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Abstract
Insulin resistance (IR) is associated with several metabolic disorders, including 
type 2 diabetes (T2D). The development of IR in insulin target tissues involves 
genetic and acquired factors. Persons at genetic risk for T2D tend to develop IR 
several years before glucose intolerance. Several rodent models for both IR and 
T2D are being used to study the disease pathogenesis; however, these models 
cannot recapitulate all the aspects of this complex disorder as seen in each 
individual. Human pluripotent stem cells (hPSCs) can overcome the hurdles faced 
with the classical mouse models for studying IR. Human induced pluripotent 
stem cells (hiPSCs) can be generated from the somatic cells of the patients without 
the need to destroy a human embryo. Therefore, patient-specific hiPSCs can 
generate cells genetically identical to IR individuals, which can help in 
distinguishing between genetic and acquired defects in insulin sensitivity. 
Combining the technologies of genome editing and hiPSCs may provide 
important information about the genetic factors underlying the development of 
different forms of IR. Further studies are required to fill the gaps in understanding 
the pathogenesis of IR and diabetes. In this review, we summarize the factors 
involved in the development of IR in the insulin-target tissues leading to diabetes. 
Also, we highlight the use of hPSCs to understand the mechanisms underlying 
the development of IR.

Key Words: Type 2 diabetes; Insulin target tissues; Human pluripotent stem cells; Induced 
pluripotent stem cells; Genetic factors; Disease modeling
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Core Tip: The genetic factors involved in the development of insulin resistance (IR), 
associated with type 2 diabetes remains largely unknown due to the polygenic nature of 
IR and lack of the appropriate human model. In this review, we summarize and discuss 
the use of human pluripotent stem cell technology in studying the genetic defects 
underlying IR development as well as highlight the potential use of patient-derived 
pluripotent stem cell for in vitro IR modeling.
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INTRODUCTION
Insulin resistance (IR) is a hallmark of type 2 diabetes (T2D) and other related 
metabolic disorders. Several hereditary and environmental factors are known to be 
involved in the development of IR in individuals at risk for T2D. Persons at genetic 
risk for T2D tend to develop IR several years before glucose intolerance[1]. Diabetes is 
associated with several complications, such as diabetic ketoacidosis, nonketotic 
hyperosmolar coma or death, heart disease, stroke, kidney failure, foot ulcers, etc. 
Glucose metabolism is regulated by a feedback loop between islet β-cell and insulin-
target tissues. Under IR condition, the β-cells control normal glucose tolerance by 
increasing the level of insulin secretion[2]. IR in different tissues (adipose tissue, skeletal 
muscle, liver, brain, gut, pancreas, vasculature, and kidney) leads to several metabolic 
disorders, including T2D, cardiovascular diseases, hypertension, polycystic ovary 
syndrome (PCOS), fatty infiltration of the liver, non-alcoholic fatty liver disease 
(NAFLD), apnea, a sleep disorder, arthritis, skin diseases, and cancers. Previous 
studies showed alterations in the gene expression profile between individuals with a 
family history of T2D and those without a family history of the disease. Those defects 
were mainly observed in the genes related to mitochondrial function and fat 
metabolism[3]. However, it is difficult to distinguish whether the alterations in the gene 
profiles are due to genetic or environmental factors. Although several genetic and 
environmental factors are known to be involved in the development of IR, the 
molecular and cellular mechanisms underlying IR development and its progression to 
T2D remain not completely understood. This is due to the lack of appropriate human 
models to study the pathophysiology of different forms of IR.

The establishment of induced pluripotent stem cell (iPSC) technology has allowed 
the generation of pluripotent stem cells (PSCs) from somatic cells and has led to the 
establishment of in vitro models to study the genetic factors involved in the 
development of human diseases[4]. The fact that iPSCs can be produced without the 
need of a human embryo enables us to avoid ethical concerns that restricted 
researchers, for decades, to use human embryonic stem cells (hESCs) in stem cell 
research studies. iPSCs have unlimited proliferative ability and a great potential to 
differentiate into all cell types of the body[4]. Therefore, iPSCs provide a source of a 
human model to study the IR in insulin target tissues and pancreatic β-cell 
dysfunction. iPSCs can generate cells genetically identical to insulin-resistant 
individuals, which can help in distinguishing between genetic and acquired defects in 
insulin sensitivity. In the current review, we mainly focus on the IR associated with 
diabetes and the mechanism involved. Also, we discuss the use of iPSC technology to 
understand and treat these disorders and explain the challenges and limitations of 
using the human iPSC-based models.

INSULIN RESISTANCE IN THE INSULIN-TARGET TISSUES
Insulin, secreted from pancreatic β-cells, plays a critical role in a wide range of cells 
and tissues in the body through its main action in regulating the cellular energy and 
metabolic processes of the macronutrients (carbohydrate, protein, and lipid) besides its 

http://creativecommons.org/Licenses/by-nc/4.0/
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growth-promoting action through its mitogenic effect[5]. Impairment in insulin 
secretion and/or action can influence the functionality of most organs and affects the 
normal physiology of the whole body. The insulin performs its functions in insulin-
target tissues through its binding to the insulin receptor (INSR), which activates its 
downstream signaling pathways (Figure 1). Insulin has an anabolic effect as it 
promotes glycogen, lipid, and protein synthesis as well as inhibits gluconeogenesis 
and lipolysis processes[6]. It also facilitates the intracellular glucose uptake through 
translocation of the insulin-dependent glucose transporter (GLUT4) as in skeletal 
muscle and adipose tissue[7]. This metabolic action of insulin is achieved through the 
phosphatidylinositol 3 (PI3K) kinase pathway[8]. The growth-promoting action of 
insulin is achieved through INSR and insulin growth factor receptor, leading to 
activation of Ras/MAP kinase pathways and subsequently activates the transcription 
factors of cell division and proliferation[9].

IR is the condition in which the cells respond inappropriately to the circulating 
insulin. In other terms, it is the impaired sensitivity to insulin-mediated actions[10]. It is 
known that insulin controls energy production mainly through glucose oxidation and 
inhibiting other sources such as lipolysis, protein catabolism, glycogenolysis, and 
gluconeogenesis. However, under IR conditions, these processes are activated as an 
alternative source of glucose. These catabolic processes are accompanied by the 
accumulation of toxic metabolic byproducts and inflammatory factors, which have 
harmful effects on the insulin-target tissues. In skeletal muscles, the muscular 
glycogen and protein synthesis are impaired with a decrease in the glucose uptake 
leading to sarcopenia[9]. Under IR conditions, the lipolysis is enhanced leading to the 
release of triglyceride, free fatty acids (FFAs), and inflammatory cytokines (e.g., IL-6, 
TNFα, Leptin) into the circulation[11]. The metabolic toxic derivatives of FFAs and the 
inflammatory cytokines influence the functionality of most of the tissues either directly 
through its lipo-toxic and lipo-apoptotic effects or indirectly through an impairment in 
the insulin signaling pathway[12,13]. The liver responds to IR and the demand of other 
cells to glucose by stimulation of the glycogenolysis process to produce more 
glucose[14]. Under IR conditions, the released FFAs from fat are transported to the liver 
and cause NAFLD (steatohepatitis), which is subsequently followed by liver 
cirrhosis[15]. This impairment in liver function leads to a decrease in insulin clearance 
with hyperinsulinemia. Furthermore, IR induces impaired mitochondrial oxidative 
metabolism and endocrine disorders like PCOS, adrenal disorders, and thyroid 
function abnormalities[16]. It has been reported that the insulin-sensitive brain regions 
include the hypothalamus, prefrontal cortex, hippocampus, and fusiform gyrus. 
Therefore, the IR in the brain leads to mild cognitive impairment and dementia, and 
Alzheimer's disease[17]. IR in the gut leads to alteration in microbiota resulting in 
dysregulation in the short-chain fatty acid production and gut hormone 
production[12,18]. The clinical disorders associated with IR include T2DM, 
cardiovascular diseases, hypertension, PCOS, fatty infiltration of the liver NAFLD, 
apnea, a sleep disorder, arthritis, skin diseases, and cancers.

β-CELL DYSFUNCTION ASSOCIATED WITH INSULIN RESISTANCE
Impairment in glucose homeostasis regulated by the feedback loop between the 
insulin target tissues and pancreatic β-cells leads to T2D, which is associated with an 
abnormal increase in blood glucose levels (Figure 2). IR and pancreatic β-cell 
dysfunction are the major characteristic features of T2D pathological conditions. In 
T2D, β-cell dysfunction occurs as a result of IR in the insulin-target tissues[19]. 
However, the interplay between IR and pancreatic β-cell dysfunction is still complex 
(Figure 2). Many metabolic insults, such as obesity, saturated FFA overconsumption, 
inflammatory cytokines, and oxidative stress and endoplasmic reticulum (ER) stress 
reduce the functionality of β-cells and dysregulate the normal physiological state of β-
cells, leading to their demise[20]. Loss of insulin sensitivity or IR results in 
hyperglycemia, hyperinsulinemia as well as activation of the catabolic processes, 
which increase the level of FFAs and lipotoxic cytokines. All of these elevated elements 
caused by IR are responsible factors for β-cell stress and dysfunction[21]. In the early 
stages of IR, β-cells try to compensate and control glucose homeostasis through the 
production of more insulin[22]. However, with chronic prolonged exposure to 
hyperglycemia, β-cells secrete large quantities of insulin, leading to ER stress and 
exhaustion of β-cells with depletion of insulin store[23]. Moreover, hyperglycemia for a 
long time leads to a decrease in the activity of insulin promoter through the reduction 
in the binding of PDX1 and MAFA with a subsequent decrease in insulin gene 
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Figure 1 Schematic illustration of insulin signaling pathways. Insulin binding activates the insulin receptor (INSR), which enables the recruitment of 
insulin receptor substrate isoforms and subsequent activation of the phosphatidylinositol 3-kinase (PI3K). The downstream event of PI3K enhances glucose uptake by 
translocation of glucose transporter proteins over cell membrane, enhances glycogen, lipid and protein synthesis and regulates lipolysis and gluconeogenesis. 
Alternative pathway for glucose transporter type 4 (GLUT-4) translocation by insulin stimulation. Insulin binding activates the INSR, which enables F binding to Cbl 
associated protein phosphorylates Cbl and recruit CrkII/C3G complex. This complex converts guanosine diphosphate into guanosine triphosphate (GTP) on TC10. 
The stimulated GTP containing TC10 involved in GLUT-4 translocation by actin remodeling on GLUT-4. INSR: Insulin receptor; IRS: Insulin receptor substrate; PI3K: 
Phosphatidylinositol 3-kinase; PIP2: Phosphatidylinositol 4,5 bisphosphate; PIP3: Phosphatidylinositol 3,4,5 trisphosphate; PDK1: Phosphatidylinositide dependent 
protein kinase 1; aPKC: Atypical protein kinase C; GSK3: Glycogen synthase kinase 3; FoxO: Forkhead box O; mTORC: mTOR complex; AS160: Akt substrate 
160kDa; F: Flotillin; CAP: Cbl associated protein; C3G: Guanine nucleotide exchange factor; GTP: Guanosine triphosphate; GDP: Guanosine diphosphate; GLUT-4: 
Glucose transporter type 4.

expression and its secretion[24]. Hyperglycemia also can induce oxidative stress, 
inflammation, pro-apoptotic, and apoptotic genes’ expression in β-cells[25]. Elevated 
plasma level of FFAs and glucose as a result of IR lead to glucolipotoxicity leading to 
β-cell failure[26]. These saturated FFAs induce both ER and oxidative stress in human β-
cells and islets through the overproduction of NOS2 and NO in β-cell 
mitochondria[23,27] or through compromising the ER morphology and integrity[27]. In the 
presence of hyperglycemia, FFAs influence the biosynthesis and expression of the 
insulin gene, leading to suppression of adequate insulin secretion in response to 
glucose[28]. Increased FFAs lead to intrapancreatic and intra β-cell accumulation of 
triglyceride and fat droplets, triggering β-cell dysfunction and death due to an increase 
in the inflammation process[24,29]. Inflammation and the proinflammatory cytokines are 
recognized as an important contributor to β-cell dysfunction[30]. IR-associated 
inflammatory cytokines, such as IL6, TNFα, IFNγ, NF-κB, and others cause the 
dysfunctionality and death of β-cells via damage in the mitochondria, cellular proteins, 
lipids, nucleic acids, and ER stress[31]. The inflammatory cytokines and the recruited 
immune cells in the inflamed dysregulated pancreatic islet trigger β-cell 
dysfunction[32]. Proinflammatory cytokines mediate reactive oxygen species and 
reactive nitrogen species production and reduce ATP production and eventually lead 
to β-cell dysfunction[33]. The β-cell dysfunction and inadequate β-cell mass expansion 
can be due to the defect in the insulin signaling pathway in the pancreatic β-cells. 
Improper glucose sensing has been noticed in mouse β-cells, which lack the INSR or 
IGF1R. Additionally, loss of INSR leads to the β-cell mass reduction and early onset 
diabetes[34,35]. Another study showed similar diabetic phenotypes in mice with PDK1 
deficiency in β-cells[36]. The impairment of cell cycle progression is hypothesized to be 
engaged in the β-cell mass reduction and dysfunction. It has been found that the cell 
cycle inhibitor, p27Kip1, is accumulated in the nucleus of the β-cells of hyperglycemic 
IRS2-deficient mice and the deletion of the p27Kip1 gene ameliorates β-cell 
proliferation and the hyperglycemia, reflecting the role of cell cycle inhibition in the β-
cell function[22].
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Figure 2 Pathological effect and consequence of insulin resistance. Genetic alterations and mutations in the insulin signaling pathway can lead to 
insulin resistance (IR) in the insulin-target tissues. The red stars indicate the reported genetically defective molecules, such as insulin receptor, insulin receptor 
substrates, p85, AKT and TBC1D4. In response to IR, the insulin target tissues (adipose tissue, skeletal muscle, liver, pancreas, brain and blood vessels) show 
activation of the catabolic processes and accumulation of toxic metabolic byproducts and the inflammatory cytokines, leading to pancreatic β-cell dysfunction and 
other metabolic disorders. INSR: Insulin receptor; IRS: Insulin receptor substrate; PDK1: Phosphatidylinositide dependent protein kinase 1; GSK3: Glycogen synthase 
kinase 3; FoxO: Forkhead box O; mTORC: mTOR complex; GTP: Guanosine triphosphate; FFAs: Free fatty acids.

STUDYING THE MECHANISMS UNDERLYING THE DEVELOPMENT OF 
INSULIN RESISTANCE 
The IR arises as a result of the inability of the insulin-target tissues to use insulin 
appropriately, which is caused by many factors. The causes of IR involve genetic and 
environmental factors. The environmental factors can influence the insulin signaling 
pathway such as unhealthy diets, obesity, lack of physical activity, pharmacological 
agents, stress, cytokines, and hormones. These environmental factors combined with 
genetic factors can lead to the development of IR and diabetes[37]. Genetic 
predisposition causing IR may have a direct effect on the insulin signaling pathway or 
indirectly affecting other targets with a subsequent secondary effect on the insulin 
pathway[38]. The disruption and/or mutations in the genes encoding proteins involved 
in insulin signal transduction impair insulin action and reduce the rate of glucose 
uptake leading to IR[38]. Previous studies used multiple approaches to investigate the 
molecular mechanisms underlying the development of different forms of IR. These 
approaches include animal models, human insulin target tissues’ explants, the human 
population genetic studies, and stem cells.

Animal models of insulin resistance and their limitations
Most of the animal models used to study IR are derived by inducing stress, diet, 
injuries, chemicals, and by different combinations mimicking IR conditions[39]. 
Meanwhile, there are few genetically modified IR animal models such as IRS knockout 
mouse (IRS-/-) model Akt2 knockout (Akt2-/-) mouse model, Glut4+/- null mutant mouse, 
and Glut2-/- mice[39,40]. Lipodystrophy has shown a strong association with severe IR; 
therefore, transgenic animals with defects in the genes regulating fatty acid 
metabolism are used to study IR mechanisms, such as sterol regulatory-element 
binding protein 1, A-ZIP/F-1, and toll-like receptor 4[39]. There are several animal 
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models exhibiting the features of the IR and diabetes due to mutations in specific 
genes either spontaneously or through selective breeding such as Leptin ob/ob and 
leptin db/db mouse strains, Zucker fatty (fa/fa) rat, New Zealand mice strain, OLETF 
rat, KK/Ay mouse and other models of the spontaneously developed IR strains[39]. 
Although the above-mentioned animal models provided a lot of information about the 
mechanisms of IR, they could not resolve all the questions related to the development 
of IR in human tissues and the relationship between IR and β-cell dysfunction.

Studying insulin resistance in human insulin-target tissues
The molecular and genetic basis for the development of IR in the insulin-target tissues 
such as skeletal muscle, adipose tissue, and liver are not fully understood. Previous 
studies used muscle biopsies showed that the mitochondrial DNA, mitochondrial 
genes, and respiratory chain subunit proteins are downregulated in IR subjects 
compared to healthy controls[41]. Another study showed that cultured myoblasts 
isolated from skeletal muscle of T2D patients have defects in glucose transport and 
insulin signaling[42]. In the skeletal muscle of the IR offspring of T2D parents, it has 
been found that the mitochondrial ATP production, mitochondrial density, and AKT 
activation are significantly reduced, while the IRS-1 phosphorylation (serine) is 
significantly increased[41,43]. The activation of PI3K pathway is required for the 
transport of glucose and synthesis of glycogen, which is impaired after insulin 
stimulation in insulin-resistant skeletal muscle[44]. The upregulation of IRS-1 
phosphorylation on serine residues has been found to suppress insulin signaling in 
T2D[43]. Taken together, these findings indicate that the defects in insulin signaling, 
glucose transport, glycogen synthesis, and mitochondrial activity are the main 
dysfunctional features associated with the IR in the skeletal muscle.

Adipose tissue is considered the main regulator of insulin action in the body; 
therefore, defects in insulin signaling in adipocytes cause systemic IR, indicating that 
impairments in adipose insulin signaling are a common hallmark of IR[45]. Glucose 
transporter, GLUT4, is significantly downregulated in subcutaneous adipose cells 
from T2D patients and in healthy individuals with a genetic susceptibility for T2D[46]. 
This reduction in GLUT4 expression is associated with changes in the secretion of 
adipokines. Also, activation of peroxisome proliferator activated receptors (PPARs), 
which are responsible for adipogenesis regulation as well as lipid metabolism in 
adipocytes, leads to an improvement in insulin sensitivity through the induction of the 
expression of several genes that are related to the insulin signaling pathway. In 
addition to its role in adipogenesis, PPAR is also involved in regulating lipid 
metabolism in mature adipocytes by increasing fatty acid trapping[47]. The importance 
of insulin signaling in the development of adipocyte IR has been reported in T2D, 
where previous studies reported that the substrate of IRS-1 is involved in IR in 
adipocytes by inhibiting insulin-signaling[48]. Also, in T2D patients, several IRS-1 
mutations have been found[49] and a reduced IRS-1 protein level has been observed in 
adipocytes from other T2D patients[50], relatives of T2D patients, and obese 
individuals[51]. In addition to insulin signaling defects, dysregulation of adipokines and 
the lipolysis process are linked to IR and T2D. The adiponectin gene is considered a 
candidate susceptibility gene for T2D as it has been detected on chromosome 3q27, 
which is linked to T2D and metabolic disorders[52,53].

The insulin signaling in the hepatic cells is crucial for maintaining normal liver 
function and regulating glucose homeostasis[54]. The liver activates glucose uptake and 
glycogen storage, but it inhibits glycogenolysis and gluconeogenesis. Hepatic IR 
progression plays a critical role in the pathogenesis of T2D. Loss of INSR signaling in 
hepatic tissue leads to an increase in gluconeogenesis and a decrease in 
lipogenesis[54,55]. The IRS-1/2 is involved in the suppression of gluconeogenesis and 
stimulation of lipogenesis. In the liver, insulin inhibits IRS-2 expression at the 
transcriptional level and doesn’t influence IRS-1 expression[55,56]. Hepatic IR is 
characterized by the inability of insulin to inhibit the production of glucose in the 
liver[57]. This impairment in liver function leads to a decrease in insulin clearance with 
hyperinsulinemia. The released FFAs from fat tissues due to IR transports to the liver 
cause NAFLD (steatohepatitis), which is followed by liver cirrhosis[15]. Liver-derived 
proteins termed hepatokines are released into the circulation, which cause defective 
insulin signaling[58].
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USING INDUCED PLURIPOTENT STEM CELLS (iPSCs) TO STUDY 
INSULIN RESISTANCE 
Although animal models provided knowledge on the pathogenesis of certain forms of 
IR and diabetes, they cannot reflect all pathophysiological features of human diseases 
due to the physiological differences between humans and animals. It has been 
reported that the genetic makeup of the mouse model is involved in the alterations of 
the phenotypical outcome, even when the same mutation is created in mice with 
different genetic makeup. Several attempts have been made to overcome these 
challenges by the generation of humanized mouse models[59] or by using non-human 
primates[60]. Several population-based studies have been reported, in which the 
biopsies are isolated from both insulin-resistant and insulin-sensitive individuals to 
determine the mechanisms underlying IR[61]. The primary endothelial cell-based 
methodologies have been used to study the vascular inflammation in diabetes and 
atherosclerosis[30]. However, it also has certain limitations such as lack of donor 
availability and limited lifespan of primary cells. Furthermore, it is difficult to access 
human tissues, such as hepatocytes and skeletal muscles, particularly at the preclinical 
stages of the disease. In addition, it is difficult to distinguish between genetic and 
environmental factors.

In order to overcome the above-mentioned limitations, establishing a human cell 
model offers a great opportunity to understand the pathophysiology of human 
diseases. The hiPSC technology can provide human cell models to study the 
pathophysiology of IR. Generating patient-specific iPSCs from IR individuals with 
specific mutations or a family history of IR and diabetes can be used to study the 
genetic factors involved in the development of the disease, because the iPSCs maintain 
all the genetic information of the patients. Those patient-specific-iPSCs can generate all 
insulin target cells, such as skeletal myotubes, adipocytes, and hepatocytes as well as 
other cell types. The generated cell types carry the same genetic signature of the 
patients allowing further studies to identify the genetic defects involved in the disease 
progression (Figure 3).

iPSCs have been successfully generated from patients with different forms of 
diabetes including monogenic forms of diabetes, mitochondrial diabetes[62,63] T2D 
patients[64] as well as T1D patients[65]. The monogenic forms of IR can be modeled using 
the iPSC technology (Table 1). The IR is associated with several monogenic disorders 
such as Donohue and Rabson Mendenhall syndromes (INSR mutation), SHORT 
syndrome (PI3K mutation), Alstrom syndrome (ALMS1 mutation), Werner syndrome 
and Bloom syndrome (defects in DNA helicase), congenital generalized lipodystrophy 
(CGL) (AGPAT2 or BSCl2 mutations), and familial partial lipodystrophies (FPLD) 
(LMNA and PPARG mutations)[38]. In addition, several mutations associated with 
severe IR have been reported in AKT2, AS160 (TBC1D4), PPARG, PPP1R3A, and 
POLD1 encoding DNA polymerase delta[38]. Recent studies showed the generation of 
iPSCs from patients with IR; however, all of those studies focused on a very specific 
form of IR, which is due to specific mutations in INSR[66-69] (Table 1). Two of those 
studies generated iPSCs from patients with INSR mutations (INSR-Mut) (Donohue 
syndrome) focused on the effect of INSR-Mut on pluripotency and mitochondrial 
function in undifferentiated INSR-Mut hiPSCs[68,69]. It has been shown that INSR-Mut 
iPSCs are defective in their self-renewal ability because insulin and its downstream 
signaling are involved in regulating the unique properties of self-renewal and 
pluripotency in the undifferentiated iPSCs[70]. The PI3K has been shown to be crucial 
for the self-renewal of pluripotent stem cells[70]. Also, the INSR-Mut-iPSCs have 
mitochondrial dysfunctions, including alterations in the number and the size of 
mitochondria, and were associated with an upregulation in the expression of 
mitochondrial fission factor and inverted formin 2[68]. These two genes are known to 
enhance the mitochondrial fission as indicated in the INSR-Mut-hiPSCs[68]. 
Interestingly, increased mitochondrial fission has previously been detected in adult 
tissues, such as pancreatic β-cells and skeletal muscles of T2D patients[71]. Furthermore, 
it has been reported that mitochondrial DNA variation could be associated with 
genetic alteration, a known risk factor for T2D[72]. Also, the expression of glycolytic 
enzymes is downregulated, while lactate production is increased. These events lead to 
enhancement of ADP/ATP ratio and 5' AMP-activated protein kinase activity as well 
as leading to inefficient ATP and decrease in energy production with an increase in the 
oxidative stress[67]. All the derived INSR-Mut hiPSCs showed reduced proliferation 
and defective INSR phosphorylation and defects in its downstream signaling pathway 
such as AKT, GSK3, ERK1, and ERK2[69]. Differentiation of INSR-Mut hiPSCs towards 
skeletal myotubes exhibits defects in insulin signaling, glucose uptake, glycogen 
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Table 1 Human induced pluripotent stem cells models used to study insulin resistance

Ref. Disease/ syndrome iPSC models Main findings

Iovino 
et al[69]

Three different INSR mutations (patient-derived iPSCs): 
(1) Compound heterozygous A897X, exon 14; (2) 
Homozygous A2G, exon 1; (3) Homozygous L233P, exon 
3

iPSCs generated from patients with severe IR 
showed defects in the self-renewal of the patient-
derived iPSCs

Balhara 
et al[67]

Patient-derived iPSCs with a compound heterozygous 
mutation in exon 14 of INSR (A897X)

Mesenchymal progenitor cells (MPCs) generated 
from patient-derived iPSCs showed defects in the 
insulin signaling pathway and the cellular oxidative 
metabolism

Burkart 
et al[68]

INSR-Mut hiPSCs have an impairment in the 
energy homeostasis as well as dysregulation of 
oxidative metabolism

Iovino 
et al[66]

DS with severe insulin 
resistance

Four different INSR mutations (patient-derived iPSCs): 
(1) Compound heterozygous A897X, exon 14; (2) 
Homozygous (A2G), exon 1; (3) Homozygous (L233P), 
exon 3; (4) Homozygous (E124X), exon2

Skeletal myotubes derived from INSR-Mut hiPSCs 
exhibit defects in insulin signaling, glucose uptake, 
and glycogen accumulation and altered insulin 
signaling gene expression

Mori et al[74] Congenital generalized 
lipodystrophy(CGL)

Two different BSCL2 mutations (patient-derived iPSCs): 
(1) Homozygous (E189X), exon 5; (2) Homozygous 
(R275X), exon 8

The adipose tissue derived from BSCL2-Mut hiPSCs 
exhibit notably a decrease in the lipid droplet 
formation as well as diffuse cytoplasmic 
distribution of ADRP

Friesen 
et al[75]

Familial partial 
lipodystrophy type 2 
(FPLD2)

Heterozygous mutation in exon 1 of LMNA gene (R28W) 
(patient-derived iPSCs)

FPLD2-iPSCs recapitulate insulin resistance 
phenotypes and have lower capability for 
adipogenic differentiation with functional 
deficiency

Jozefczuk 
et al[78]

Insulin resistant patients 
with liver steatosis

Patient-derived iPSCs iPSCs derived from IR patients recapitulate insulin 
resistance and showed a decrease in AKT/mTOR 
signaling pathway and perturbed various cellular 
networks

Ali et al[79] Patients with psoriasis 
and insulin resistance

Patient-derived iPSCs iPSCs-derived keratinocytes showed genetic 
alterations in the transcripts associated with IR, 
including IRS2 and GDF15 and glucose 
transporters, GLUT10 and GLUT14

Carcamo-
Orive 
et al[82]

Insulin resistant patients Patient-derived iPSCs iPSCs derived from IR and IS individuals 
uncovered several IR relevant networks and 
identified a set of IR related driver genes

iPSCs: Induced pluripotent stem cells; DS: Donohue syndrome; INSR: Insulin receptor; IR: Insulin resistance; MPCs: Mesenchymal progenitor cells; CGL: 
Congenital generalized lipodystrophy; ADRP: Adipose differentiated related protein.

accumulation, and altered insulin signaling gene expression[66], indicating the genetic 
defects in the skeletal myotubes. Another iPSC model for IR, in which iPSCs have been 
generated from the fibroblasts of an insulin-resistant patient with CGL, an autosomal 
recessive disease due to BSCL2 mutation[73]. These patient-specific iPSCs have been 
used as an in vitro model to study the physiopathology of lipid accumulation and 
lipodystrophy and its relation to IR. Adipocytes derived from these BSCL2-Mut iPSCs 
showed reduced lipid droplet formation and dispersed cytoplasmic distribution of 
adipose differentiation-related protein[74]. Another study generated iPSCs from a 
patient with familial FPLD2 due to mutation in the LMNA gene[75]. These FPLD2-iPSCs 
recapitulated the insulin resistance phenotype of the patient with low efficiency of in 
vitro adipogenic differentiation and less functionality[75]. Recent studies showed the 
ability to generate adipocytes from hESCs and hiPSCs[76,77]. It has been reported that 
hiPSC-derived adipocytes, transplanted into mice, are able to sustain their functional 
characteristics for several weeks[77], suggesting that these cells can also be used 
therapeutically to improve metabolic disorders in patients. Therefore, differentiation 
of patient-specific hiPSCs into white adipocytes can offer a large number of functional 
adipocytes for transplantation as a possible way to treat adipocytes-associated 
disorders as well as studying IR. Since the liver is an important insulin target tissue, 
the iPSCs have been used to understand the etiology of steatosis due to the NAFLD, 
which is accompanied by IR and hyperlipidemia[78]. The iPSCs generated from patients 
with liver steatosis showed a decrease in the AKT/mTOR signaling pathway and the 
IR phenotypes are observed in both liver and skin fibroblasts of the patients. 
Additionally, it has been shown that the transcription factor, sterol regulatory element-
binding transcription factor 1, and its downstream targets, LIPIN1 (LPIN) and low-
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Figure 3 Using human induced pluripotent stem cells to study insulin resistance. A schematic diagram showed the possibility of using human 
induced pluripotent stem cells (hiPSCs) to study insulin resistance (IR) with special focus on the genetic factors. Somatic cells are reprogrammed into pluripotency to 
generate induced pluripotent stem cells (iPSCs) carrying the genetic signatures of insulin sensitive and IR individuals. The generated iPSCs can be differentiated in 
vitro into the main insulin-target cells, including hepatocyte, adipocyte, and skeletal myotubes as well as insulin producing β-cells. Genome editing tools can be used 
to correct specific mutations in the generated iPSCs to establish the isogenic iPSC control. Studying those cells can help in understanding the signaling pathways 
involved in the development of IR and type 2 diabetes. Also, these hiPSC-based models can be used for drug screening. iPSCs: Induced pluripotent stem cells.

density lipoprotein receptor, are involved in glycerolipid and fatty acid biosynthesis[78].
iPSCs have been also utilized to understand the polygenic form of IR. In our recent 

study, we used iPSC technology to understand the pathogenesis of psoriasis, skin 
disease, and its link to IR[79]. The results showed that keratinocytes derived from 
patient-specific iPSCs with psoriasis have genetic alterations in the transcripts 
associated with IR, including IRS2 and GDF15 and glucose transporters, GLUT10 and 
GLUT14[79]. These findings indicate that patient-specific iPSCs can provide important 
information on the genetic predisposition of IR.

Further studies are required to fill the gaps in understanding the pathogenesis of IR 
and diabetes. There are several genetic factors involved in the development of IR; 
therefore, patient-specific iPSCs can be used to study the most common form of IR 
leading to T2D. Also, hiPSCs/hESCs can be genetically edited using genome editing 
tools, such as CRISPR/Cas9[80]. The recent genome-wide association studies (GWAS) 
studies have discovered several genetic defects associated with IR and diabetes 
development. Those defective genes can be introduced into hiPSCs/hESCs using a 
genome-editing tool followed by their differentiation into insulin-target cells, such as 
skeletal muscles, adipocytes, and hepatocytes. The combination of these technologies 
may provide more details about the inherited factors underlying the development of 
different forms of IR with a particular focus on the common form of IR. The generation 
of isogenic hiPSCs represents a proper human cell model to study the molecular 
mechanism of the newly identified candidate genes and variants through GWAS[81]. A 
recent study showed the generation of a large number of iPSC lines from individuals 
with and without IR[82]. Comparing the transcriptome profiles between iPSCs derived 
from 52 IR and 48 insulin sensitive individuals showed 1388 differentially expressed 
genes between both groups[82]. Nine of those genes (BNIP3, CARS, IDH1, NDUFB1, 
HMGCR, HPN, FDPS, SLC27A1, and TMEM54) have been shown to be associated with 
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IR and T2D[82]. These hiPSC lines are very useful to investigate the underlying 
mechanisms of IR and its associated metabolic disorders.

LIMITATIONS OF IPSCS AS AN IN VITRO MODEL TO STUDY INSULIN 
RESISTANCE
There are some challenges of using iPSC-based models. For example, robust protocols 
are needed for the differentiation of iPSCs into the desired cell types for studying 
metabolic diseases. Currently, the protocols are available for differentiation of hPSCs 
into the main insulin-target cells (adipocytes, skeletal muscles, and hepatocytes)[76,83-85] 
as well as pancreatic beta cells. However, most of those protocols lead to a 
combination of diverse cell types. The variability in the biological properties of iPSCs 
derived from different individuals shows the difference in the differentiation nature 
towards a given lineage. This reasonably affects the consistency of interpretation of the 
phenotypes[86]. The results obtained from populations of different genetic backgrounds 
may show differences. For instance, a report emphasized that population-based gene 
sequencing showed significant variations in the human genome[87]. Hence, generating 
iPSCs from patients with genetic defects, differentiating them to specific cell types, 
may hold a noteworthy risk[88]. Generation of an iPSC model for IR is a comparatively 
difficult process, because the development of metabolic diseases typically develops 
overtime and may show weak phenotypic changes under in vitro conditions[88]. 
Genome editing in iPSCs can be used to study candidate genes involved in IR and 
diabetes[87]. Also, the generation of isogenic cell lines from iPSCs could be an important 
strategy to overcome the problem of differences in the genetic background between 
different iPSC lines. The isogenic cell lines possess similar genetic milieu, epigenetic 
nature, and differentiation properties. This strategy may provide more consistent 
output and interpretation for complex diseases. The genome editing tools can make 
this strategy possible by engineering the genome of iPSCs. There are several reports 
highlight the use of genome editing tools for the generation of iPSC-based disease 
models[88,89].

CONCLUSION
Metabolic diseases like diabetes lead to several life-threatening complications. To 
develop treatments for those metabolic disorders, it is important to understand the 
factors involved in the development of the disease. IR is associated with several 
metabolic disorders; however, the genetic factors contributing to IR development are 
largely unknown. The human iPSC technology can provide cells genetically identical 
to patients with IR and diabetes. Those patient-specific iPSCs can be differentiated into 
all cell types involved in the IR, such as skeletal muscle, adipocytes, and hepatocytes 
as well as other cell types. The IR developed due to a mutation or a defect in one gene 
(monogenic) can be studied using iPSCs. However, the common form of IR, which is 
associated with genetic defects in several genes is more difficult to be studied using 
the iPSC technology. The recent advances in genome editing tools allow us to 
introduce or correct mutations in patient-specific iPSCs and hESCs as well as to 
generate knockout hiPSC models. Moreover, recent GWAS studies have identified 
several new genes involved in the development of IR and diabetes. Therefore, 
combining hiPSC technology, genome editing tools, and GWAS studies can help in 
understanding the genetic defects associated with IR. However, the common form of 
IR is not caused by a single gene defect, but a group of genes is involved in IR 
progression. Furthermore, establishing efficient differentiation protocols for the 
insulin-target cells is important to study the genetic defects. Currently, most of the 
differentiation protocols for those cells are well-established; however, the 
heterogeneity of the generated cells still need to be resolved. One of the solutions is to 
purify the target cells using surface markers or other methods. In conclusion, although 
there is progress in the use of hiPSC technology to study IR, a lot of work still needs to 
be done.
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