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Deep learning-based radiomics based on contrast-enhanced ultrasound predicts early
recurrence and survival outcome in hepatocellular carcinoma

Huang Z et al. Deep learning-based radiomics predict

Abstract
BACKGROUND

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy.

AIM g
3
To predict early recurrence (ER) and overall survival (OS) in patients with HCC after

radical resection using deep learning-based radiomics (DL radiomics).

THODS
A total of 414 consecutive patients with HCC who underwent surgical resection with
available preoperative grayscale and contrast-enhanced ultrasound images were
enrolled. The clinical, DL radiomics, and clinical + DL radiomics model was then

designed to predict ER and OS.

RESULTS

The DL radigmics model for predicting ER showed satisfactory clinical benefits (AUC
0.819, 0,568 in the training and testing cohorts), similar to clinical model (AUC 0.580,
0.520 in the training and testing cghorts, P > 0.05). The C-indices in predict of OS of the
clinical + DL radiomics model in the training and testing cohorts were 0.800 and 0.759,
respectively. The clinical + DL_radiomics model and the DL radiomics mogdel
outperformed the clinical model in the training and testing cohorts (all P < 0.001). We
divided patients into four categories by dichotomizing predicted ER and OS. Patients
with class 1 (high ER rate and low risk of OS), retreatment (microwave ablation) after

recurrence was associated with improved survival (HR 7.895, P = 0.005).
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CONCLUSION
3
As compared to the clinical model, the clinical + DL radio&lics model significantly

improved the accuracy of predicting OS after radical resection of HCC.

Key Words: Hepatocellular carcinoma; Deep learning; Overall survival; Early

recurrence; Contrast-enhanced ultrasound

Huagg Z, Shu Z, Zhu RH, Xin JY, Wu LL, Wang HZ, Chen ], Zhang ZW, Luo HC, Li
KY. Deep learning-based radiomics based on contrast-enhanced asound predicts

early recurrence and survival outcome in hepatocellular carcinoma. World | Gastrointest

Oncol 2022; In press

Core Tip: Multivariate Cox regression analysis confirmed that age [hazard ratio (HR),

1.01], CA 199 (HR, 0.60), tumor size (HR, 1.11), echogenicity (HR, 0.82), and deep
learning-based radiomics (HR, 4.33) were independent predictors of survival outcome

II P < 0.05). The concordance index of the clinical + deep learning-based_radiomics
model in the training and testing cohorts were 0.800 and 0.759, respectively. We divided
patients i_lﬁo four categories by dichotomizing predicted early recurrence and survival
outcome. We found that for patients with class 1 (high early recurrence rate and low
risk of survival outcome), retreatment after recurrence was associated with improved

survival.

INTRODUCTION

Hepatocellular carcinoma (HCC) is the most common primary liver malignancylll.
Surgical resection is considered the mainstream intervention for early HCC treatment(2],
and its therapeutic effect has gradually improved in recent yearg_However, the
postoperative recurrence rate of HCC remains as high ag 60% at the 5hr follow-upl3l,

and the 5-year average survival rate is less than 32%/%. Previous studies have reported
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that the prognosis of patientwith early recurrence (ER) of HCC (within 1 year) after

surgical resection is poorer than that of patients with late recurrence (> 1 year)[l.
Therefore, to develop future treatment strategies, there is an urgent need to irrﬁove the
identification of patients at high risk of recurrence and poor prognosis; this may help
identify those who may benefit from adjuvant systemic therapy.

Clinical biomarkers, such as tumor burden, associated with postoperative recurrence
and outcomes have been identifiedlfl. However, the model based on these clinical
biomarkers could not provide sufficient predictive power, and quantifiable measures
and radiological information were not included in the model, which could provide
essential information. Therefore, new representations of biomarker technology must be
urgently explored to predict postoperative recurrence and patient outcomes more
accurately.

Medical imaging is a potential method fgr HCC diagnosisl’l. A previous study has
developed a model that used clinical and contrast-enhanced computed tomography-
based radiographic features to accurately predict the ER of HCC after surgical
resectionl®l. Ultrasonography is widely used in HCC examination as it is cost-effective,
widely available, and time-saving and provides real-time results. More importantly,
contrast-enhanced ultrasonography (CEUS) can visualize microcirculatory
perfusion of HCC in real-timell. The microbubble contrast agent can be safely used in
patients with decreased renal function!!0l.

Accurate prediction of early HCC recurrence and patient outcome is required to
make clinical decisions before surgical resection. Traditional imaging features are
relatively poor indicators of tumor heterogeneity (e.g., microvascular invasion and
recurrence), are poor predictors of clinical outcomes!™], and are highly subjective,
éifficult to quantify, and challenging to apply further. Radiomics analysis transforms
raw images into countable quantitative features and interprets tumor
pathophysiology['2l. Neural network mining to link these features to biological and
clinical endpoints can help develop models to predict patient outcomes, thereby

improving prediction-based cancer management(!3l. Deep learning-based radiomics (DL

3/ 21




radiomics) has been applied to patients with HCC and has achieved promising results
in  predicting  microvascular  invasion and response to  transarterial
chemoembolization!(1415],

This study aimed to predict ER and overall survival (OS) after radical resection of
HCC by establishing a DL radiomics model using ultrasonographic and CEUS images.
MATERIALS AND METHODS

Patients

The institutional review boards of our institution approved this retrospective study and
waived the requirement to obtain written informed consent of all participants.

We retrospectively screened 5466 patients with HCC meeting the Milan criteria who
underwent curative resection of HCC at our institution between January 2008 and
December 2018. HCC was diagnosed based on pathological findingsl¢l. The exclusion
criteria were as follows: (1) CEUS not performed; (2) recurrent lesions or a history of
radiofrequency  ablation, microwave ablation, or nscatheter  arterial
chemoembolization before CEUS; and (3) incomplete follow-up. A total of 5052 patients
were excluded, leaving 414 in the final analysis (Supplementary Figure 1). Clinical
features, including basic patient information, biological test results, and treatment-
related information, were obtained from patientécords.

CEUS has the following clinical indications: In patients at risk for HCC, ultrasound

eening is positive for liver nodules according to current clinical practice standards,
the World Federation for Ultrasound in Medicine and Biology (WFUMB)-European
Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) and CEUS
Liver Imaging Reporting and Data System (LI-RADS) guidelines; focal liver observation
at single-phase CT or unenhanced MRI performed for other clinical reasons;
indeterminate focal liver observation at multiphase contrast-enhanced CT or MRI; and
definite HCC on CT or MRI images in reparation for or during tissue sampling, surgical

resection, or percutaneous ablation treatment.
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Ultrasonographic examination -

CEUS was performed using a GE Logiq 9 scanner (GE Healthcare, Wauwa , WI,
United States) with a 25-MHz frequency range transducer and a 3-5 L probe. Contrast
agent (2.4 mL, SonoVue, Bracco, Milan, Italy) was injected intravenously, followed by
flushing with 10 mL of 0.9% saline. Ctinuous observation of three-stage contrast
enhancement was performed, including the arterial phase (0-30 s), portal phase (31-120
s), and late phase (121-360 s). CEUS inspections were recorded as video clips for
analysis. For the CEUS image used for research, a frame of image with peak contrast
intensity of the lesion is selected, that is, the frame of image with the maximum
intensity is selected by quantitatively analyzing the enhanced intensity of the lesion in
0-360 s.

Two sonographers (one with more than 8 years of experience in CEUS and the other
with more than 5 years of experience) who were blinded to the pathology results
evaluated each lesion. In the event of a difference of opinion between the two readers,
the final decision was made by a third blinded sonographer (with more than 20 years of
CEUS experience). Tumor size, number, and satellite nodules on CEUS were evaluated.
Nodules close to a primary tumor (< 3 cm) were designated as satellite nodules. During
the late phase, the presence of perfusion defects surrounding HCC lesions was
evaluated. If a nodule exhibited hypoechogenicity compared with the surrounding
enhanced liver parenchyma, it was defined as the “presence oféperfusion defect of
satellite nodules.” The degree of enhancement of each lesion was compared with that of

the surrounding normal liver tissue and classified as hyper-enhanced, iso-enhanced, or

hypo-enhanced.

Follow-up protocol

The patients were followed up at 1, 3, 6, 9, and 12 mo after operation, and every 3-6_mo
after 12 mo. At each follow-up, serum alpha-fetoprotein levels were measured and
imaging (contrast-enhanced computed tomography, CEUS, or contrast-enhanced

magnetic resonance imaging) was performed. ER was defined as intrahepatic and/or
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extrahepatic recurrence of HCC within 1 year after resection. Given that an increasing

serum alpha-fetoprotein level alone does not necessarilyélean recurrence, recurrence
was confirmed by radiological evidence of a new tumor. All pﬁ'ents were followed up
until death, ER, or for at least 1 year after curative resection. OS was calculated as the

time interval between the date of surgery and the date of death or last follow-up.

Construction and validation of model

Image quantification (radiomic feature extraction and deep learning-based radiomic
feature extraction of grayscale image and CEUS image, which was a frame of image
with peak contrast intensity of the lesion (Supplementary Figure 2), OS prognostic
model construction and validation (including the development of deep learning-based
radiomics score, OS prognostic model using clinical variables and DL radiomic score,
and validation of prognostic models), and construction aﬁd validation of the model for
ER prediction are shown in the supplementary material. We also assessed the ability of
the DL radiomics model to improve the ability of three clinicians (with 11, 5, and 2 years
of experience, resEctively) to predict ER, with or without the assistance of the DL
radiomics model. To demonstrate the impact of the DL radiomics model on clinician-
individualized_assessment performance, three clinicians independently reassessed each
patient’'s ER status on the same day after accounting for the DL radiomics model

predictions.

Statistical analysis
Differences in the distribution of clinical variables of the training and testing cohorts
were assessed by Fisher's exact test or the chi-square test for categorical data and the
nonparametric MannWhitney test for continuous data. To evaluate the predictive
performance of the different model, we applied ROC curve and its AUC value.
Accuracy, sensitivity, and specificity were calculated from the confusion matrixﬁ
quantitatively evaluate the predictive rE)del. For prognostic models predicting ER, we

used Kaplan-Meier analysis and the log-rank test to assess survival differences in

6/21




prognostiéclinical variables and radiological characteristics between the training and
test sets. Interclass con’elat'an coefcients (ICC) were calculated for inter-observer and
intra-observer agreement. A two-tailed P value less than 0.05 was considered as
statistical significance. The whole statistical analysis and graphic production were

completed by Python (version 3.8) and R (version 3.6.1).

RESULTS
emographic characteristics

A total of 414 patients were included in this study, of which 289 and 125 were assigned
to the training and testing cghorts, respectively. Mean age of 414 patients was 53 (45-60)
years, 375 (90.6) male. The demggraphic characteristics of patients in the training and
testing cohorts were compared (Table 1). There wer significant differences between
the training and testing groups (P > 0.05). During a median follow-up period of 68 mo
(range, 1-137 mo), 217 patients (52.4%) developed recurrence after curative surgical

resection.

Prediction models for ER
We considgred 414 grayscale ultrasonographic images and 414 peak contrast intensities
of CEUS images. A total of 11270 radiological features were extracted from 414 patients.
After univariate logistic regression selection, 898 features were retained. After the
selection of the maximum relevance minimum redundancy, 8 features were selected as
candidate features, and the preoperative prediction ER_model was designed using L1-
regularized logistic re-gression machine learning. Inter-observer ICC for measuring DL
radiomics features ranged from 0.633 to 0.989. Intra-observer ICC for meagsuring DL
radiomics features ranged from 0.689 to 0.927. The DL radiomics model had an AUC of
0.819 in the training cohort with 74% accuracy and an AUC of 0.568 in the test cohort
with 58 % accuracy.

In this study, the presence of satellites was selected construct_a clinical model

based on the constants and satellites (Table 2). The clinical model had an AUC of 0.58 in
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the training cohort with 56% accuracy and an AUC of 0.52 in the test cohort with 56%
acguracy.

We constructed a clinical + DL radiomics model, includi he presence of satellites
and radiomic/DL features. The training cohort's AUC, accuracy, sensitivity, and
specificityézere 0.83, 73%, 71%, and 76%, respectively. The testing cohort’s AUC,
accuracy, sensitivity, and specificity were 0.57, 59%, 62%, and 56 %, respectively. The DL
radiomics model exhibited good classification performance based on ROC curves
(Figure 1) and satisfactory clinical benefit (Figure 1), similar to those of the satellite
lesion-bﬁed clinical model (P > 0.05). Prediction accuracy did not improve when
clinical variables were combined with the DL radiomics model (AUC: 0.830 for the
clinical + DL radiomics model vs 0.819 for the DL radiomics el in the training
cohort; AUC: 0.572 for the clinical + DL radiomics model vs 0.568 for the DL radiomics
model in the testing cohort).

In univariate FineGray regression analysis, satellite nodules, DL radiomics model,
and multiple lesions were significantly associate& with ER. Using these variables, we
performed a multivariate Fin y competitive risk regression analysis. This analysis
showed that the DL radiomics model remained a strong independent predictor of ER
after adjusting for clinical variables (OR =132.847, P < 0.001).

We found that human performance in pﬁdicting ER was significantly enhanced after
integrating the DL radiomics model. For clinician 1, the sensitivity increased
significantly from 0.250 tg 0.856 in the training cohort and from 0.230 to 0.812 in the
testing cohort. Likewise, gr clinicians 2 and 3, the sensitivity of both testing cohorts
increased significantly (0.248 to 0.855, 0.268 to 0.818 in the training cohort; 0.289 to 0.784,
0.307 to 0.823 in the testing cohort). Scores were consistent across clinicians with a «
value of 0.76-0.89 and were significantly improved by the integrated DL radiomics
model, with a x value of 0.93-0.97.

Prognostic model for OS

8/21




We obtained 11270 radiomics/DL features from patient images and selected them
through univariate Cox proportional hazards regression, with 50 features with Harrell’'s
concordance index (C-index) > 0.58. Multivariate Cox regression with L1 penalization
calculates survival hazard values and builds high-risk and low-risk groups based on

ard values. The optimal stratification threshold for X-tile generation was 0.52.
Kaplan-Meier curves showed significant differences between the lgw- and high-risk
subgroups in the training and testing cohorts (Figure 2). Inter-observer ICC for
measuring DL radiomics features ranged from 0.611 to 0.976. Intra-observer ICC for
measuring DL radiomics features ranged from 0.699 to 0.912_The C-indices in the
training and testing cohorts were 0.792 and 0.741, respectively. Calibration curves at 1,
3, or 5 years showed good agreement between DL radiomics model estimates and
actual observations in the training and testing cohorts.

I.nﬁ'dvariate analysis, nine significant factors, including five clinical variables (age,
sex, carcinoembryonic antigen, carbohydrate antigen 125, and carbohydrate antigen 19-
9), three semantic imaging features (tumor siﬁx, tumor size y, and unsmooth margins),
and DL radiomics, were significantly associated with OS (both P < Uﬁ)
(Supplementary Table 1). Multivariate Cox regression analysis confirmed that age
[hazard ratio (EHR), 1.01; 95% confidence interval (CI), 1.00-1.03, P 0.02], carbohydrate
antigen 19-9 (HR, 0.6; 95%CI, 0.04-1.03, P = 0.007), tumor size y (HR, 1.11; 95%CI, 1.03-
1.19, P = 0.001), and DL iomics (HR, 4.33; 95%CI, 3.45-545, P < 0.005) were
independent predictors of OS (Table 3). Based on the multivariate Cox regression
analysis of assigned coefficients, these independent predictor vaﬁ'ables were linearly
combined to build a clinical and clinical + DL radiomics model. Kaplan-Meier curves
showed significant differences between the low- and high-risk subgroups in the
training and testing cohorts (Figure 2). The C-indices of the clinical model in the
training and testing cohorts werg_0.566 and 0.565, respectively. The C-indices of the
clinical + DL radiomics model in the training and testing cohorts were 0.800 and 0.759,
respectively. The clinical + DL radiomics ggodel and DL radiomics model outperformed

the clinical model in the training cohort (P < 0.001 and P < 0.001, respectively). Similar
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results were observed in the testing cohort (P < 0.001, P < 0.001). The corresponding

prediction error curves show that the prediction error of the clinical + DL radiomics
model is consistently lower than that of the clinical model. Similar results were obtained
for the combined Brier scores in the training and testing cohorts. Finally, we further
quantified the improvement in survival prediction Euracy between the clinical + DL
radiomics model and the clinical model. This resulted in a net reclassification
improvement in survival of 0234 (0.009 to 0.312; P < 0.001) and an OS net
reclassification improvement of 0.176 (0.076 to [].29&1J < 0.001) in the testing cohort.
Histological features (degree of differentiation (HR, 1.76; 95%CI, 0.56-3.01, P = 0.012)
and microvascular infiltration (HR, 2.25; 95%CI, 0.75-5.12, P = 0.023) were independent
predictors of OS (Supplementary Table 2). The clinical + DL and DL radiomics mo
have the same performance with the histological features in the training cohort (P =
0.157 and P = 0.566, respectively). Similar results were observed in the testing cohort (
= 0.225 and P = 0.648, respectively).
Evaluation of model for ;&iicting OS and benefit of retreatment after recurrence
In addition to evaluating the accuracy of the model in predicting ER and OS, we further
evaluated the corr*tion between retreatment (microwave ablation) after recurrence
and OS in patients. We divided patients into four categories by dichotomizing predicted
ER and OS. We found that for patients with class 1 (high ER rate and low risk of OS),
retreatment after recurrence was associated with improved survival (HR 7.895, P =
0.005). In contrast, for patients with class 2 (high ER rate and high risk of OS) (HR 1.542,
P = 0.214), patients with class 3 (low ER rate and low risk of OS) (HR 0.357, P = 0.500),
and patients with class 4 (low ER rate and high risk of OS) (HR 1.416, P = 0.234),

retreatment after recurrence did not affect survival (Figure 3).

EISCUSSION
is study aimed to develop and validate a predictive model for ER and BS in patients

with early-stage HCC undergoing surgical resection. This model allows for better
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preoperative/pretreatment decision-making as to the best possible treatment options
and timing. We transformed radiomics/DL signatures into quantitative radiomics/DL
signatures and constructed a DL radiomics model with a better preoperative ability to
predict patient OS than clinical models alone. This model may guide individualized
treatment and survival monitoring.

Early-stage HCC still has a high recurrence rate after radical surgery. In our study,
52.4% of postoperative patients developed ER. Early HCC has high heterogeneity and
an apparent prognosis, which should be determined early and accurately. Gene
signatures have been widely used in tumor identification but are rarely used in clinical
applications because of their high cost and time consumption. Considering the high
recurrence rate of HCC after radical resection, including disseminated or recurrent
disease, early prediction of ER is critical for improving individualized treatment. As a
routine examination, ultrasonography has a high potential for further investigation of
ER-predictive radiological features. With the development of machine learning
technology, a large amount of quantitative radiological data has been used to construct
more predictive models than those developed by semantic radiological features. Our
study found that the DL radiomics score has the same or a higher ability to predict ER
than satellite nodules. The DL radiomics score can predict the patient’s ER before
surgery, helping guide treatment choices.

In this study, we developed an ER-related DL radiomics model and evaluated its role
in predicting OS. Furthermore, we combined clini and DL radiomics features to
predict OS. After the multivariate We found that age was a significant risk factor for OS
in patients with HCC, consistent with the results of other studies/®. In addition, we
found carbohydrate antigen 19-9, tumor size, and echogenicity were important risk
factors for OS. However, the clinical + DL radiomics and DL radiomics models made a
more dominant contribution in predicting OS than these clinical variables.

Re-surgicahresection is considered a treatment for HCC recurrence. A key treatment
issue is how to identify patients who may benefit from retreatment for HCC recurrence.

However, given the costs associated with treatment, surgical trauma, and modest
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survival benefits, the opti criteria for selecting candidates for retreatment for HCC

recurrence remain unclear. The model developed in this study can help identify such
patients. By combining information on ER risk and survival, our model can identify
patients%ith class 1 who are more likely to benefit from re-surgical resection treatment.

HCC is a tumor with a rich blood supply in which tortuous and dilated new vessels
are continuously generated. In our study, the frame with the highest peak intensity in
the arterial phase of CEUS was used, reflecting the density of neovascularization in the
tumor. Studies have shown that the peak intensity in the recurrence group is lower than
that in the non-recurrence group and that peak intensity is a risk factor for HCC
recurrencell7l. B

Liu et al'l analyzes CEUS images based on DL radiomics to predict ression-free
survival of radiofrequency ablation and surgical resection and optimize radiofrequency
ablation and surgical resection treatment options for patients with HCC. Oyg study is
also based on DL radiomics analysis of CEUS images; the difference is that our study
aims to predict the ER and OS of patients with HCC after surgical resection and provide
guidance for retreatment after recurrence.

Our study has two significant limitations. First, this is a single-center study, and a
multicenter prospective study with a larger patient population is needed to further
validate the performance of our model. Second, regions of interest are segmented
manually and have not been fully automated. Finally, washout is also an important

aspect of the assessment of HCC, and other images of CEUS need to be fully studied in

the future.

CONCLUSION

The DL radiomics model has the sane satisfactory clinical benefit for predicting ER as
the clinical model. Compared with the clinical model, the clinical + DL radiomics model
and the DL radiomics model significantly improved the accuracy of predicting OS after
radical resection of HCC.
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ARTICLE HIGHLIGHTS

Research background

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy.

Research motivation .

28
To develop future treatment strategies, there is an urgent need to imprgve the
identification of patients at high risk of recurrence and poor prognosis; this may help

identify those who may benefit from adjuvant systemic therapy.

Research objectives @
10
To predict early recurrence (ER) and overall survival (OS) in patients with HCC after

radical resection using deep learning-based radiomics (DL radiomics).

earch methods
A total of 414 consecutive patients with HCC who underwent surgical resection with
available preoperative grayscale and contrast-enhanced ultrasound images were
enrolled. The clinical, deep learning (DL) radiomics, and clinical + DL radiomics model

was then designed to predict ER and OS.

Research results

The DL radigmics model for predicting ER showed satisfactory clinical benefits (AUC
0.819,.0.568 in the training and testing cohorts), similar to clinical model (AUC 0.580,
0.520 in the training and testing c&norts, P > 0.05). The C-indices in predict of OS of the
clinical + DL radiomics model in the training and testing cohorts were 0.800 and 0.759,
respectively. The clinical + DL_radiomics model and the DL radiomics mogdel
outperformed the clinical model in the training and testing cohorts (all P < 0.001). We
divided patients into four categories by dichotomizing predicted ER and OS. Patients
with class 1 (high ER rate and low risk of OS), retreatment (microwave ablation) after

recurrence was associated with improved survival (HR 7.895, P = 0.005).
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Research concl usiais
As compared to the clinical model, the clinical + DL radiomics model significantly

improved the accuracy of predicting OS after radical resection of HCC.

Research perspectjpes

As compared to the clinical model, the clinical + DL radiomics model significantly
improved the accuracy of predicting OS after radical resection of HCC.

Figure Legends

Figure 1 Receiver operating characteristic curves and decision curve analysis. A:
Receiver operating characteristic curv& of clinical, deep learning-based radiomics
(DLR), and clinical + DLR models for prediﬁ'ng early recurrence in the training and
testing cohorts; B: Decision curve analysis (DCA) of each model in predicting early
recurrence. The vertical axis measures standardized net benefit. The horizontal axis
shows the corresponding risk threshold. The DCA showed _that if the threshold
probability is between 0 and 1, using the DL radiomics model_derived in the present
study to predict ER provided as same benefit as clinical model. ROC: Receiver
operating characteristicc DCA: Decision curve analysis; DLR: Deep learning-based

radiomics.

Figure 2 Kaplan-Meier curves of overall survival stratified by high and low risk for

clinical, deep learning-based radiomics, and cligical + deep learning-based radiomics
models. A and B: Clinical_training; C and D: Deep learning-based radiomics (DLR)
testing; E and F: Clinical + deep learning-based radiomics training. DLR: Deep learning-

based radiomics.
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Figure 3 Relationship between the deep learning-based radjgmics model and benefit
from retreatment after recurrence in matched patients. A: Four different risk classes
were defined by early recurﬁnce and overall survival predicted by the deep learning-
based radiomics model; B: Kaplan-Meier curves of disease-free survival for patients

who are stratified according to receipt of retreatment after recurrence.
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Table 1 Patient characteristice

Study Training cohort Testing P value
Population (n (n=289) cohort (n =
= 414) 125)
Age 53.00  (45.00- 52.059 £12.190 53.216 + 0.1988
60.00) 11.380
Gender, n (%)
Male 375 (90.6) 262 (90.7) 113 (90.4) 0.9196
BMI, kg/m? 2450 +4.20 24.10+3.20 24.70 £3.40 0.1889
HBsAg-positive, 11 (%) 375 (90.6) 264 (91.3) 111 (88.8) 0.5274
AFP >7ng/mL, n (%) 292 (70.5) 205 (70.9) 87 (69.6) 0.8761
CEA>5ng/ml, n (%) 31(7.5) 24 (8.3) 7(5.6) 0.4494
CA125 > 40 ng/mL, n 15(3.6) 8(2.8) 7(5.6) 0.2588
(%)
CA199 > 34 ng/mL, n 46 (11.1) 295 (10.0) 17 (13.6) 0.3738
(%)
WBC count, /pL 6262 + 1985 6232 + 1756 6354 + 2125 0.5668
ALT,U/L 49 + 36 48 £39 51 +41 0.1654
AST,U/L 51+35 49 + 36 53 +42 0.2358
Liver cirrhosis, n (%) 345 (83.3) 244 (84.4) 101 (80.8) 0.3630
Microvascular invasion, 312 (75.4) 211 (73.0) 101 (80.8) 0.0910
n (%)
Tumor size, cm
X 240 [1.70-3.68] 2957 +1.850 3.120 £2.050  0.3689
y 2.00([1.42-310] 2.480+1.490 2670 £1.960  0.4820
Gray-scale echogenicity 0.5954
Hyperechoic 46 (11.1) 35 (12.1) 11 (8.8)
Medium 4 (1.0 3(1.0) 1(0.8)
Hypoechoic 364 (87.9) 251 (86.9) 113 (90.4)
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Arterial phase 0.4639
Hyperenhancemet 403 (97.3) 283 (97.9) 120 (96.0)
Isoenhancement 8(1.9) 4(1.4) 4(3.2)
Hypoenhancement 3(0.7) 2(0.7) 1(0.8)

Portal phase 0.6669
Hyperenhancemet 15 (3.5) 12 (4.2) 3(24)
Isoenhancement 232 (56.0) 162 (56.1) 70 (56.0)
Hypoenhancement 167 (40.3) 115 (39.8) 52 (41.6)

Late phase 0.1300
Hyperenhancemet 2(0.5) 1(0.3) 1(0.8)
Isoenhancement 79 (19.1) 46 (15.9) 33 (90.4)
Hypoenhancement 333 (80.4) 232 (80.3) 101 (80.8)

Enhancing Caspsule 45 (10.9) 36 (12.5) 9(7.2) 0.1598
Unsmooth Margins 97 (23.4) 64 (22.19) 33 (26.4) 0.4168
Retreatment after 168 (40.3) 118 (40.5) 50 (40.0) 0.9270
recurrence

BMI: Body mass index; AFP: Alphafetoprotein; CEA: Carcinoembryonic antigen; CA125:

Carbohydrat: tigen 125; CA199: Carbohydrate antigen 199; BCLC: Barcelona-clinic

liver cancer; WBC: White blood cell; ALT: Alanine aminotransferase; AST: Aspartate

aminotransferase.
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Table 2 Univariate and multivariable

hepatocellular carcinoma patients

analysis of the early recurrence of

Univariate cox regression Multivariate logistic
regression
HR [0.025 0975] P HR [0.025 0.975] P

Age, yr 0.991 0971 1.011 0.383
Gender 1.005 0463 2181 0.990
HBsAg- 1.138 0472 2740 0.773
positive
AFP 0.622 0361 1.071 0.087 0.709 0.406 1.239 0227
CEA 0.944 0352 2535 0.910
CA125 1.811 0424 7.752 0423

199 1.636 0.727 3.684 0.234
ALT,U/L 1.248 0.697 2321 0.267
AST,U/L 1.566 0397 2108 0.675
FIB-4 Score 1.212 0431 1986 0.742
Liver 1.142 0506 2121  0.657
cirrhosis
Tumor sizex  1.000 0.882 1143 0951
Tumor sizey  0.988 0.856 1.142 0.873
Gray-scale 0.731 0493 1.087 0.121
echogenicity
Arterial phase 0.924 0351 2438 0.874
enhancement
Portal phase 1.321 0.832 2100 0.238
enhancement
Portal phase 0.982 0512 1885 0.957
enhancement
Enhancing 0.930 0413 209 0.862
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capsules

Satellite 4843 1917 12244 0.001 4.194 1.368 12.871 0.012
nodules

Umsmooth 0.839 0462 1522 0.563

margins

Constant 0.990 0.707 1.387 0.953

FIB-4 score = Age (years) x AST (U/L) / Vplatelet count (10°1) X ALT(UL) . AFP:
Alphafetoprotein; CEA: Carcinoemhgyonic antigen; CA125: Carbohydrate antigen125;
CA199: Carbohydrate antigen199; ALT: Alanine aminotransferase; AST: Aspartate

aminotransferase; FIB-4 score: Fibrosis-4 score.
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Table 3 Univariate and multivariable analysis of the overall survival of

hepatocellular carcinoma patients

Univariate cox regression Multivariate logistic
regression
HR [0.025 0.975] P HR [0.025 0.975] P

Age 1.020 1.000 1.030 0.010 1.02 1.00 1.03 0.01
Gender 1570 1.030 2390 0.030 142 0.89 2.26 0.14
HBsAg-positive 1.600 1.030 2490 0.040 132 0.82 212 0.25
AFP 1.100 0.830 1.460 0.500
CEA 0.760 0.460 1.270  0.300
CA125 0.580 0.280 1.220 0.150

199 0.630 0420 0.950 0.030 065 041 1.03 0.07
ALT,U/L 1121 0453 1976  0.430
AST,U/L 1.342 0.876 2.014 0.540
FIB-4 Score 1.012 0.547 1.743  0.720
Liver cirrhosis 1112 0.563 1956  0.550
Tumor size x 1.080 1.010 1160  0.040 096 0.85 1.09 0.56
Tumor sizey 1.090 1.020 1170 0.010 117 1.02 1.33 0.02
Gray-scale 0.830 0.670 1.020 0.080 0.77 0.60 0.99 0.04
echogenicity
Arterial phase 0.680 0420 1110 0.130
enhancement
Portal phase 1.270 0.990 1.620  0.060 125 0.95 1.63 0.11
enhancement
Portal phase 1.130 0.810 1580 0.460
Enhancement
Enhancing capsules 1110 0.720 1.710  0.630
Satellite nodules 1190 0.780 1.830 0.420
Unsmooth margins 0.720 0520 0.990 0.040 0.79 0.56 1.13 0.19
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Early reoccurence 1.290 0.990 1.680 0.060 125 093 1.67 0.14
Retreatment after 0.710 0.540 1.160 0.300
recurrence

DL radiomics 3.240 2670 3.930 <0.005

AFP: Alphafetoprotein; CEA: Carcinoembrygc antigen; CA125: Carbohydrate
antigen125; CA199: Carbohydrate antigen199; ALT: Alanine aminotransferase; AST:

Aspartate aminotransferase; FIB-4 score: Fibrosis-4 score.
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