U/L 1.121 0.453 1.976 0.430

AST, U/L 1.342 0.876 2.014 0.540

FIB-4 score 1.012 0.547 1.743 0.720

Liver cirrhosis 1.112 0.563 1.956 0.550

Tumor size x 1.080 1.010 1.160 0.040 0.96 0.85 1.09 0.56

Tumor size y 1.090 1.020 1.170 0.010 1.17 1.02 1.33 0.02

Gray-scale echogenicity 0.830 0.670 1.020 0.080 0.77 0.60 0.99 0.04

Arterial phase 
enhancement

0.680 0.420 1.110 0.130

Portal phase enhancement 1.270 0.990 1.620 0.060 1.25 0.95 1.63 0.11

Portal phase Enhancement 1.130 0.810 1.580 0.460

Enhancing capsules 1.110 0.720 1.710 0.630

Satellite nodules 1.190 0.780 1.830 0.420

Unsmooth margins 0.720 0.520 0.990 0.040 0.79 0.56 1.13 0.19

Early reoccurrence 1.290 0.990 1.680 0.060 1.25 0.93 1.67 0.14

Retreatment after 
recurrence

0.710 0.540 1.160 0.300

DLR 3.240 2.670 3.930 < 0.005

HR: Hazard ratio; AFP: Alpha-fetoprotein; CEA: Carcinoembryonic antigen; CA125: Carbohydrate antigen 125; CA19-9: Carbohydrate antigen 19-9; ALT: 
Alanine aminotransferase; AST: Aspartate aminotransferase; FIB-4 score: Fibrosis-4 score; DLR: Deep learning-based radiomics.

cohort (P < 0.001 and P < 0.001, respectively). The corresponding prediction error curves show that the 
prediction error of the clinical + DLR model was consistently lower than that of the clinical model. 
Similar results were obtained for the combined Brier scores in the training and testing cohorts. Finally, 
we further quantified the improvement in survival prediction accuracy between the clinical + DLR 
model and the clinical model. This resulted in a net reclassification improvement in survival of 0.234 
(0.009 to 0.312; P < 0.001) and an OS net reclassification improvement of 0.176 (0.076 to 0.293; P < 0.001) 
in the testing cohort.

Histological features [degree of differentiation (HR = 1.76, 95%CI: 0.56-3.01, P = 0.012) and 
microvascular infiltration (HR = 2.25, 95%CI: 0.75-5.12, P = 0.023)] were independent predictors of OS 
(Supplementary Table 2). The clinical + DL and DLR models had the same performance with the 
histological features in the training cohort (P = 0.157 and P = 0.566, respectively). Similar results were 
observed in the testing cohort (P = 0.225 and P = 0.648, respectively).

Evaluation of the model for predicting OS and benefit of retreatment after recurrence
In addition to evaluating the accuracy of the model in predicting ER and OS, we further evaluated the 
correlation between retreatment (microwave ablation) after recurrence and OS in patients. We divided 
patients into four categories by dichotomizing predicted ER and OS. We found that for patients in class 
1 (high ER rate and low risk of OS), retreatment after recurrence was associated with improved survival 
(HR = 7.895, P = 0.005). In contrast, for patients in class 2 (high ER rate and high risk of OS) (HR = 1.542, 
P = 0.214), class 3 (low ER rate and low risk of OS) (HR = 0.357, P = 0.500), and class 4 (low ER rate and 

https://f6publishing.blob.core.windows.net/667b146c-53a4-4165-a33a-50329200c88d/WJGO-14-2380-supplementary-material.pdf
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Figure 1 Receiver operating characteristic curves and decision curve analysis. A: Receiver operating characteristic curves of clinical, deep learning-
based radiomics (DLR), and clinical + DLR models for predicting early recurrence in the training and testing cohorts; B: Decision curve analysis (DCA) of each model 
in predicting early recurrence. The vertical axis measures standardized net benefit. The horizontal axis shows the corresponding risk threshold. The DCA showed that 
if the threshold probability is between 0 and 1, using the DLR model derived in the present study to predict ER provided the same benefit as clinical model. ROC: 
Receiver operating characteristic; DCA: Decision curve analysis; DL: Deep learning; DLR: Deep learning-based radiomics.

high risk of OS) (HR = 1.416, P = 0.234), retreatment after recurrence did not affect survival (Figure 3).

DISCUSSION
This study aimed to develop and validate a predictive model for ER and OS in patients with early-stage 
HCC undergoing surgical resection. This model allows for better preoperative/pretreatment decision-
making as to the best possible treatment options and timing. We transformed radiomics/DL signatures 
into quantitative radiomics/DL signatures and constructed a DLR model with a better ability to predict 
patient OS preoperatively than clinical models alone. This model may guide individualized treatment 
and survival monitoring.

Early-stage HCC still has a high recurrence rate after radical surgery. In our study, 52.4% of 
postoperative patients developed ER. Early HCC has high heterogeneity and different prognoses, which 
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Figure 2 Kaplan-Meier curves of overall survival stratified by high and low risk for clinical, deep learning-based radiomics, and clinical + 
deep learning-based radiomics models. A and B: Clinical training; C and D: Deep learning-based radiomics testing; E and F: Clinical + DLR. DLR: Deep 
learning-based radiomics.

should be determined early and accurately. Gene signatures have been widely used in tumor identi-
fication but are rarely used in clinical applications because of their high cost and time consumption. 
Considering the high recurrence rate of HCC after radical resection, including disseminated or recurrent 
disease, early prediction of ER is critical for improving individualized treatment. As a routine 
examination, ultrasonography has a high potential for further investigation of ER-predictive radio-
logical features. With the development of machine learning technology, a large amount of quantitative 
radiological data has been used to construct more predictive models than those developed by semantic 
radiological features. Our study found that the DLR score has the same or a higher ability to predict ER 
than satellite nodules. The DLR score can predict the patient’s ER before surgery, helping guide 
treatment choices.

In this study, we developed an ER-related DLR model and evaluated its role in predicting OS. 
Furthermore, we combined clinical and DLR features to predict OS. In the multivariate analysis, we 
found that age was a significant risk factor for OS in patients with HCC, consistent with the results of 
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Figure 3 Relationship between the deep learning-based radiomics model and benefit from retreatment after recurrence in matched 
patients. A: Four different risk classes were defined by early recurrence and overall survival predicted by the deep learning-based radiomics model; B-E: Kaplan-
Meier curves of disease-free survival for patients who were stratified according to receipt of retreatment after recurrence. HR: Hazard ratio.

other studies[8]. In addition, we found carbohydrate antigen 19-9, tumor size, and echogenicity were 
important risk factors for OS. However, the clinical + DLR and DLR models made a more dominant 
contribution in predicting OS than these clinical variables.

Re-surgical resection is considered a treatment for HCC recurrence. A key treatment issue is how to 
identify patients who may benefit from retreatment for HCC recurrence. However, given the costs 
associated with treatment, surgical trauma, and modest survival benefits, the optimal criteria for 
selecting candidates for retreatment for HCC recurrence remain unclear. The model developed in this 
study can help identify such patients. By combining information on ER risk and survival, our model can 
identify patients in class 1 who are more likely to benefit from re-surgical resection treatment.

HCC is a tumor with rich blood supply in which tortuous and dilated new vessels are continuously 
generated. In our study, the frame with the highest peak intensity in the arterial phase of CEUS was 
used, reflecting the density of neovascularization in the tumor. Studies have shown that the peak 
intensity in the recurrence group is lower than that in the non-recurrence group and that peak intensity 
is a risk factor for HCC recurrence[17].
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Liu et al[18] analyzes CEUS images based on DLR to predict progression-free survival after radiofre-
quency ablation and surgical resection and optimize radiofrequency ablation and surgical resection 
treatment options for patients with HCC. Our study was also based on DLR analysis of CEUS images; 
the difference is that our study aimed to predict the ER and OS of patients with HCC after surgical 
resection and provide guidance for retreatment after recurrence.

Our study has two significant limitations. First, this is a single-center study, and a multicenter 
prospective study with a larger patient population is needed to further validate the performance of our 
model. Second, regions of interest were segmented manually and have not been fully automated. 
Finally, washout is also an important aspect of the assessment of HCC, and other images of CEUS need 
to be fully studied in the future.

CONCLUSION
The DLR model has the same satisfactory clinical benefit for predicting ER as the clinical model. 
Compared with the clinical model, the clinical + DLR model and the DLR model significantly improve 
the accuracy of predicting OS in HCC patients after radical resection.

ARTICLE HIGHLIGHTS
Research background
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy.

Research motivation
To develop future treatment strategies, there is an urgent need to improve the identification of patients 
at high risk of recurrence and poor prognosis; this may help identify those who may benefit from 
adjuvant systemic therapy.

Research objectives
To predict early recurrence (ER) and overall survival (OS) in patients with HCC after radical resection 
using deep learning (DL)-based radiomics.

Research methods
A total of 414 consecutive patients with HCC who underwent surgical resection with available 
preoperative grayscale and contrast-enhanced ultrasound images were enrolled. The clinical, DLR, and 
clinical + DLR model were then designed to predict ER and OS.

Research results
The DLR model for predicting ER showed satisfactory clinical benefits [area under the curve (AUC)] = 
0.819 and 0.568 in the training and testing cohorts, respectively), similar to the clinical model (AUC 
0.580 and 0.520 in the training and testing cohorts, respectively; P > 0.05). The C-indices of the clinical + 
DLR model in prediction of OS in the training and testing cohorts were 0.800 and 0.759, respectively. 
The clinical + DLR model and the DLR model outperformed the clinical model in the training and 
testing cohorts (P < 0.001 for all). We divided patients into four categories by dichotomizing predicted 
ER and OS. For patients in class 1 (high ER rate and low risk of OS), retreatment (microwave ablation) 
after recurrence was associated with improved survival (hazard ratio = 7.895, P = 0.005).

Research conclusions
As compared to the clinical model, the clinical + DLR model significantly improves the accuracy of 
predicting OS in patients with HCC after radical resection.

Research perspectives
As compared to the clinical model, the clinical + DLR model significantly improves the accuracy of 
predicting OS in patients with HCC after radical resection.
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