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Abstract
It is now well established that the biology of cancer is influenced by not only 
malignant cells but also other components of the tumour microenvironment. 
Chronic inflammation and fibrosis have long been postulated to be involved in 
carcinogenesis. Chronic inflammation can promote tumorigenesis via growth 
factor/cytokine-mediated cellular proliferation, apoptotic resistance, immunosup-
pression; and free-radical-induced oxidative deoxyribonucleic acid damage. 
Fibrosis could cause a perturbation in the dynamics of the tumour microenvir-
onment, potentially damaging the genome surveillance machinery of normal 
epithelial cells. In this review, we will provide an in-depth discussion of various 
diseases characterised by inflammation and fibrosis that have been associated 
with an increased risk of malignancy. In particular, we will present a compre-
hensive overview of the impact of alterations in stromal composition on tumori-
genesis, induced as a consequence of inflammation and/or fibrosis. Strategies 
including the application of various therapeutic agents with stromal manipulation 
potential and targeted cancer screening for certain inflammatory diseases which 
can reduce the risk of cancer will also be discussed.
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Core Tip: Chronic inflammation and fibrosis have long been postulated to be involved in carcinogenesis via numerous 
mechanisms including but not limited to growth factor/cytokine-mediated cellular proliferation, apoptotic resistance, 
immunosuppression; and free-radical-induced oxidative deoxyribonucleic acid damage. In this review, we discuss various 
inflammatory and/or fibrotic conditions that have been associated with increased cancer risk, with particular emphasis on 
their pathophysiology. We also review various therapeutic agents and specific cancer screening that could be applicable in 
reducing the incidence of cancers developing from the corresponding inflammatory and/or fibrotic conditions, thereby 
reducing morbidity and mortality.
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INTRODUCTION
In recent years, there is growing consensus that the biology of cancer is not solely defined by malignant cells, but also by 
the surrounding tumour microenvironment (TME). The TME consists of cellular and non-cellular stroma. The concept 
that the TME may influence cancer biology was inspired by the observation of immune cells surrounding the tumour by 
Rudolf Virchow in 1863, and “the seed and soil theory” by Stephen Paget in 1889, in which he hypothesised that the 
metastatic destination of a certain cancer is dependent on similarities between the TME of primary tumour and the 
microenvironment at the site of metastases[1,2]. Since then, there have been significant advancements in the 
understanding of the impact of the TME on the behaviour of malignant cells, from initial tumorigenesis, through 
progression to therapy resistance[3-5]. This review will focus on the impact of both the physiological and pathological 
tissue microenvironment, particularly stromal fibrosis and inflammation, on tumorigenesis.

In this context, stroma refers to the component of an organ which provides biomechanical and nutritional support to 
the corresponding parenchyma. Specifically, it comprises of immune cells, fibroblasts, mesenchymal stromal cells, 
endothelial cells, pericytes, adipocytes, and the extracellular matrix (ECM). The ECM, consisting of collagen, 
proteoglycans, glycosaminoglycans and other macromolecules, provides structural and biochemical support for cellular 
components in the surrounding parenchyma. Of note, some authors do not include immune cells as a component of 
stroma, however, immune cells such as macrophages, neutrophils and lymphocytes, play an integral role to the function 
of parenchymal cells and can have far-reaching effects on tumour biology and consequent behaviour, as such they will be 
classified as a stromal component in this review.

Many stromal components have been shown through various in vitro and animal studies to influence the behaviour 
and fate of normal cells, including altering the risk of malignant transformation[6-8]. Inflammation and fibrosis are both 
common processes that significantly alter the cellular and ECM components of normal stroma and so may influence or 
underlie such behavioural shifts. Both processes have been seen to upregulate the expression of several tumorigenic 
signalling pathways including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB), signal transducers 
and activators of transcription (STAT), wingless-related integration site (Wnt) and phosphatidylinositide 3-kinase (PI3K) 
via the release of pro inflammatory cytokines[9-12]. Hence, several inflammatory and fibrotic conditions have been linked 
as triggers for tumour development in the organ involved, whether due to autoimmune responses (inflammatory bowel 
disease and colorectal cancer[13]), bacterial or viral infections (pneumonia or tuberculosis with lung cancer[14]) and 
environmental factors (silica and lung cancer[15]).

Often, these pathological processes appear to be required for tumorigenesis rather than simply an overrepresentation 
of certain otherwise normal stromal components. For instance, inflamed adipose mammary tissue in the context of obese 
mice, increases myofibroblasts number, promoting fibrosis and transformation of normal to malignant breast tissue[6], 
whereas normal mouse fibroblasts have been shown to prevent clonal proliferation of polyoma virus-transformed cells in 
vitro[7]. However, there are less frequent precedents where normal stromal components may also contribute to tumori-
genesis. Normal fibroblasts have been demonstrated to promote the generation of breast cancer stem cells[8]. 
Additionally, high mammographic breast density, which results from a higher density of stromal and glandular breast 
components and a lower proportion of adipocytes, is a potent risk factor for breast cancer development.

In this review we will discuss various medical conditions substantively characterised by inflammation and fibrosis, 
specifically those known to be linked to increased cancer risk. Furthermore, we will look to whether scenarios exist where 
physiological variations in stromal composition correlate with differing cancer incidence.  In doing so, we will discuss the 
biological contribution of the various stromal components to tumorigenesis known to date and discuss interventions that 
may influence these processes to achieve therapeutic advantage.
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PATHOLOGICAL INFLAMMATION, FIBROSIS AND CANCER RISK
A range of medical conditions exist that involve one or both of these processes. A common evolution pathogenically is of 
initial inflammation with subsequent fibrosis. However, each of the processes may occur in isolation. Here we look across 
a range of scenarios at whether each may affect cancer risk in isolation or whether both appear to be required for tumori-
genesis (Table 1).

INFLAMMATORY BOWEL DISEASE AND COLORECTAL CANCER
Inflammatory bowel disease (IBD) is sub-divided into ulcerative colitis (UC), which affects only the large bowel, and 
Crohn’s disease (CD) which can involve any area of the gut from mouth to rectum[16]. The risk of developing colorectal 
cancer in UC patients is elevated compared to the disease-free population, with an overall risk of 4.8[13]. Similarly, in CD 
risk is elevated although to a more moderate degree, by 2-3 times[17]. In keeping with the small bowel involvement in 
CD, small intestinal tumours are also increased, by a relative risk of 18.75%[17]. The risk in both conditions is associated 
with duration and extent of inflammation[18]. Beyond inflammation, both conditions can also result in fibrosis although 
the pattern differs. Fibrosis leading to eventual stricture and potential obstruction is more common in CD than UC, with 
around 25% of CD sufferers eventually destined to develop a stricture over the course of the illness[19]. On initial consid-
eration this appears at odds with the risk of colorectal cancer, but may be explained by the distribution of fibrotic change. 
In UC fibrosis is often superficial, affecting only the mucosal and sub-mucosal layers[20] but still, therefore, able to impact 
the epithelial layer from which neoplasms arise, and generally impacting a longer continuous length of colon. In contrast, 
Crohn’s disease is characterized by patchy change and skip lesions such that the total area of involved epithelium is often 
less[16].

Considering these patterns and parallel links in other organs between inflammation, fibrosis and neoplastic 
transformation, the development of colitis-associated carcinoma (CAC) appears highly likely to be directly attributable to 
chronic inflammation and consequent fibrosis[21,22]. There is a biological rationale, with previous studies showing that 
certain inflammatory cytokines prominent in UC, namely TNF-α, IL-6 and TGF-β can promote a pro-tumorigenic 
microenvironment by stimulating essential cancer stem cell pathways, evading growth suppressors, and resisting 
apoptosis[23-25]. This occurs via induction of various molecular signalling pathways including NF-ĸB[9], STAT[26] and 
Wnt pathways[27]. Incidentally, these cytokines can also promote fibrosis. TNF-α has been demonstrated to induce IL-6 
production, which is partly responsible for proliferation of fibroblasts[28,29]. In addition, TGF-β, highly expressed in 
intestinal epithelial cells, inflammatory cells and fibroblasts is known to induce fibrogenesis and ultimately the deposition 
of ECM such as collagen, via the Wnt/β-catenin pathway, which is also often activated early in dysplastic and 
surrounding non-dysplastic intestinal epithelial cells, in the setting of CAC carcinogenesis[10,30,31]. This concurs with 
the upregulation of type 1 collagen, revealed by proteomic analysis in the early stages of colorectal carcinogenesis[32]. 
Whether or not collagen promotes CAC carcinogenesis remains ambiguous, however increase in collagen may disrupt the 
polarity of healthy intestinal epithelial cells and stimulate cellular proliferation, thereby promoting malignant 
transformation.

While it is generally understood that fibrosis occurs as a result of chronic inflammation, it is now understood that 
fibrosis in IBD may occur without inflammation[33], and further that not all people with IBD develop fibrosis[34]. This 
prompts the question as to whether either fibrosis or inflammation without the companion process can also trigger 
carcinogenesis – a question which remains unanswered today due to a lack of cohorts with data that allow the linking 
degrees of inflammation and fibrosis to cancer risk.

CHRONIC PANCREATITIS AND PANCREATIC DUCTAL ADENOCARCINOMA
Chronic pancreatitis (CP) is a major risk factor for the development of pancreatic ductal adenocarcinoma (PDAC), 
increasing the risk of PDAC by 20-fold relative to disease-free population[35]. Both CP and PDAC share a common 
pathological feature – abundant desmoplastic and inflammatory stroma[36]. Hence, the link between the former and the 
latter could be attributed to the events occurring in the surrounding inflammatory milieu. This was proven in an animal 
study involving the insertion of K-ras oncogenes within the endogenous K-ras locus, in which mice without pancreatitis 
did not develop PDAC, while those with pancreatitis did[37]. Thus, it could be deduced that inflammation is a critical 
factor in PDAC carcinogenesis, at least in response to this, the commonest of oncogenes implicated in pancreatic cancer. 
In chronic pancreatitis, the release of inflammatory cytokines such as TNF-α and TGF-β and growth factors such as 
vascular endothelial growth factor (VEGF) and PDGF trigger the proliferation of fibroblasts and the activation of 
pancreatic stellate cells (PSC) towards a more myofibroblast-like phenotype[38,39]. Activated PSC have a number of 
functions, including sustaining proliferative signalling in pancreatic epithelial cells; the release of growth factors; and the 
synthesis of ECM proteins, notably collagen, fibronectin and laminin[40,41]. The deposition of various ECM proteins 
could cause a perturbation in the dynamics of the ECM, potentially damaging the genome surveillance machinery of 
normal epithelial cells. Supportive of a role for certain ECM components in PDAC progression is the finding that collagen 
1, 4 and hyaluronic acid which promotes cell survival, proliferation and invasion, with higher levels associated with 
reduced survival[42-44]. This is further supported by the therapeutic benefit derived from the administration of 
PEGylated Recombinant Human Hyaluronidase in addition to chemotherapy in PDAC patients[45,46].
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Table 1 Summary of various inflammatory and fibrotic conditions and relevant malignancies

Disease Associated cancer Mechanism Risk ratio Possible 
therapeutic targets

Inflammatory bowel 
disease

Colorectal cancer Increased pro-inflammatory cytokines (TNF-α, IL-6 and 
TGF-β)[24,30,34]; Increased signalling of pro-tumorigenic 
molecular pathways, apoptosis resistance, fibrogenesis 
(NF-ĸB and Wnt/β-catenin)[9,27,30,34]

Ulcerative colitis – 
4.8-fold increase[13]; 
Crohn’s disease – 2-3-
fold increase[17]

Thiopurines[173] and 
anti-inflammatory 
such as mesalazine
[174] and NSAID[149]

Chronic pancreatitis Pancreatic ductal 
adenocarcinoma

Increased cytokines (TNF-α and TGF-β), growth factors 
(VEGF, PDGF)[38]; Fibroblast and pancreatic epithelial 
cell proliferation[40]; Activation of pancreatic stellate cells
[39,40]; Increased ECM protein (collagen 1 and 4, laminin, 
fibronectin) and hyaluronic acid deposition[38]

20-fold increase[35] PEGylated 
Recombinant Human 
Hyaluronidase[45,46]; 
NSAID[149]

Idiopathic 
pulmonary fibrosis

Lung cancer Cellular morphological abnormalities (metaplasia, 
dysplasia) in fibrotic areas[59]; Reduced immune 
expression (monocytes, lymphocytes, macrophages) in 
fibrotic areas[50]; Mutations in tumour-suppressor genes
[54]; Upregulated gene expression of ECM components 
such as collagen and MMP (MMP9 and 11)[57]

3.5-7.3 fold increase
[51]

Anti-fibrotic drugs 
(pirfenidone and 
nindetanib)[175]

Pneumoconiosis Lung cancer Silicosis: Chronic increased release of pro-inflammatory 
cytokines (IL-12, IL-23 and TNFα) results in DNA damage
[66]; Immunosuppression through increased expression of 
inhibitory immune markers (PD-1, LAG3, FOXP30)[70]. 
Asbestosis: Increased inflammation (IL-1β, TGF-β and 
PDGF) and fibrosis through expression of NLRP3[70]; 
Increased ROS and RNS[64,68]; Increased expression of 
proliferation signalling pathways (EGFR-ERK)[73] 

Silicosis – 3-fold 
increase[15]; 
Asbestosis – 1.5-6.8-
fold increase[65,65] 

Anti-fibrotic drugs 
(pirfenidone and 
nindetanib)[152] 

TB Lung cancer Upregulation of anti-apoptotic protein expression via 
inflammatory cytokines (TNF-α and IL-6)[59,76,78] 

Pneumonia – 1.4-fold 
increase[14]; TB – 1.9-
fold increase[14] 

NSAID[176]

Liver cirrhosis Hepato-cellular 
carcinoma

Cellular proliferation, telomere shortening via inflam-
matory cytokines (TGF-β, TNF-α and interleukins)[83,84]; 
Genomic instability (p53, Ras, mTOR, Wnt signalling 
pathways)[11,84]; Reduced expression of CD4+ and CD8+ 
cytotoxic T cell[85]; Increased regulatory T-cell response
[86]; Activation of hepatic stellate cells increase 
myofibroblast and ECM production[11,87]; Hypoxia in 
fibrosis leads to genotoxicity (ROS, RNO) and 
angiogenesis (VEGF)[92] 

Hepatitis B related – 
1.17-fold increase
[81]; Hepatitis C 
related - 1.15-fold 
increase[81]; NAFLD-
related – 1.6-23.7-fold 
increase[161] 

LOX/LOXL2 
inhibitors[161,162]; 
NSAID, Pentoxifylline
[177,178]

Primary biliary 
cholangitis 

Cholangiocarcinoma Increased proliferative signalling via inflammatory 
cytokines (IL-1β, IL-6 and HGF)[96-98]; IL-6 activates p38-
MAPK, increases DNA methyltransferase (DNMT) Mcl-1 
and telomerase expression[96]; DNA damage (BRAF, K-
ras, cyclin d-1, c-myc, COX-2 and p53) due to dysreg-
ulated NO production[98]; Fibroblast proliferation and 
ECM production (collagen type 1 and 3)[103] 

9-fold increase[94] Natural anti-inflam-
matory products 
(Curcumin)[102] 

GERD and Barrett’s 
oesophagus

Oesophageal cancer Increased inflammatory cell recruitment (macrophages T, 
B, dendritic cells)[107]; Inflammatory cytokine release 
(TNF-α, IL-6, IL-1β, IL-8) activates pro tumorigenic 
signalling pathways (NF-Κb, STAT-3, HIF-1a)[107,108]; 
Reduced immune response due to immunosuppressive 
cytokines (IL-10)[112]; Oxidative stress (ROS and RNS) 
induce mutagenesis of oncogenes and tumor suppressor 
genes[110] 

30-125-fold increase
[106] 

NSAID[149]

OSF Oral squamous cell 
carcinoma

Increased inflammatory cell recruitment[118]; Oxidative 
stress induces p53 mutation, decreased DMNT and 
increased HSP70 and MDM2-P2 promoter[120,122]; 
Increased prostaglandins, cytokines and growth factors 
(IL-6, TNF-α, PDGF and TGF-β)[118,119]; Fibrogenesis via 
IL-6 and TGF-β leads to increased ECM protein 
production (collagen, fibonectin) and inhibit ECM 
breakdown (PAI-1, TIMP)[124,125]; OSF-associated 
fibroblast promote dysplastic keratinocyte proliferation 
via GRO-α release and EGFR/ERK activation[128] 

19-fold increase[114] Anti-oxidants, steroids 
and hyaluronidase
[178]

Physiological breast 
stromal density, 
breast conditions – 
chronic mastitis, 
sclerosing adenosis

Breast cancer Mammographically dense breast have higher ECM 
proportion (collagen, immune cells)[131,133]; 
Mammographically dense breast have higher proportion 
of glandular epithelial components and lower proportion 
of adipocytes[132-134] 

Physiological higher 
MBD: 4-6-fold 
increase[130]; 
Chronic mastitis: 3-
fold increase[137]; 
Sclerosing adenosis: 
2-fold increase[138] 

Anti-estrogens 
(tamoxifen, raloxifene, 
exemestane and 
anastrozole)[154-157]; 
NSAID[149]; LOX-like 
inhibitors[159,160,163]
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GERD: Gastroesophageal reflux disease; OSF: Oral submucosal fibrosis; TNF-α: Tumor necrosis factor-alpha; TGF-β: Transforming growth factor beta; NF-
ĸB: Nuclear factor ĸB; VEGF: Vascular endothelial growth factor; NSAID: Anti-inflammatory; GRO-α: Regulated oncogene-α; MBD: Mammographic breast 
density; EGFR: Epidermal growth factor receptor; ERK: Extracellular signal–regulated kinase; ROS: Reactive oxygen species; RNS: Reactive nitrogen 
species; TB: Tuberculosis; ECM: Extracellular matrix; PDGF: Platelet-derived growth factor; ROS: Reactive oxygen species; RNS: Reactive nitrogen species; 
HGF: Hepatocyte growth factor; NO: Nitric oxide; BRAF: Proto oncogene B-Raf or v-raf murine sarcoma viral oncogene homolog B1; COX-2: 
Cyclooxygenase-2; NAFLD: Non alcoholic fatty liver disease.

However, certain alterations in the ECM can be tumour-inhibitory rather than promoting. Quantitative analysis of 
stroma density in PDAC samples from patients’ autopsy revealed that tissue stroma density was substantially lower in 
samples from patients with metastatic PDAC and that higher stromal content was associated with a more favourable 
outcome[47]. This finding was further supported by Rhim et al[48] who demonstrated that diminished stromal density 
induced by knocking out sonic hedgehog in an established PDAC mouse model significantly enhanced tumour 
vascularity and proliferation. Furthermore, another study by Erkan et al[49] in which resected PDAC tumors were 
analysed for PSC activity and collagen deposition showed that the combination of high collagen deposition and low 
stromal activity was associated with a better prognosis than low collagen deposition and high stromal activity. While 
these studies relate to the effect of stroma on tumour progression/regression, considering the similarities between 
carcinogenesis and organ development, it is likely that these findings apply to PDAC carcinogenesis. Combining findings 
from these studies, the role of chronic inflammation and fibrosis in influencing PDAC risk remains ambiguous.

INTERSTITIAL LUNG DISEASE AND LUNG CANCER
Idiopathic pulmonary fibrosis (IPF) is the most common subtype of interstitial lung disease which is characterised by 
aberrant accumulation of fibrotic tissue in the lung parenchyma[50]. While the pathophysiology of IPF remains to be fully 
elucidated, the disease is thought to be mainly fibrosis-driven with minimal involvement of inflammation cascade[50]. 
Over the past decade, many studies have shown that IPF is linked to development of lung cancer, with a relative risk of 
3.5-7.3 compared to healthy population[51]. One of the main reasons for this association is that IPF and lung cancer could 
have similarities in their pathophysiology, in terms of cellular morphological anomalies, dysregulated cytokine signalling 
and genetic mutations[52]. A study by Kawasaki et al[53] established that morphological aberrations in the lung epithelial 
layer, ranging from metaplasia and dysplasia to carcinoma, have been identified in fibrotic lung regions of IPF patients. 
This could be related to microsatellite instability and loss of heterozygosity, including mutations in tumour-suppressor 
genes such as fragile histidine triad gene, that are present at higher frequency in lung epithelial cells of IPF patients 
relative to healthy population[54,55]. Genetic alterations like these could be attributed to fibrosis, mainly mediated by 
TGF-ß released by various immune cells, and other changes in the stroma in IPF patients[56]. Using publicly available 
datasets, Saito et al[57] confirmed that 10% of the genes upregulated in lung cancer stroma, which include those coding 
for ECM components, mainly collagen (COL1A2, COL3A1, and COL5A2), and matrix metalloproteinases (MMP9 and 11), 
are also elevated in IPF. Furthermore, while increased immune cell infiltrates releasing cytokines, which promote 
epithelial proliferation and resist apoptosis are noted in the early stages of IPF, reduced number of lymphocytes, 
macrophages and monocytes were reported in fibrotic-predominant areas compared to epithelial-predominant ones in 
the later stages[57-61]. This implies that lung epithelial cells undergoing malignant transformation in the former are more 
likely to evade immune surveillance and progress to invasive malignancies in the latter. This observation concurs with 
the fact that lung cancers associated with IPF tend to develop in the peripheral and lower lobes – the fibrotic-predominant 
regions[62].

While IPF is mainly driven by fibrosis, other subtypes of ILD such as pneumoconiosis involve an inflammatory-driven 
condition that has been associated with lung cancer[50,63,64]. Patients with silicosis and asbestosis are about 3 times and 
1.5 times more likely to develop lung cancer than the general population[15,65]. Chronic inflammation triggered as a 
result of the continuous activation of macrophages in an attempt to clear the silica particles is thought to mediate lung 
carcinogenesis in patients with silicosis[63]. Consequently, there is massive release of cytokines such as IL-12, IL-23, and 
TNFα which place lung epithelial cells at an increased risk of DNA damage and thus their susceptibility to malignant 
transformation[66]. This is demonstrated unequivocally by Wang et al[66] in Gprc5a-knockout mice exposed to silica 
where neoplastic epithelial cells were found in areas of intense lung damage and fibrosis which were thought to be a 
consequence of chronic inflammation. Furthermore, Freire et al[67] demonstrated increased lung adenocarcinomas in 
mice treated with the combination of the carcinogen N-nitrosodimethylamine and silica. On histopathological analysis, 
there was increased expression of various inhibitory immune markers including programmed cell death protein 1, 
lymphocyte-activation gene 3, and forkhead box P3, as well as the presence of regulatory T cells in mice treated with 
NMDA and silica compared to silica alone[67]. This produces marked immunosuppression which increases the risk of 
carcinogenesis, providing another plausible explanation for the link between silicosis and lung cancer.

Similarly, in the case of asbestosis – linked with a 6.8-times and increased incidence of lung cancer respectively 
compared with the general population – the pathogenesis by which it causes malignancy appears to be a combination of 
inflammation and the direct genotoxic effect of asbestos fibres on the genome[68,69]. Alveolar macrophages have been 
known to play a major role in handling asbestosis fibres[68]. The entrapment of asbestos stimulates the activation of 
NOD-like receptor family, the pyrin domain containing 3 expressed in alveolar macrophages which promotes the 
activation of IL-1β, along with other cytokines such as TGF-β and PDGF which are responsible for the formation of 
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fibrotic nodules[68,70]. In addition, macrophages increase the production of reactive oxygen species (ROS) and reactive 
nitrogen species (RNS), thereby stimulating genotoxicity, chronic inflammation and thus malignancy transformation[71]. 
More specifically, numerous studies have demonstrated that chronic inflammation as a result of asbestos exposure 
affected several cell signalling pathways that are likely responsible for the development of lung cancer including the 
epidermal growth factor receptor (EGFR)-related extracellular signal–regulated kinase (ERK) signaling that promote lung 
epithelial cell and fibroblast proliferation[71-73]. While these studies have established the effect of chronic inflammation 
on development of lung cancer and mesothelioma, there is still a need to ascertain the relevance of fibrosis and lung 
cancer in vivo.

PNEUMONIA, TUBERCULOSIS AND LUNG CANCER
Infections of the lung have been previously linked with the future development of lung cancer. A meta-analysis by 
Brenner et al[14] demonstrated that pneumonia and tuberculosis was linked with a 1.4- and 1.9-times increased risk of 
developing lung cancer in the future. While both pneumonia and tuberculosis constitute as infection of the lung 
parenchyma, the degree of pulmonary inflammation and subsequent fibrosis likely explains the variation in the risk of 
developing lung cancer[14]. In regards to the former, pulmonary inflammation occurs for a shorter duration and thus the 
resulting fibrosis is less if not negligible compared to the latter, where a significant level of inflammation and fibrosis is 
involved[74,75]. Furthermore, in the setting of further tuberculosis (TB) recurrences which can occur in up to 47% of TB 
patients, repeated inflammatory response will increase the risk of lung cancer each time, with high cumulative risk 
associated with more frequent recurrences[76,77]. The mechanism by which inflammation increases cancer risk relates to 
the action of ROS and RNS produced by immune cells on the genome of lung epithelial cells and the ability of pro-inflam-
matory cytokines such as TNF-α and IL-6 to upregulate the expression of anti-apoptotic proteins[76,78]. Additionally, 
recurrent bouts of inflammation results in fibrosis in the surrounding lung parenchyma, which increases the risk of 
cancer associated with poor lymph drainage[79]. Further supporting the link between inflammation and lung cancer risk 
is a meta-analysis by Khuder et al[80] which demonstrated that non-steroidal anti-inflammatory drugs (NSAIDs) 
conferred a protective benefit in reducing lung cancer risk following adjustment for smoking (OR: 0.68; 95%CI: 0.55–0.85). 
These studies reaffirm the association between inflammation, fibrosis and lung cancer risk.

LIVER CIRRHOSIS AND HEPATOCELLULAR CARCINOMA
The link between hepatic cirrhosis and hepatocellular carcinoma (HCC) is well-established, with the 5-year HCC 
cumulative risk of 17% and 15% respectively for hepatitis B-related and hepatitis C-related cirrhosis respectively[81]. 
NAFLD-related cirrhosis is also associated with the development of HCC, with multi-centre cohort studies showing 1.6 to 
23.7 times increased risk[82]. Chronic inflammation and fibrosis are thought to be the major mechanisms explaining this 
association. In chronic hepatitis, a multitude of immune cells release various cytokines, most notably, TGF-β, TNF-α and 
interleukins, which lead to an increase in cellular proliferation, telomere shortening and genomic instability involving 
signalling pathways such as mechanistic target of rapamycin and Wnt signalling[83,84]. Additionally, previous studies 
revealed that CD4+ cells – involved in activation of the tumour-killing CD8+ cytotoxic T cells – and regulatory T cells – 
responsible for suppressing immune response – are diminished and increased respectively in cirrhosis[85,86]. 
Furthermore, chronic inflammation leads to fibrosis. Specifically, TGF-β released by Kupffer cells (macrophages) promote 
the activation of quiescent hepatic stellate cells (HSCs), analogous to PSCs in the pancreas, becoming myofibroblasts 
which are the primary source of ECM proteins including collagen, undulin, fibronectin and elastin[11,87]. More recently, 
others have identified additional cytokines, growth factors and lipid signals produced by other stromal components 
including endothelial cells, Kupffer cells and adipocytes are involved in HSC activation[88-90]. Fibrosis impairs the 
hepatic vasculature and produces a hypoxic environment, triggering the production of reactive oxygen, nitrogen species 
(ROS and RNO). ROS and RNO in turn can cause oxidative DNA damage among hepatocytes, predisposing them to 
malignant transformation[91]. Additionally, hypoxia induces the transcription of pro-angiogenic factors such as VEGF 
which is responsible for angiogenesis[92]. Further exacerbating this tumorigenic environment, neo-angiogenesis 
promotes the recruitment of immune cells like macrophages which results in further inflammation driving a vicious 
cycle. Today, the relationship between cirrhosis and HCC is extremely robust, that liver stiffness, a hallmark of hepatic 
cirrhosis is being studied as a means of assessing HCC risk[93].

PRIMARY BILIARY CHOLANGITIS AND CHOLANGIOCARCINOMA
Primary biliary cholangitis (PBC) is one of the most common risk factors for cholangiocarcinoma, with ninefold increased 
risk of developing cholangiocarcinoma[94]. The pathogenesis of cholangiocarcinogenesis in patients with PBC is 
multifactorial. Apart from the biliary constituent in PBC patients, chronic inflammation involving cytokines and growth 
factors, notably IL-6, hepatocyte growth factor, and IL-1β, released by various stromal and immune cells have been 
implicated in sustaining proliferative signalling in biliary cells[95-98]. IL-6 is believed to be a predominant contributor in 
cholangiocarcinogenesis, with the potential to promote cellular proliferation, survival and immortalisation via different 
mechanisms – p38MAPK activation[99], increasing DNA methyltransferase[96], Mcl-1 and telomerase expression[100]. In 
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addition, the inflammatory milieu in the surrounding bile duct raises the production of NO which increases the 
probability of DNA damage, affecting genes such as BRAF, K-ras, cyclin d-1, c-myc, COX-2 and p53[98,101]. Using a 
hamster model of cholangiocarcinoma, Prakobwong et al[102] demonstrated a decrease in incidence of cholangiocar-
cinoma, accompanied by decline in pro-inflammatory, growth signalling and anti-apoptotic protein expression including 
COX-2, cyclin-d1, c-myc, bcl-2 and bcl-xL following administration of curcumin, traditional anti-inflammatory agent 
derived from turmeric. This highlights the crucial role of inflammation in cholangiocarcinogenesis. Thirdly, fibrosis, 
instigated by the release of cytokines like IL-6 and TGF-β by immune cells, has also been shown to be involved in the 
neoplastic transformation of biliary cells. Using a liver cirrhosis mouse model, Farazi et al[103] showed that increased 
levels of fibroblasts along with type 1 and 3 collagen stimulate intrahepatic cholangiocyte proliferation and subsequent 
malignant transformation in p53-deficient mice. In another study, Ling et al[104] demonstrated that cholangiocarcinoma 
was induced in a rat model of thioacetamide (TAA)-induced hepatic fibrosis. The association between inflammation, 
fibrosis and cholangiocarcinogenesis is sufficiently convincing to stimulate interest in agents such as curcurmin that may 
diminish the two are being investigated to reduce the risk of cholangiocarcinoma[102,105].

GASTROESOPHAGEAL REFLUX DISEASE, BARRETT’S OESOPHAGUS AND OESOPHAGEAL CANCER
For a long time, chronic gastroesophageal reflux disease (GERD) patients have been known to be at risk of oesophageal 
cancer (OC), with 10%-20% developing Barrett’s oesophagus (BO), making them 30-125 times more likely than the general 
population to develop OC[106]. Unlike HCC and cholangiocarcinoma where fibrosis is thought to be crucial to carcino-
genesis, the pathophysiology of OC is inflammation-predominant. In GERD patients, chronic inflammation and 
oesophageal injury initiated by reflux of gastric acid bile and salt, result in BO, which is an intermediate step to 
progression to OC. More specifically, reflux promotes the recruitment of inflammatory cells, notably macrophages T, B 
and dendritic cells which release various pro-inflammatory cytokines such as TNF-α, IL-6, IL-1B and IL-8 that are 
responsible for NF-Κb, STAT-3, and HIF-1a activation[12,107,108]. This in turn leads to cellular proliferation and de-
differentiation as part of a metaplastic process, a frequent precursor to neoplastic transformation. Further, immunosup-
pressive cytokines, notably IL-10 are found at higher levels in BO, and thus, could render healthy squamous epithelial 
cells undergoing malignant transformation less susceptible to destruction as a result of immune surveillance[109]. 
Furthermore, chronic inflammation creates a state of oxidative stress, evident by the increased levels of ROS and RNS 
present in BO[110]. The heightened level of oxidative stress in turn induces mutagenesis of oncogenes and tumour-
suppressor genes, including TP53, K-ras, FBXW7 and PI3KCA, thereby contributing to OC carcinogenesis[110]. While 
chronic inflammation contributes significantly to OC carcinogenesis, the role of other aspects of stroma, including fibrosis 
on OC carcinogenesis remains unexplored. Interestingly, fibrosis is not apparent in BO, hence providing evidence of an 
inflammatory condition increasing cancer risk without the need for progression to fibrosis. Considering the reverse 
situation, we can hypothesise regarding the role of fibrosis on carcinogenesis from studies on eosinophilic oesophagitis, 
where both inflammation and fibrosis are prominent features but were not found to be associated with increased risk of 
OC[111]. Several mediators appear to be involved in this fibrosis, namely TGF-β, Th-2 type cytokines and ROS[112,113]. 
We could hypothesise that fibrosis may suppress neoplastic transformation in this scenario[111]. At this stage, while 
chronic inflammation substantially elevates OC cancer risk, fibrosis may have differing context specific effects on OC risk.

ORAL SUBMUCOSAL FIBROSIS AND ORAL SQUAMOUS CELL CARCINOMA
Apart from tobacco smoking, oral submucosal fibrosis (OSF) is the major risk factor for the development of oral 
squamous cell carcinoma (OSCC), increasing the likelihood by up to 19-fold compared to a healthy population[114]. The 
aetiology for OSF has long been established, with increasing incidence attributed to daily consumption of areca nut and 
betel quid[115,116]. In addition to the carcinogenic potential of constituents of areca nut and betel quid on activating 
oncogenes and inhibiting tumour-suppressor genes, they are also known to be inflammatory[117]. This promotes the 
recruitment of immune cells, predominantly, macrophages, T cells and lymphocytes to the oral mucosa, which in turn 
release ROS, prostaglandins, cytokines and growth factors, notably IL-6, TNF-α, PDGF and TGF-β[118]. These biological 
mediators, present in the surrounding oral squamous epithelium, promote oral squamous cell proliferation and survival
[118]. Additionally, ROS promotes oxidative damage and mutagenesis, resulting in p53 mutations, decreased levels of 
DNA-methyltransferase repair enzyme and upregulated levels of HSP70 and MDM2-P2 promoter, which ultimately lead 
to neoplastic transformation in areas of OSF[119-123]. Interestingly, some of the aforementioned biological mediators, 
namely IL-6 and TGF-ß are significantly involved in fibrogenesis – synthesising ECM proteins like collagen and 
fibronectin and simultaneously producing plasminogen activator inhibitor-1 (PAI-1) and tissue inhibitor of metallo-
protease which inhibit ECM breakdown[124-126]. This produces extensive fibrosis, particularly in the lamina propria, a 
hallmark feature of OSF. Recently, in an immunohistochemical study involving tissues obtained from patients with 
normal mucosa and OSF, Gadbail et al[127] demonstrated that Ki67 expression, a marker for cell proliferation, was 
directly proportional to α-SMA expression, a marker for myofibroblast formation, potentially highlighting that fibrosis 
may be directly involved in neoplastic transformation. The effect of fibrosis on malignant transformation of oral 
squamous epithelial cells is further stressed in an in-vitro study by Ye et al[128], who showed that growth-regulated 
oncogene-α from OSF-associated fibroblasts promote dysplastic keratinocyte cell line proliferation via activation of the 
EGFR/ERK signalling pathway. The potential of inflammation and fibrosis in OSF to cause neoplastic transformation to 
OSCC is regarded as high, justifying the ongoing search for anti-inflammatory and anti-fibrotic agents to suppress these 
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processes in OSF[76,129].

BREAST CANCER, PHYSIOLOGICAL MAMMOGRAPHIC DENSITY, PATHOLOGICAL INFLAMMATION 
AND CANCER RISK
Up to this point the breast appears to be a unique case in considering links between stromal composition and cancer risk. 
The differentiator is the strong established link between mammographic breast density (MBD), as assessed on 
mammographic images, which ties to the stromal composition of the normal breast, and breast cancer risk. Women with 
MBD lying in the highest quartile have a 4-6-fold higher risk of developing breast cancer than those in the lowest quartile
[130,131]. Dense tissue has been found to correlate with higher proportions of ECM, particularly collagen[132], immune 
cells[133] and glandular epithelial components, and lower proportions of adipocytes[134]. As well as promoting initial 
carcinogenesis, higher mammographic density has been found to correlate with a higher risk of local relapse, a lower rate 
for complete response to chemotherapy[135] and a higher rate of relapse after treatment in locally advanced tumours
[136].

This raises the question as to whether higher ‘physiological’ tissue stromal density carries higher risks of cancer in 
other organs, as well as whether pathological inflammatory and fibrotic processes impact cancer risk in the breast. 
Considering the latter, inflammatory conditions that result in a sustained inflammatory environment in the breast are 
relatively rare. Chronic mastitis is a condition whereby there is sustained inflammation usually relating to chronic 
infection. A retrospective cohort study by Chen et al[137] revealed that patients aged ≥ 40 with a history of mastitis have 
3-fold increased risk of developing breast cancer aHR = 3.71, 95%CI = 1.9–7.02) compared to those without a history of 
mastitis. On the same note, fibrotic condition of the breast such as sclerosing adenosis has also been associated with an 
approximate doubling of breast cancer risk in a US retrospective cohort[138]. This further highlights the significance of 
inflammation and fibrosis in influencing cancer risk and emphasises consideration of more rigorous screening for these 
conditions and therapeutics which could manipulate the stroma and reduce cancer risk.

STROMAL MANIPULATION TO THERAPEUTIC ADVANTAGE
The abundant evidence for multiple robust links between inflammation, fibrosis and carcinogenesis (Figure 1), as well as 
the frequently overlapping spectrum of implicated signalling mediators and pathways, suggest that there may be 
substantial therapeutic benefit to be achieved by detecting and targeting these processes across many cancer types 
(Table 1).

Knowledge of the links between inflammation and malignancy are widely exploited in the screening of at-risk 
individuals with a variety of conditions. First there is promise in the assessment of stromal characteristics to predict 
cancer risk, thereby allowing identification of individuals suitable for screening or for whom screening could be adjusted. 
For instance, the strong relationship between MBD and breast risk has been described above. Initiatives are already in 
progress to use MBD levels to tailor screening, both considering the age at which to start screening and the frequency as 
well as whether other modalities should be considered such as ultrasound or MRI[139,140]. Additionally, robust link 
between liver cirrhosis and HCC has prompted surveillance quantification of alpha-feto protein and liver as a means to 
diagnose HCC earlier[141]. Furthermore, there are screening recommendations for patients with BO and IBD to undergo 
surveillance gastroscopy and colonoscopy to detect the relevant malignancies at early stages[142,143].

Beyond detection, the common mechanisms underlying links between tissue inflammation, fibrosis and malignancy 
have led to development of a number of strategies to target these underlying processes including the application of 
therapeutics including anti-proliferatives, anti-inflammatories, anti-estrogens and anti-fibrotics which will be discussed 
below.

Anti-proliferative
Thiopurines (azathioprine, mercaptopurine and thioguanine) has been a mainstay drug for IBD patients over the last 50 
years. Its main drug effect is derived from the production of its metabolites 6-thioguaninenucleotides (6-TGN) and 6-
methylmercaptopurine (6-MMP)[144]. These metabolites exert an immunosuppressive and anti-proliferative effect by 
binding Ras-related C3 botulinum toxin substrate 1 (Rac1) to thioguanosine triphosphate thus mitigating chronic gut 
inflammation in IBD. This blockade of Rac1 signalling results in decreased anti-apoptotic protein Bcl-xL expression and 
subsequent promotion of pro-inflammatory T-cell apoptosis[145,146]. A meta-analysis by Zhu et al[147] involving 95397 
IBD patients, found that thiopurine use is associated with reduced risk of colorectal neoplasia (case control OR = 0.49, 
95%CI: 0.34–0.70; cohort RR = 0.96, 95%CI: 0.94–0.98). While effective as a chemopreventive agent, thiopurine use should 
be balanced with potential adverse effects such as risk of myelosuppression and in the long term, development of 
lymphoproliferative disorders[146,148].

Anti-inflammatory
NSAID used widely in the treatment of chronic pain syndromes have been studied as a chemopreventive agent in a wide 
range of cancers. NSAIDs reduce inflammation by reversibly and non-selectively inhibiting cyclooxygenase (COX) 
enzymes which in turn lead to decreased production of prostaglandins and leukotrienes, mediators which have been 
implicated in carcinogenesis. A meta-analysis by Qiao et al[149] comprising of 218 studies demonstrated that aspirin use 
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Figure 1 Schematic showing the links between inflammation, fibrosis and cancer in the tumour microenvironment. NK: Natural killer; HIF-1α: 
Hypoxia-inducible factor 1alpha; PI3K: Phosphatidylinositide 3-kinase; STAT3: Signal transducer and activator of transcription 3; NF-ĸB: Nuclear factor qB; Wnt: 
Wingless-related integration site.

was associated with a significant reduction in risk of gastric, esophageal, colorectal, pancreatic, ovarian, endometrial, 
breast and prostate cancer with rates ranging from 6%-25%. Another meta-analysis investigating the link between NSAID 
and skin cancer risk has also shown positive results, with significant reduction in risk of developing basal cell carcinoma, 
squamous cell carcinoma and non-melanoma skin cancer, but not melanoma. Interestingly, no significant 
chemopreventive effect is observed for COX-2 selective-NSAIDs and NSAID use among European populations[150].

5-aminosalicylates (5-ASA) is a drug class with anti-inflammatory and immunosuppressive properties, generally 
utilized in treatment of IBD and various rheumatologic conditions which has recently been found to possess 
chemopreventive properties. It works via multifactorial mechanisms but two well-understood mechanisms are the 
inhibition of prostaglandins and leukotrienes synthesis and scavenging of reactive oxygen species[151]. Previous 
systematic review of 31 independent observational studies in IBD has demonstrated that 5-ASA use is associated with a 
43% reduction in risk of colorectal malignancy among patients with IBD. Of note, the reduction in risk of colorectal 
malignancy of 50% was more prominent in UC as compared to CD, where the risk reduction was non-significant. 
Furthermore, the incidence of IBD-related colorectal cancer have significantly declined in recent years and whilst 
numerous factors could cause this, the role of 5-ASA and other immunomodulatory agents are likely to have contributed 
to the decrease in cancer incidence[13].

Anti-fibrotic
Nintedanib and pirfenidone are two anti-fibrotic agents which have been approved for the management of IPF.  Both 
work via modulation of fibrogenic growth factors, thereby decreasing fibroblast proliferation, myofibroblast differen-
tiation, collagen and fibronectin synthesis, and extracellular matrix deposition[152]. Recent retrospective study by Naoi et 
al[153] demonstrated that the cumulative incidence of lung cancer in patients with IPF treated with antifibrotic agent was 
significantly lower than those who were not (2.2% vs 4.4% at 1 year, 2.2% vs 6.7% at 3 years, and 3.3% vs 9.7% at 5 years, 
respectively; P = 0.004)[153]. Interestingly, the use of anti-fibrotic agent was also associated with lower lung-cancer 
related mortality (1.6% vs 15.2%, respectively; P = 0.0001)[153]. With established benefits in terms of slowing progression, 
possibly improving survival in IPF and more recently, preventing lung cancer development, the use of anti-fibrotic agents 
should be strongly considered in all IPF patients provided that there are no contraindications.

Anti-estrogens in breast cancer
Anti-estrogens inhibit the synthesis or antagonise action of estrogen in target organs. Anti-estrogens encompass selective 
estrogen receptor modulators (SERMs), selective estrogen receptor degrader, aromatase inhibitors, gonadotrophin release 
hormone agonists and antagonists. Previous studies have shown that tamoxifen, raloxifene, exemestane and anastrozole 
have significantly reduced the incidence of breast cancer in high-risk women by 49%[154], 76%[155], 65%[156], 49%[157] 
respectively. Currently, two SERMs, tamoxifen and raloxifene, are approved by the FDA for breast cancer 
chemoprevention, with anastrozole and exemestane pending approval. The mechanism of action by which antiestrogens 
prevent breast cancer remains unclear, however, the reduction of breast stromal density brought about by antiestrogen 
use is thought to confer a less pro-tumorigenic environment and hence lowering breast cancer risk.
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Stromal disruption
Lysyl oxidase (LOX) and LOX-like inhibitors are another drug class targeting the stroma of immense chemopreventive 
potential. LOXL is amine oxidase which catalyse the cross-linking of collagen and elastin in normal tissue and 
extracellular matrix, facilitating carcinogenesis, cell proliferation, migration and metastases[158]. Whilst previous studies 
have mainly investigated LOXL inhibitors as an anti-cancer agent, the preliminary results have been promising and LOX 
role in carcinogenesis make it a particularly interesting target to prevent carcinogenesis. Anti-GS341, antibody targeting 
LOXL-2 has been shown to significantly reduce tumour volume and lung metastases in a breast cancer xenograft model 
using MDA-MB-231 cells into immunocompromised SCID mice[159]. Additionally, an orally bioavailable LOX/LOXL2 
inhibitor, CCT365623, developed by Leung et al[160] produced significant diminution in tumor growth and metastases in 
an in vivo model of transgenic LOX-dependent breast tumor mice[160]. These promising preclinical findings have 
translated to clinical trials exploring LOX/LOXL inhibitor in numerous diseases including myelofibrosis, cirrhosis, and 
breast cancer[161-164].

Another potential stromal disruption agent targets the extracellular matrix, particularly degradation of hyaluronic acid 
(HA), an important component of the ECM known to participate in carcinogenesis, tumor progression and metastasis in 
various cancers[165]. PEGPH20 is a PEGylated human hyaluronidase that showed promise both as single agent or in 
combination, in numerous preclinical studies[165-167]. Thompson et al[168] showed that repetitive PEGPH20 adminis-
tration significantly inhibited tumor growth by 70% in high-HA prostate PC3 tumors and improved both docetaxel and 
liposomal doxorubicin activity in PC3 tumors.  Additionally, using HA synthase 3-overexpressing and wild-type SKOV3 
ovarian cancer model and in the BxPC3 pancreas xenograft tumour model, Morosi et al[166] showed that PEGPH20 
enhanced the antitumor activity of paclitaxel by modifying the tumour tissue architecture. Despite the promising 
potential of PEGPH20 in preclinical studies, clinical trials of PEGPH20 in various advanced solid tumours have been 
disappointing with PEGPH20 failing to meet its primary end point of improvement in overall survival[169]. However, it 
is crucial to note that PEGPH20 has not been explored in preventing carcinogenesis such as in the context of IBD, cirrhosis 
and IPF. Considering the significance of the ECM in carcinogenesis, future studies should study the effect of ECM-
degrading agents such as PEGPH20 in carcinogenesis.

In addition to targeting the ECM, agents targeting other components of the ECM have been studied. Most notably, 
agents targeting myofibroblasts which produce pathological fibrosis and thus a pro-carcinogenic environment have 
shown promising results in previous studies. Depletion of myofibroblasts by targeting its marker, fibroblast activation 
protein-α, has been shown to inhibit tumor growth by augmenting anti-tumor immunity[170,171]. Additionally, agents 
targeting TGF-β, an important cytokine in myofibroblast activation have also been studied as TGF-β inhibition has been 
demonstrated to prevent myofibroblast activation and prevent immunosuppression and thus cancer progression[172]. 
Again while these agents are studied as anti-cancer therapies, these drugs have immense potential to be utilised as 
chemopreventive agents in disorders of chronic inflammation and fibrosis to prevent carcinogenesis.

CONCLUSION
In conclusion, the correlation between chronic inflammation, fibrosis and cancer risk is complex, with the former being 
more straightforward. Chronic inflammation in the stroma of different body tissues promotes carcinogenesis via different 
mechanisms – growth factor/cytokine-mediated cellular proliferation, apoptotic resistance and immunosuppression; and 
free-radical-induced oxidative DNA damage. However, certain immune cells, involved in tumour-surveillance may be 
depleted, as seen in IPF and hepatic cirrhosis, thereby raising cancer risk by compromising immune surveillance of 
tumours. The relationship between stromal fibrosis and cancer risk varies in different organs, implying that the effects of 
fibrosis could be tissue-specific. Increased stromal fibrosis is associated with an increased cancer risk in organs like the 
lung, liver, biliary tract and colorectal region. Conversely, in other organs such as pancreas and potentially, oesophagus, 
increased stromal fibrosis may confer a lower cancer risk.

At this current time, the mechanism by which fibrosis influences cancer risk is still ambiguous. We propose two 
hypotheses. Firstly, a fibrotic environment contributes to an aberration in ECM dynamics which affects normal cellular 
behaviour and ultimately neoplastic transformation. Secondly, we hypothesise that fibrosis may present as a safe 
alternative to cellular regeneration which has the potential to produce aberrant DNA mutations, resulting in tumour 
formation. What determines the former or the latter are a multitude of factors which could include fibroblast hetero-
geneity and plasticity; extent of fibrosis; inflammation; and the predominance of certain mediators over others. Therefore, 
future studies, especially in-vitro and animal studies, should investigate the mechanisms by which fibrosis contributes to 
carcinogenesis in various organs in further depth and determine if fibrosis, alone or only in conjunction with inflam-
mation would promote carcinogenesis. Furthermore, the role of surveillance screening and therapeutic agents with 
stroma manipulation potential in patients with diseases which involve chronic inflammation and fibrosis should be 
further studied to reduce the incidence of relevant cancers.
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