
World Journal of
Gastrointestinal Oncology

ISSN 1948-5204 (online)

World J Gastrointest Oncol  2024 April 15; 16(4): 1091-1675

Published by Baishideng Publishing Group Inc



WJGO https://www.wjgnet.com I April 15, 2024 Volume 16 Issue 4

World Journal of 

Gastrointestinal 
OncologyW J G O

Contents Monthly Volume 16 Number 4 April 15, 2024

EDITORIAL

Parallel pathways: A chronicle of evolution in rectal and breast cancer surgery1091

Pesce A, Fabbri N, Iovino D, Feo CV

Hepatitis B virus genotypes in precision medicine of hepatitis B-related hepatocellular carcinoma: Where 
we are now

1097

Sukowati CHC, Jayanti S, Turyadi T, Muljono DH, Tiribelli C

REVIEW

Novel milestones for early esophageal carcinoma: From bench to bed1104

Qi JH, Huang SL, Jin SZ

Colorectal cancer screening: A review of current knowledge and progress in research1119

Lopes SR, Martins C, Santos IC, Teixeira M, Gamito É, Alves AL

New avenues for the treatment of immunotherapy-resistant pancreatic cancer1134

Silva LGO, Lemos FFB, Luz MS, Rocha Pinheiro SL, Calmon MDS, Correa Santos GL, Rocha GR, de Melo FF

MINIREVIEWS

Present situation of minimally invasive surgical treatment for early gastric cancer1154

Li CY, Wang YF, Luo LK, Yang XJ

Mixed neuroendocrine non-neuroendocrine neoplasms in gastroenteropancreatic tract1166

Díaz-López S, Jiménez-Castro J, Robles-Barraza CE, Ayala-de Miguel C, Chaves-Conde M

Esophageal cancer screening, early detection and treatment: Current insights and future directions1180

Qu HT, Li Q, Hao L, Ni YJ, Luan WY, Yang Z, Chen XD, Zhang TT, Miao YD, Zhang F

ORIGINAL ARTICLE

Retrospective Cohort Study

Pre-operative enhanced magnetic resonance imaging combined with clinical features predict early 
recurrence of hepatocellular carcinoma after radical resection

1192

Chen JP, Yang RH, Zhang TH, Liao LA, Guan YT, Dai HY

Clinical analysis of multiple primary gastrointestinal malignant tumors: A 10-year case review of a single-
center

1204

Zhu CL, Peng LZ



WJGO https://www.wjgnet.com II April 15, 2024 Volume 16 Issue 4

World Journal of Gastrointestinal Oncology
Contents

Monthly Volume 16 Number 4 April 15, 2024

Retrospective Study

Predictive model for non-malignant portal vein thrombosis associated with cirrhosis based on inflam-
matory biomarkers

1213

Nie GL, Yan J, Li Y, Zhang HL, Xie DN, Zhu XW, Li X

Predictive modeling for postoperative delirium in elderly patients with abdominal malignancies using 
synthetic minority oversampling technique

1227

Hu WJ, Bai G, Wang Y, Hong DM, Jiang JH, Li JX, Hua Y, Wang XY, Chen Y

Efficacy and predictive factors of transarterial chemoembolization combined with lenvatinib plus 
programmed cell death protein-1 inhibition for unresectable hepatocellular carcinoma

1236

Ma KP, Fu JX, Duan F, Wang MQ

Should we perform sigmoidoscopy for colorectal cancer screening in people under 45 years?1248

Leong W, Guo JQ, Ning C, Luo FF, Jiao R, Yang DY

Computed tomography-based radiomics diagnostic approach for differential diagnosis between early- and 
late-stage pancreatic ductal adenocarcinoma

1256

Ren S, Qian LC, Cao YY, Daniels MJ, Song LN, Tian Y, Wang ZQ

Prognostic analysis of related factors of adverse reactions to immunotherapy in advanced gastric cancer 
and establishment of a nomogram model

1268

He XX, Du B, Wu T, Shen H

Clinical Trials Study

Safety and efficacy of a programmed cell death 1 inhibitor combined with oxaliplatin plus S-1 in patients 
with Borrmann large type III and IV gastric cancers

1281

Bao ZH, Hu C, Zhang YQ, Yu PC, Wang Y, Xu ZY, Fu HY, Cheng XD

Observational Study

Computed tomography radiogenomics: A potential tool for prediction of molecular subtypes in gastric 
stromal tumor

1296

Yin XN, Wang ZH, Zou L, Yang CW, Shen CY, Liu BK, Yin Y, Liu XJ, Zhang B

Application of texture signatures based on multiparameter-magnetic resonance imaging for predicting 
microvascular invasion in hepatocellular carcinoma: Retrospective study

1309

Nong HY, Cen YY, Qin M, Qin WQ, Xie YX, Li L, Liu MR, Ding K

Causal roles of gut microbiota in cholangiocarcinoma etiology suggested by genetic study1319

Chen ZT, Ding CC, Chen KL, Gu YJ, Lu CC, Li QY

Is recovery enhancement after gastric cancer surgery really a safe approach for elderly patients?1334

Li ZW, Luo XJ, Liu F, Liu XR, Shu XP, Tong Y, Lv Q, Liu XY, Zhang W, Peng D

Establishment of a cholangiocarcinoma risk evaluation model based on mucin expression levels1344

Yang CY, Guo LM, Li Y, Wang GX, Tang XW, Zhang QL, Zhang LF, Luo JY



WJGO https://www.wjgnet.com III April 15, 2024 Volume 16 Issue 4

World Journal of Gastrointestinal Oncology
Contents

Monthly Volume 16 Number 4 April 15, 2024

Effectiveness of fecal DNA syndecan-2 methylation testing for detection of colorectal cancer in a high-risk 
Chinese population

1361

Luo WF, Jiao YT, Lin XL, Zhao Y, Wang SB, Shen J, Deng J, Ye YF, Han ZP, Xie FM, He JH, Wan Y

Clinical and Translational Research

Clinical and socioeconomic determinants of survival in biliary tract adenocarcinomas1374

Sahyoun L, Chen K, Tsay C, Chen G, Protiva P

Risk factors, prognostic factors, and nomograms for distant metastasis in patients with diagnosed 
duodenal cancer: A population-based study

1384

Shang JR, Xu CY, Zhai XX, Xu Z, Qian J

NOX4 promotes tumor progression through the MAPK-MEK1/2-ERK1/2 axis in colorectal cancer1421

Xu YJ, Huo YC, Zhao QT, Liu JY, Tian YJ, Yang LL, Zhang Y

Basic Study

Curcumin inhibits the growth and invasion of gastric cancer by regulating long noncoding RNA 
AC022424.2

1437

Wang BS, Zhang CL, Cui X, Li Q, Yang L, He ZY, Yang Z, Zeng MM, Cao N

MicroRNA-298 determines the radio-resistance of colorectal cancer cells by directly targeting human dual-
specificity tyrosine(Y)-regulated kinase 1A

1453

Shen MZ, Zhang Y, Wu F, Shen MZ, Liang JL, Zhang XL, Liu XJ, Li XS, Wang RS

Human β-defensin-1 affects the mammalian target of rapamycin pathway and autophagy in colon cancer 
cells through long non-coding RNA TCONS_00014506

1465

Zhao YX, Cui Y, Li XH, Yang WH, An SX, Cui JX, Zhang MY, Lu JK, Zhang X, Wang XM, Bao LL, Zhao PW

FAM53B promotes pancreatic ductal adenocarcinoma metastasis by regulating macrophage M2 
polarization

1479

Pei XZ, Cai M, Jiang DW, Chen SH, Wang QQ, Lu HM, Lu YF

Transcriptome sequencing reveals novel biomarkers and immune cell infiltration in esophageal tumori-
genesis

1500

Sun JR, Chen DM, Huang R, Wang RT, Jia LQ

Construction of CDKN2A-related competitive endogenous RNA network and identification of GAS5 as a 
prognostic indicator for hepatocellular carcinoma

1514

Pan Y, Zhang YR, Wang LY, Wu LN, Ma YQ, Fang Z, Li SB

Two missense STK11 gene variations impaired LKB1/adenosine monophosphate-activated protein kinase 
signaling in Peutz-Jeghers syndrome

1532

Liu J, Zeng SC, Wang A, Cheng HY, Zhang QJ, Lu GX

Long noncoding RNAs HAND2-AS1 ultrasound microbubbles suppress hepatocellular carcinoma 
progression by regulating the miR-873-5p/tissue inhibitor of matrix metalloproteinase-2 axis

1547

Zou Q, Wang HW, Di XL, Li Y, Gao H



WJGO https://www.wjgnet.com IX April 15, 2024 Volume 16 Issue 4

World Journal of Gastrointestinal Oncology
Contents

Monthly Volume 16 Number 4 April 15, 2024

Upregulated lncRNA PRNT promotes progression and oxaliplatin resistance of colorectal cancer cells by 
regulating HIPK2 transcription

1564

Li SN, Yang S, Wang HQ, Hui TL, Cheng M, Zhang X, Li BK, Wang GY

SYSTEMATIC REVIEWS

Prognosis value of heat-shock proteins in esophageal and esophagogastric cancer: A systematic review and 
meta-analysis

1578

Nakamura ET, Park A, Pereira MA, Kikawa D, Tustumi F

Risk factors for hepatocellular carcinoma associated with hepatitis C genotype 3 infection: A systematic 
review

1596

Farooq HZ, James M, Abbott J, Oyibo P, Divall P, Choudhry N, Foster GR

META-ANALYSIS

Effectiveness and tolerability of programmed cell death protein-1 inhibitor + chemotherapy compared to 
chemotherapy for upper gastrointestinal tract cancers

1613

Zhang XM, Yang T, Xu YY, Li BZ, Shen W, Hu WQ, Yan CW, Zong L

Success rate of current human-derived gastric cancer organoids establishment and influencing factors: A 
systematic review and meta-analysis

1626

Jiang KL, Wang XX, Liu XJ, Guo LK, Chen YQ, Jia QL, Yang KM, Ling JH

CASE REPORT

Pathologically successful conversion hepatectomy for advanced giant hepatocellular carcinoma after 
multidisciplinary therapy: A case report and review of literature

1647

Chu JH, Huang LY, Wang YR, Li J, Han SL, Xi H, Gao WX, Cui YY, Qian MP

Clinical pathological characteristics of “crawling-type” gastric adenocarcinoma cancer: A case report1660

Xu YW, Song Y, Tian J, Zhang BC, Yang YS, Wang J

Primary pancreatic peripheral T-cell lymphoma: A case report1668

Bai YL, Wang LJ, Luo H, Cui YB, Xu JH, Nan HJ, Yang PY, Niu JW, Shi MY



WJGO https://www.wjgnet.com X April 15, 2024 Volume 16 Issue 4

World Journal of Gastrointestinal Oncology
Contents

Monthly Volume 16 Number 4 April 15, 2024

ABOUT COVER

Peer Reviewer of World Journal of Gastrointestinal Oncology, Lie Zheng, Director, Professor, Department of 
Gastroenterology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an 730000, Shaanxi Province, 
China. xinliwen696@126.com

AIMS AND SCOPE

The primary aim of World Journal of Gastrointestinal Oncology (WJGO, World J Gastrointest Oncol) is to provide 
scholars and readers from various fields of gastrointestinal oncology with a platform to publish high-quality basic 
and clinical research articles and communicate their research findings online. 
    WJGO mainly publishes articles reporting research results and findings obtained in the field of gastrointestinal 
oncology and covering a wide range of topics including liver cell adenoma, gastric neoplasms, appendiceal 
neoplasms, biliary tract neoplasms, hepatocellular carcinoma, pancreatic carcinoma, cecal neoplasms, colonic 
neoplasms, colorectal neoplasms, duodenal neoplasms, esophageal neoplasms, gallbladder neoplasms, etc.

INDEXING/ABSTRACTING

The WJGO is now abstracted and indexed in PubMed, PubMed Central, Science Citation Index Expanded (SCIE, 
also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, Reference Citation Analysis, China 
Science and Technology Journal Database, and Superstar Journals Database. The 2023 edition of Journal Citation 
Reports® cites the 2022 impact factor (IF) for WJGO as 3.0; IF without journal self cites: 2.9; 5-year IF: 3.0; Journal 
Citation Indicator: 0.49; Ranking: 157 among 241 journals in oncology; Quartile category: Q3; Ranking: 58 among 93 
journals in gastroenterology and hepatology; and Quartile category: Q3. The WJGO’s CiteScore for 2022 is 4.1 and 
Scopus CiteScore rank 2022: Gastroenterology is 71/149; Oncology is 197/366.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Xiang-Di Zhang; Production Department Director: Xiang Li; Cover Editor: Jia-Ru Fan.

NAME OF JOURNAL INSTRUCTIONS TO AUTHORS

World Journal of Gastrointestinal Oncology https://www.wjgnet.com/bpg/gerinfo/204

ISSN GUIDELINES FOR ETHICS DOCUMENTS

ISSN 1948-5204 (online) https://www.wjgnet.com/bpg/GerInfo/287

LAUNCH DATE GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH

February 15, 2009 https://www.wjgnet.com/bpg/gerinfo/240

FREQUENCY PUBLICATION ETHICS

Monthly https://www.wjgnet.com/bpg/GerInfo/288

EDITORS-IN-CHIEF PUBLICATION MISCONDUCT

Monjur Ahmed, Florin Burada https://www.wjgnet.com/bpg/gerinfo/208

EDITORIAL BOARD MEMBERS ARTICLE PROCESSING CHARGE

https://www.wjgnet.com/1948-5204/editorialboard.htm https://www.wjgnet.com/bpg/gerinfo/242

PUBLICATION DATE STEPS FOR SUBMITTING MANUSCRIPTS

April 15, 2024 https://www.wjgnet.com/bpg/GerInfo/239

COPYRIGHT ONLINE SUBMISSION

© 2024 Baishideng Publishing Group Inc https://www.f6publishing.com

© 2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA

E-mail: office@baishideng.com  https://www.wjgnet.com

https://www.wjgnet.com/bpg/gerinfo/204
https://www.wjgnet.com/bpg/GerInfo/287
https://www.wjgnet.com/bpg/gerinfo/240
https://www.wjgnet.com/bpg/GerInfo/288
https://www.wjgnet.com/bpg/gerinfo/208
https://www.wjgnet.com/1948-5204/editorialboard.htm
https://www.wjgnet.com/bpg/gerinfo/242
https://www.wjgnet.com/bpg/GerInfo/239
https://www.f6publishing.com
mailto:office@baishideng.com
https://www.wjgnet.com


WJGO https://www.wjgnet.com 1134 April 15, 2024 Volume 16 Issue 4

World Journal of 

Gastrointestinal 
OncologyW J G O

Submit a Manuscript: https://www.f6publishing.com World J Gastrointest Oncol 2024 April 15; 16(4): 1134-1153

DOI: 10.4251/wjgo.v16.i4.1134 ISSN 1948-5204 (online)

REVIEW

New avenues for the treatment of immunotherapy-resistant 
pancreatic cancer

Luis Guilherme de Oliveira Silva, Fabian Fellipe Bueno Lemos, Marcel Silva Luz, Samuel Luca Rocha Pinheiro, 
Mariana dos Santos Calmon, Gabriel Lima Correa Santos, Gabriel Reis Rocha, Fabrício Freire de Melo

Specialty type: Oncology

Provenance and peer review: 
Invited article; Externally peer 
reviewed.

Peer-review model: Single blind

Peer-review report’s scientific 
quality classification
Grade A (Excellent): 0 
Grade B (Very good): B 
Grade C (Good): 0 
Grade D (Fair): 0 
Grade E (Poor): 0

P-Reviewer: Chatterjee B, India

Received: December 29, 2023 
Peer-review started: December 29, 
2023 
First decision: January 20, 2024 
Revised: January 26, 2024 
Accepted: March 4, 2024 
Article in press: March 4, 2024 
Published online: April 15, 2024

Luis Guilherme de Oliveira Silva, Fabian Fellipe Bueno Lemos, Marcel Silva Luz, Samuel Luca 
Rocha Pinheiro, Mariana dos Santos Calmon, Gabriel Lima Correa Santos, Gabriel Reis Rocha, 
Fabrício Freire de Melo, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, 
Vitória da Conquista 45029-094, Bahia, Brazil

Corresponding author: Fabrício Freire de Melo, PhD, Professor, Instituto Multidisciplinar em 
Saúde, Universidade Federal da Bahia, Rua Hormínio Barros, No. 58 Candeias, Vitória da 
Conquista 45029-094, Bahia, Brazil. freiremelo@yahoo.com.br

Abstract
Pancreatic cancer (PC) is characterized by its extremely aggressive nature and 
ranks 14th in the number of new cancer cases worldwide. However, due to its 
complexity, it ranks 7th in the list of the most lethal cancers worldwide. The 
pathogenesis of PC involves several complex processes, including familial genetic 
factors associated with risk factors such as obesity, diabetes mellitus, chronic 
pancreatitis, and smoking. Mutations in genes such as KRAS, TP53, and SMAD4 
are linked to the appearance of malignant cells that generate pancreatic lesions 
and, consequently, cancer. In this context, some therapies are used for PC, one of 
which is immunotherapy, which is extremely promising in various other types of 
cancer but has shown little response in the treatment of PC due to various 
resistance mechanisms that contribute to a drop in immunotherapy efficiency. It is 
therefore clear that the tumor microenvironment (TME) has a huge impact on the 
resistance process, since cellular and non-cellular elements create an immunosup-
pressive environment, characterized by a dense desmoplastic stroma with cancer-
associated fibroblasts, pancreatic stellate cells, extracellular matrix, and immuno-
suppressive cells. Linked to this are genetic mutations in TP53 and immunosup-
pressive factors that act on T cells, resulting in a shortage of CD8+ T cells and 
limited expression of activation markers such as interferon-gamma. In this way, 
finding new strategies that make it possible to manipulate resistance mechanisms 
is necessary. Thus, techniques such as the use of TME modulators that block 
receptors and stromal molecules that generate resistance, the use of genetic 
manipulation in specific regions, such as microRNAs, the modulation of extrinsic 
and intrinsic factors associated with T cells, and, above all, therapeutic models 
that combine these modulation techniques constitute the promising future of PC 
therapy. Thus, this study aims to elucidate the main mechanisms of resistance to 
immunotherapy in PC and new ways of manipulating this process, resulting in a 
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more efficient therapy for cancer patients and, consequently, a reduction in the lethality of this aggressive cancer.

Key Words: Pancreatic cancer; Immunotherapy; Resistance; Tumor microenvironment; manipulation; Combined 
immunotherapy

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This study aims to analyze the main mechanisms of resistance to pancreatic cancer immunotherapy and the 
respective methods of manipulating these processes. Thus, this review provides a compilation of the main mechanisms of 
resistance to immunotherapy linked to the tumor microenvironment, genetic factors and those linked to T-cell immunosup-
pression. Finally, this study provides an insight into new avenues that can be followed to manipulate the factors linked to 
resistance, providing a more efficient treatment and a reduction in lethality.

Citation: Silva LGO, Lemos FFB, Luz MS, Rocha Pinheiro SL, Calmon MDS, Correa Santos GL, Rocha GR, de Melo FF. New 
avenues for the treatment of immunotherapy-resistant pancreatic cancer. World J Gastrointest Oncol 2024; 16(4): 1134-1153
URL: https://www.wjgnet.com/1948-5204/full/v16/i4/1134.htm
DOI: https://dx.doi.org/10.4251/wjgo.v16.i4.1134

INTRODUCTION
Pancreatic cancer (PC) is an extremely complex disease and represents a major challenge for oncology. Characterized by 
its highly aggressive nature, PC ranks 14th among cancers with the highest number of new cases worldwide, with around 
495773 cases reported in 2020 and an overall 5-year survival rate of 11%[1,2]. Moreover, PC also garners attention due to 
its high lethality and aggressiveness, accounting for 466003 new deaths and securing the 7th position on the list of the 
most lethal types of cancer in 2020[1]. Additionally, the high level of complexity involved in managing PC stems from its 
late diagnosis and potent metastatic capability, which compromises treatment and prognosis[3].

The pathogenesis of PC involves a combination of factors related to life history and genetic alterations, ultimately 
leading to an individual's susceptibility[4]. The primary risk factors for developing PC include a family history of the 
disease, chronic pancreatitis, genetic disorders, smoking, and poor dietary habits[4-6]. Regarding genetic alterations, 
cancer can stem from mutations in tumor suppressor genes and oncogenes, such as KRAS, CDKN2A, TP53, SMAD4, and 
BRCA1/2[7].

The treatment of PC relies on surgery, chemotherapy, radiotherapy, and immunotherapy[8]. However, this process is 
extremely complex due to the elevated rates of metastases that impede surgery in the majority of patients, the intricate 
nature of the surgical approach due to anatomical challenges, and the mechanisms of resistance to chemotherapy and 
immunotherapy present in the tumor microenvironment (TME) of PC[9,10].

It is important to note that immunotherapy has emerged as a crucial treatment in recent years for various types of 
cancer[11]. Nevertheless, resistance to these methods in PC underscores the necessity of comprehending these 
mechanisms to develop efficient strategies for addressing this new challenge. Therefore, this study aims to report the 
main mechanisms in PC that lead to resistance to immunotherapy and the new ways to overcome this obstacle.

THE ONSET OF PC
The development of PC is notably linked to the extensive plasticity of acinar and ductal cells in pancreatic tissue[12]. In 
physiological situations, these cells already possess a wide capacity for cellular metaplasia (transdifferentiation) for 
regenerative purposes[12]. This potential for identity reprogramming extends beyond regenerative processes, becoming a 
favorable factor for pancreatic carcinogenesis[12]. Besides genetic familiar factors, non-hereditary risk events are 
associated with an increased risk of PC, including obesity[13], chronic pancreatitis[14], cigarette smoking[15], and 
diabetes mellitus, especially new-onset diabetes mellitus after the 5th decade of life[16].

The onset of PC occurs through the malignant evolution of non-invasive precursor pancreatic lesions, which, according 
to a prospective epidemiological study, become significantly more common, larger, and more numerous with aging[17-
19]. However, the presence of non-invasive precursor pancreatic lesions does not necessarily imply future malignancy; 
the risk varies according to the level of identified dysplasia[20]. A 2015 international consensus recommends stratifying 
pancreatic lesions into two levels: "low-grade" for lesions with mild to moderate dysplasia and "high-grade," reserved for 
lesions with severe dysplasia ("carcinoma in situ" type), exhibiting significantly increased potential for progression to 
invasive carcinoma[21]. Morphologically, there are three primarily forms of noninvasive precursor lesions, including 
pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasm (IPMN), and mucinous cystic 
neoplasm (MCN)[17,21].

https://www.wjgnet.com/1948-5204/full/v16/i4/1134.htm
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PanIN are noncystic proliferative lesions located in pancreatic ducts up to 5 mm, characterized by the replacement of 
normal cuboid/columnar epithelial tissue by flat/papillary epithelial cells with varying levels of cytological and 
architectural atypia[22]. Low-grade PanINs (traditionally described as PanIN 1A, PanIN 1B, and PanIN 2) exhibit mild-to-
moderate cytological atypia[23]. In contrast, high-grade PanINs (or PanIN 3) are predominantly papillary, featuring loss 
of polarity, irregular stratification, severe cytological atypia, and eventual intraluminal necrosis[24].

In addition, some alterations in oncogenes or tumor suppressor genes underlying PC are identified early in PanIN. The 
endogenous expression of the KRASG12D mutation, associated with telomere shortening, represents the first events in 
low-grade PanINs, driving all stages of PanIN progression to pancreatic adenocarcinoma (PDAC)[25-27]. The frequency 
of the KRASG12D mutation in PanINs increases according to the degree of dysplasia, becoming more frequent in high-
grade PanINs, and being present in > 90% of PDAC cases[24,28,29].

Conversely, mutations in tumor suppressors TP53, which plays a role in cellular damage repair and apoptosis, and 
SMAD4, whose protein is a transcription factor for growth inhibition and apoptosis-related genes, are widely described in 
established PDAC[30-33]. However, these mutations appear almost exclusively in advanced neoplastic stages (high-grade 
PanINs)[34], being rarely found in isolated PanIN lesions, i.e., without invasive PC[35-37].

IPMN are macroscopic mucin (MUC)-producing cystic neoplasms that communicate with the pancreatic ductal system
[38]. Similar to PanINs, IPMNs are predominantly composed of columnar cells with a papillary configuration, exhibiting 
varying degrees of cytological atypia[38]. However, they substantially differ in diameter, generally being larger than 1.0 
cm in IPMNs[38]. IPMNs can be classified based on the duct involved: Main-duct or branch-duct type; or the 
predominant cell type: Pancreatobiliary, intestinal, or gastric types[24]. Main-duct IPMNs are most frequently associated 
with high-grade dysplasia, generally consisting of pancreatobiliary- and intestinal-cell types, which are associated, 
respectively, with an increased risk of tubular adenocarcinomas and colloid carcinomas, according to recent meta-
analysis[39-41].

An IPMN lesion may be accompanied by an invasive carcinoma in two ways[42]. The first scenario involves the IPMN 
serving as a direct precursor to the existing carcinoma, commonly main duct IPMNs accompanied by colloid carcinomas
[42]. The second possibility is the coexistence of an IPMN alongside an independently established carcinoma, with 
branch-duct IPMNs being more likely in this context[42]. Main risk factors for IPMN progression to PDAC include main 
pancreatic duct dilation, a size of  3 cm, and the presence of associated solid components[43,44].

Like PanINs, KRAS mutations are consistently reported in IPMNs, tipically manifesting in early stages of dysplasia 
(low-grade)[45]. Mutations in TP53 and SMAD4 tend to develop in more advanced stages of neoplasia[46,47]. SMAD4 
mutation is strongly associated with neoplastic capacity[47]. GNAS mutations are frequent and highly specific to IPMNs, 
potentially aiding in their differentiaton from other cystic lesions[48].

Also in this context, MCN is the least common precursor of PC, and are almost exclusive to women aged 40-50 years
[24]. Similarly to IPMNs, MCNs are composed of MUC-producing columnar epithelial cells, but differ in the presence of a 
subepithelial ovarian-type stroma, a pathognomonic finding of MCN[48,49]. Generally located in the body and tail of the 
pancreas (with less than 10% in the pancreatic head), MCNs are rarely multifocal[25,50]. In comparison to IPMNs, MCNs 
have a lower risk of evolving into invasive carcinoma[51]. Predictive factors for malignancy include cyst diameter and the 
presence of mural nodules[51]. While MCNs typically exhibit slow growth, high exposure to sex hormones during 
pregnancy can trigger rapid enlargement[52]. Histological types of invasive carcinoma frequently associated with MCNs 
include tubular adenocarcinomas, mucinous non-cystic (colloid) carcinomas, undifferentiated carcinomas, undifferen-
tiated carcinomas with osteoclast-like giant cells, adenosquamous carcinomas, and sarcomas[25]. While there is a lack of 
studies focusing on the genetic bases of MCNs, mutations in KRAS, TP53, SMAD4, and CDKN2A/p16 have been verified
[53].

Finally, it is important to note that the TME plays a fundamental role in the establishment and persistence of pancreatic 
neoplasia. Histologically, the TME of PDAC is characterized by a dense stroma composed of cellular and acellular 
components, initiating development from the early stages of neoplastic precursors[54]. The cellular component of the 
stroma forms a network that includes: Myeloid cells (macrophages, neutrophils, regulatory cells, cytotoxic cells), cancer-
associated fibroblasts (CAFs), neurons, and endothelial cells[54]. Interaction between these agents co-stimulates the 
production of molecules such as growth factors, matricellular proteins, tissue inhibitors of metalloproteinases, and 
cytokines[54]. Such structural changes are intimately related to tumor maintenance and progression, altering vascular 
density and tissue perfusion[29].

SURGERY, CHEMOTHERAPY AND RADIOTHERAPY FOR PC
The management of PC is contingent upon the disease stage. Consequently, the application of surgical interventions is 
reserved for individuals presenting with resectable tumors devoid of distant metastases, possibly in conjunction with 
adjuvant chemotherapy[17]. Within this framework, surgery is undertaken with the objective of achieving complete 
tumor resection, thereby fostering a more favorable prognosis for the patient. However, pancreatic tumor excisions 
constitute anatomically intricate procedures, frequently culminating in incomplete resection[55]. Moreover, the pancreat-
oduodenectomy, a commonly employed procedure, is associated with a morbidity rate of up to 45%[55]. This is 
compounded by the circumstance that a considerable proportion of PC diagnoses occur at an advanced stage, charac-
terized by metastasis, rendering surgery unviable. This elucidates the intricacies associated with performing surgical 
interventions on pancreatic tumors[56].

Chemotherapeutic interventions for PC encompass three distinct regimens: Neoadjuvant, adjuvant, or first-line 
strategies[55]. The neoadjuvant approach is employed preemptively, preceding surgical resection, with the aim of 
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diminishing tumor size. Conversely, the adjuvant regimen is administered post-surgical resection, while patients with 
metastatic PC receive first-line chemotherapy[55,57]. Noteworthy chemotherapy protocols for PC include gemcitabine, 
nab-paclitaxel, and folinic acid, 5-fluorouracil, irinotecan and oxaliplatin[57]. However, the anticipated efficacy of 
chemotherapy in treating PC has not been fully realized, as the intricate oncological landscape of PC is characterized by 
pronounced chemoresistance[58]. Within this context, gemcitabine emerges as the chemotherapy agent exhibiting the 
highest degree of chemoresistance to date. This phenomenon can be attributed to various factors inherent in PC, such as 
components of the TME, the release of inflammatory enzymes, altered signaling pathways involving cells like fibroblasts 
and pancreatic stellate cells (PSCs), and genetic alterations, including microRNA (miRNA)[58].

Radiotherapy has been incorporated into neoadjuvant, adjuvant, and first-line treatment regimens for patients with 
metastatic and advanced PC[59]. While chemoradiotherapy in neoadjuvant and adjuvant settings has demonstrated a 
marginal increase in patient survival, the majority of diagnoses occur at an advanced disease stage. Consequently, the use 
of chemotherapy and radiotherapy as first-line treatments becomes imperative[59,60]. Nevertheless, the application of 
radiotherapy in the treatment of patients with metastatic PC yields conflicting data and falls short of anticipated effect-
iveness. This underscores the necessity for novel clinical studies dedicated to scrutinizing the role and efficacy of 
radiotherapy in addressing the complexities of this disease[60].

IMMUNOTHERAPY IN PC
Immunotherapy stands as a groundbreaking frontier in the realm of cancer treatment. The concept of leveraging the 
body's own immune system to target cancerous cells has brought about a profound shift in the overall survival (OS) rates 
for several types of cancer[61-63]. Moreover, it distinguishes itself by presenting fewer side effects in comparison to 
conventional approaches, such as chemotherapy[64].

In the context of PC, however, the use of immunotherapy, particularly immune checkpoint inhibitors (ICIs), as a 
standalone treatment in unselected patients has not demonstrated the same level of success observed in other tumor types
[65]. From this perspective, anti-CTLA-4 drugs are already a reality in immunotherapy treatment, and drugs of this class, 
such as Ipilimumab, have received approval in both the United States and Europe[66]. However, both Ipilimumab and 
Tremelimumab (anti-CTLA-4) proved unsuccessful in clinical trials focused on treating PC[67,68]. It is also important to 
mention the anti-programmed cell death (PD)-1/PD-L1 drugs, with Nivolumab and Pembrolizumab being the primary 
representatives; however, these drugs have not demonstrated significant success in studies targeting PC, largely due to 
the complexity of this cancer model[66,69,70].

In another scenario, the investigation of vaccines in PC therapy has also become a subject of study in the eager pursuit 
of an efficient treatment to combat resistance to this complex cancer[71]. Thus, various vaccine models already exist in the 
scientific world and are currently undergoing testing for PC, with the primary ones being GVAX (cell-based) and 
vaccination with Listeria monocytogenes[71]. However, these methods have also demonstrated limitations in the ongoing 
analyses[71].

Finally, it is important to highlight Adoptive Cell Transfer as an immunotherapy model that has also been employed in 
treating PC[72]. The method is based on CAR T cells produced from T cells extracted from an individual and genetically 
altered to enhance their efficiency against cancer when reintroduced into the patient[73]. Despite this, clinical studies 
targeting various aspects of adoptive cell therapy (ACT) for PC, such as mesothelin and epidermal growth factor receptor, 
have demonstrated limited responses and minimal impact on patient survival[74,75].

Therefore, it is clear that understanding the mechanisms in the PC TME that induce resistance to immunotherapy 
treatment is crucial for developing new techniques to overcome the complexity imposed by this oncological model.

MECHANISMS OF RESISTANCE TO IMMUNOTHERAPY IN PC
The role of the TME in immunosuppression and resistance
The TME of PC is characterized by a complex network of cellular and non-cellular elements that create a highly 
immunosuppressive environment. It is composed of a dense desmoplastic stroma, comprising CAFs, PSCs, extracellular 
matrix (ECM) and immune suppressive cells[76].

Initially, the notable capacity of CAFs to generate and remodel the ECM plays a pivotal role in immunotherapy 
resistance in PCs. These cells comprise distinct subtypes, each exerting specific influences on the TME. Firstly, α-smooth 
muscle actin, + myofibroblasts (myCAFs), which are transforming growth factor (TGF) signaling-dependent, contribute 
to the synthesis of ECM components[77,78]. On the other hand, inflammatory CAFs, exhibit elevated expression of 
interleukin (IL)-6, which is related to cancer progression[78,79], while major histocompatibility complex class II (MHC 
class II) + CAFs are able to present antigens but lack costimulatory molecules, potentially leading to deactivation of CD4+ 
T cells and further immune suppression in the TME (Figure 1)[80,81].

In the context of immunotherapy resistance, myCAFs emerge as a key player in this process, as they lead to the 
development of a dense, fibrotic stroma around the tumor, which provides a physical barrier that impedes the infiltration 
of immune cells and, consequently, impairs the effectiveness of immunotherapeutic agents[77,82]. Also, evidence 
suggests that secreted phosphoprotein 1 (SPP1) derived from CAFs in hepatocellular carcinomas apparently increases 
resistance to tyrosine kinase inhibitors (TKIs) through the induction of epithelial-to-mesenchymal transition[83,84]. 
However, as the direct correlation between SPP1 and TKI resistance remains unexplored in PC, further research is 
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Figure 1 Simplified scheme of the tumor microenvironment. PSCs: Pancreatic stellate cells; CXCL2: C-X-C chemokine ligand 2; iCAFs: Inflammatory 
cancer-associated fibroblasts; apCAF: Antigen-presenting cancer-associated fibroblast; ECM: Extracellular matrix; TAM: Tumor-associated macrophage; MHC II: 
Major histocompatibility complex class II; IL: Interleukin; TGF: Transforming growth factor.

required to clarify this issue.
Additionally, the combination of a dense stroma and limited vascularization induces severe hypoxia within the TME, 

triggering the stabilization of hypoxia-inducible factors 1 and 2 (HIF2)[82]. CAF-specific deletion of HIF2 is associated to 
increased survival in PC, by reducing the intratumoral recruitment of M2 macrophages; and therapeutic HIF2 inhibition 
leads to increased response to immune checkpoint blockade[85]. These findings highlight the critical role of hypoxia in 
shaping the pancreatic TME and influencing immunotherapy resistance.

Finally, PSCs also seem to play a role in desmoplasia, as they become activated in response to signals from PC cells and 
contribute to the formation of the fibrotic stroma[82]. PSCs are associated with the secretion of immunosuppressive 
molecules, including C-X-C chemokine ligand (CXCL) 2, IL-6 and galectin-1, sustaining immunosuppression within the 
TME[86]. These dynamic interactions between PSCs and PC cells sustain underlying mechanisms that promote immuno-
therapy resistance (Figure 1).

Therefore, therapeutic agents that target the aforementioned components could be a potential next step in overcoming 
immunotherapy resistance in PCs.

Genetic/epigenetic factors
Evidence also suggests that genetic/epigenetic factors may play a role in immunotherapy resistance in PC, even though 
current literature provides minimal information on the subject. Some studies indicate that mutations in the p53 gene are 
associated with alterations in the innate immune response, which may underlie tumorigenesis and promote immuno-
therapeutic resistance in PDACs[87]. In this regard, the Trp53R172H mutation in PC cells has been identified as a promoter 
of neutrophil accumulation, potentially contributing to resistance against immunotherapy[88].

T cell-associated immunotherapy resistance: Intrinsic and extrinsic mechanisms
Pancreatic ductal adenocarcinoma is typically associated with a low mutation burden, resulting in a paucity of 
neoantigens and a scarcity of tumor-infiltrating effector T cells[89,90]. This gives rise to an "immunologically cold" TME, 
which is characterized by a dearth of tumor antigen-specific CD8+ T cells and a limited expression of activation markers 
such as interferon-gamma (IFN-γ) and granzyme B[91-95]. In turn, CD4+ helper T cells are more abundant within the 
TME compared to CD8+ T cells, displaying diverse immunological effects, including both anti- and pro-tumor activities 
across various phenotypes such as effector CD4+ T helper (Th) 1, Th2, Th17, FoxP3+ regulatory Ts (Tregs), and γδ T cells
[96]. Nevertheless, the evaluation of antigen-specific CD4+ T cells remains elusive in both animal and human PDAC 
models[97]. Moreover, These observations imply a deficit or impediment in adaptive T cell immunity, recognized as the 
primary factor contributing to the concerning resistance against immune checkpoint blockade therapies[81].

Accordingly, PDAC appears to utilize two primary strategies to circumvent anti-tumor immune responses: (1) intrinsic 
T-cell receptor (TCR)-mediated exhaustion; and (2) extrinsic TME-driven immunosuppression[81,98]. Indeed, CD8+ T 
cells targeting tumor-specific antigens can trigger cell death. Nonetheless, in cases where the tumor persists and these 
cells face continual antigen exposure, sustained TCR activation leads to their differentiation into exhausted T (Tex) cells
[99-101]. Tex cells express cell surface inhibitory receptors such as PD-1, MUC-3/T-cell immunoglobulin, and T-cell 
activation gene[94,102-105]. Upon interaction with their specific ligands expressed on cells within the TME, Tex cells 
undergo a progressive decline in effector function, differentiation state, and proliferative capacity[81]. Notably, these cells 
not only experience a reduction in functionality, such as decreased tumor necrosis factor (TNF)-α and IFN-γ expression, 
but also demonstrate a gradual increase in IL-10 expression within the TME[106]. These alterations thus contribute to the 
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establishment of a local immunosuppressive milieu (Figure 2).
On the other hand, extrinsic factors encompass elements in the TME that hinder T cell function[107]. The oncogenic 

activation of KRAS in pancreatic cells initiates PanIN at the outset of cancer development, which triggers an immunosup-
pressive milieu orchestrated by tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), and 
Treg and Breg cells, compounded by inhibitory cytokines and metabolic limitations[108-110].

In this scenario, macrophages represent the predominant leukocyte population identified within PDAC[111]. Studies 
have unveiled the origin of TAMs in PDAC from two primary sources: (1) Bone marrow-derived inflammatory 
monocytes; and (2) embryonic-derived tissue-resident macrophages[112,113]. These cells typically exhibit an immunosup-
pressive phenotype, which is characterized by the expression of immune checkpoints, inhibitory ligands, and the 
secretion of immunoregulatory cytokines such as IL-10[114-116].

Concurrently, the recruitment of bone marrow-derived myeloid cells toward PDAC involves a complex process orches-
trated by granulocyte-macrophage (GM) colony-stimulating factor (CSF), granulocyte-CSF (G-CSF), IL-3, vascular 
endothelial growth factor, and the orchestrated interplay between the CXCL12/C-X-C chemokine receptor 4 (CXCR4) or 
C-C chemokine ligand 2/C-C chemokine receptor 2 signaling cascades[111,117,118]. Ultimately, tumor cell production of 
GM-CSF and G-CSF and tumor cell production of IL-1β fosters the proliferation of immature myeloid cells and drives 
their acquisition of a suppressive phenotype (MDSCs)[119-121].

Additionally, stromal-associated fibroblasts are known to produce CXCL13, which serves as a recruitment signal for 
IL-35-producing regulatory B cells within the TME[122]. This phenomenon further exacerbates PDAC immune evasion by 
harnessing IL-35-mediated inhibition, effectively suppressing T cell proliferation[123].

Collectively, TAMs, MDSCs, and Bregs exhibit a robust capacity to suppress the proliferation in both CD4+ and CD8+ 
T cells[124]. They also generate elevated levels of immunosuppressive cytokines, such as IL-10, IL-27, and TGF-β[106,122,
124]. This coordinated activity facilitates the recruitment of regulatory Foxp3+CD4+ Tregs, which may also impede the 
antitumor immunity of CD8+ T cells at local intratumoral sites[125,126]. In summary, these factors collectively reduce T 
cell infiltration, impair their function, or promote their exhaustion within the TME, contributing to resistance against 
immunotherapy interventions (Figure 2).

NEW TECHNIQUES TO OVERCOME RESISTANCE TO IMMUNOTHERAPY IN PC
Manipulation of the TME
Over the past decade, there has been significant interest in the pancreatic TME, particularly in its capacity to influence 
therapy response. The focus has shifted towards recognizing the TME as a key factor and obstacle affecting the effect-
iveness of immunotherapy in pancreatic ductal adenocarcinoma[127].

Numerous promising therapies targeting various mechanisms are currently undergoing preclinical and clinical 
development. These approaches encompass novel strategies to enhance T-cell responses, modify myeloid and stromal 
compartments, and attract new immune cells to the TME of PDAC[128].

From this perspective, targeting the tumor stroma holds potential advantages in the treatment of PC. The matricellular 
protein Secreted Protein Acidic and Rich in Cysteine (SPARC), produced by CAFs, has the ability to bind albumin[127]. 
This led to the hypothesis that SPARC could enhance the accumulation of nab-paclitaxel within the PC microenvir-
onment, thereby augmenting its anti-tumor efficacy[129]. In a phase III study combining albumin-bound paclitaxel (nab-
paclitaxel) with gemcitabine, the results indicated an increased intracellular concentration of gemcitabine, possibly 
attributed to the disruption of the tumor stroma and the reduction of CAFs[129].

Despite the promising outcomes mentioned earlier, efforts to target the tumor stroma have yielded contradictory 
consequences. Matrix metalloproteinases, a family of proteolytic enzymes essential for maintaining tissue homeostasis, 
play a crucial role in cancer invasion when expressed abnormally[130]. However, attempts to target matrix metallopro-
teinases using marimastat and tanomastat did not show any discernible benefits when combined with gemcitabine[131,
132].

Furthermore, follow-up studies have indicated that depleting the stroma may, in fact, promote tumor growth, 
highlighting the intricate and multifaceted role that stroma plays in tumor biology. This underscores the complexity of 
the interactions within the TME and suggests that a nuanced approach is needed when considering stroma-targeted 
therapies in cancer treatment[133].

In preclinical mouse models of PC, the depletion of stroma by inhibiting the Hedgehog cellular signaling pathway has 
been demonstrated to enhance the delivery of gemcitabine to tumors[134]. This intervention resulted in improved 
survival and reduced metastasis by increasing the intracellular concentration of gemcitabine. The Hedgehog pathway's 
involvement in the formation of desmoplasia highlights its role in impairing drug delivery in the context of PC[134]. 
Despite the conflicting results of tumor response to stroma-depleting therapies, the TME plays a significant role in tumor 
biology and in modulating the immune recognition of PC.

Another therapeutic avenue under investigation involves targeting hyaluronic acid, which is abundant in PCs and 
contributes to angiogenesis and chemoresistance[135]. In a phase II study involving untreated, metastatic PC patients, the 
targeting of hyaluronic acid using pegvorhyaluronidase alfa, a pegylated formulation of recombinant hyaluronidase, in 
combination with nab-paclitaxel/gemcitabine resulted in a significant improvement in progression-free survival and OS
[136].

Still in this scenario of trying to manipulate the microenvironment, it is known that the TME in PC represents a 
formidable therapeutic challenge when using traditional immunotherapies. Nevertheless, there is a shift towards utilizing 
combination approaches to reprogram the TME, aiming to unlock the potential benefits of immunotherapy. Early results 
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Figure 2 Intrinsic and extrinsic mechanisms of T cell-associated immunosuppression. MDSCs: Myeloid-derived suppressor cells; TME: Tumor 
microenvironment; TCR: Intrinsic T-cell receptor; TAM: Tumor-associated macrophage; IRs: Inhibitory receptors; TIM-3: Mucin-3/T-cell immunoglobulin; LAG-3: T-cell 
activation gene; TGF: Transforming growth factor; PD-1: Programmed cell death-1; IL: Interleukin; TNF-α: Tumor necrosis factor-α; IFN-γ: Interferon-gamma.

from these endeavors are showing promise in the pursuit of more effective treatments for PC.
As aforementioned, targeting immunosuppressive cells within the TME enhances the likelihood of efficacy in immuno-

therapy treatments. One primary target is CSF1 receptor (CSF1-R), located on TAMs. The binding of CSF1 to CSF1-R 
facilitates TAM proliferation and extended survival, promoting tumor growth, resistance to treatments, and metastasis
[137]. Inhibition of CSF1-R results in fewer TAMs, leading to a heightened immune response, increased tumor regression, 
and improved survival[138].

Looking at another relevant pathway for manipulation, it is notable that pancreatic ductal adenocarcinoma tumors 
show infiltration of M2 macrophages, which have an immunosuppressive function. This phenotype is characterized by 
the expression of CD206, CSF-1R, and IL-10, along with reduced expression of MHC class II[81]. The CSF-1 pathway 
plays a crucial role in the differentiation and survival of M2 macrophages. Inhibiting the CSF-1 pathway has been 
demonstrated to redirect TAMs toward the M1 phenotype, leading to distinct remodeling of the TME[139-141].

From a molecular perspective, it is important to analyze that CXCL12, a chemokine produced by CAFs, is frequently 
expressed at elevated levels in the PDAC TME. This creates a network of dense stroma, which, in turn, hinders the 
migration of immune cells and the recognition of cancer cell antigens. The elevated levels of CXCL12 in the PDAC TME 
play a role in creating an immunosuppressive environment, thereby diminishing the effectiveness of immune responses 
directed at cancer cells[142]. In preclinical studies, interrupting the interaction between CXCL12 and its receptor, CXCR4, 
enhanced the impact of ICIs in models of PDAC[142,143].

Also in this scenario, pancreatic tumor cells, fibroblasts, and other stromal cells release TGF-β, a cytokine that 
contributes to the creation of an immunosuppressive structure in the TME[144]. Using the small molecule inhibitor 
galunisertib to target TGF-β, combined with gemcitabine as the initial treatment for PDAC, resulted in only a marginal 
improvement in median mOS compared to gemcitabine alone and did not achieve statistical significance[145]. Following 
this, galunisertib was evaluated in conjunction with durvalumab in a cohort of 32 patients with advanced PDAC and 
demonstrated restricted effectiveness, yielding only one partial response[146]. Novel approaches, such as exploring a 
bifunctional fusion comprising a monoclonal antibody targeting TGF-β along with other ICIs, are currently being invest-
igated[147].
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Therefore, the combination of treatment strategies aimed at stimulating the immune response and overcoming barriers 
in the TME represent a promising avenue for improving the treatment of patients with PC.

Manipulation of genetic/epigenetic factors
The genetic mutation background of PC is well known, being found in CDKN2A, MLH1, BRCA2, ATM, KRAS and 
BRCA1. The most prevalent change of an oncogene in PC cells is the mutation of KRAS. Other than that, some tumor 
suppressor pathways are genetically inactivated, such as INK4a/ARF (p16), TP53, DPC4/Smad4[148-153].

Thus, the key principles of gene therapy are to induce immune effects that combat tumors with different signaling 
pathways, delivering genetic material to cells, focusing on the resolution of a disorder[154]. An effective gene therapy 
regimen is dependent upon the following factors: Efficient delivery of the gene, therapy specifically targeted at the tumor, 
and careful selection of optimal targets[155].

Against this backdrop, there are many possibilities that surround gene-therapy on PC cells. Gene editing and gene 
transfer can be utilized as a therapeutic intervention, employing an array of vectors and molecular tools, including 
interference RNA and genome editing techniques, which have shown promise in bridging preclinical cancer research and 
clinical trials[156,157].

In addition, various strategies have been applied to eliminate tumor cells based on known genetic alterations. Gene 
transfer strategies with TP53 have been utilized to treat multiple cancers[158]. However, attempts to restore TP53 
expression during tumor growth have yielded disappointing results, indicating the limited efficacy of gene transfer in 
vitro[158].

Still in the scenario of genetic manipulation, suicide gene therapy is a major topic of discussion, based on the transfer of 
a suicide gene with a strong neighboring antitumor effect that can compensate the weakness of gene expression within 
the tumor[155]. The classic suicide gene strategy is the herpes simplex virus thymidine kinase gene (HSV-TK gene)[159]. 
This therapy is capable of causing toxicity and cell death, through metabolites and inhibition of DNA synthesis[159,160], 
It also elicits a robust immune response targeting tumor cells by releasing tumor antigens, resulting in a reaction against 
additional tumor cells by the body[159-161]. HSV-TK delivery via adenovirus and retrovirus have shown great anti-tumor 
efficiency in pancreatic cells both in vitro and in vivo[160,162].

Other examples of suicide/prodrug gene system that has been also tested, with success, in PC models is the 
cytochrome P450/isofosfamide system, was developed through in vitro and in vivo proof of concept to conduct phase I 
and II trials in patients with PC, the treatment has shown significant success in improving survival rates[158,163-165].

Other than that, miRNA is another potent point for therapeutic approach. Several studies have shown that miRNAs 
play important roles in the development of pancreatic tumors and also in the process of resistance to various therapies, 
including immunotherapy[166-168]. Loss of miRNA expression may result in significant dysfunctionality and promote 
carcinogenesis, owing to their crucial role in modulating apoptosis, cell cycle, and differentiation[158].

Thus, the methods for modulating intracellular miRNA levels primarily consist of miRNA replacement therapy and 
anti-miRNA oligonucleotides. In miRNA replacement therapy, oligonucleotide mimics are used to increase miRNA 
levels, while in anti-miRNA oligonucleotides, miRNA silencing is induced[169,170]. However, some barriers still exist 
when thinking in miRNA therapy such as low in vivo stability, improper biodistribution, insufficient cell specificity, 
disruption and saturation of endogenous RNA machinery, as some examples[171].

In this scenario, several miRNAs that are upregulated or downregulated in PC have demonstrated their contribution to 
tumor cell growth by targeting specific molecules[172-174]. An elevation in circulating miRNAs, such as miR-21, miR-25, 
miR-155 and miR-196, demonstrated a strong correlation with chemotherapy resistance among PC patients[175,176]. In 
this sense, an experimental study showed that targeting the oncogenic miRNA21 could suppress tumor growth in PC in 
vitro and in vivo[177]. However, no miRNA therapeutics have been tested clinically for PC treatment[178].

From another perspective of genetic manipulation, oncolytic virotherapy is one of the most promising anti-cancer 
therapies using agents with high antitumor potency and strong oncolytic effect[154,179]. Natural pathogens have either 
been selected or designed to specifically infect and destroy cancer cells, being engineered in a way that enables the 
production of cytokines, antigens, or suicide genes[158]. Oncolytic adenoviruses have been considered highly eligible 
vehicles for delivery of therapeutic genes to treat cancer due to their tumor-restricted replication capabilities[158,180], and 
because of them being non-pathogenic and with a high selectivity and cytotoxicity to cancer cells[181].

With this in mind, it is important to point out that a known viral vector is the HSV type designed with an efficient 
blockade of experimental tumor growth, used alone or in combination with gemcitabine[182]. A study with a HSV that 
showed an promising anti-cancer activity was Myb34.5, which has been assessed preclinically in PC models, being used 
inducing apoptosis and inhibition of pancreatic tumor growth[183]. Other studies are being conducted, dealing with 
possible viruses that can be used on a therapeutic concept, such as the oncolytic parvovirus H-1, in some clinical trials
[184,185].

Numerous genetic alterations that directly contribute to pancreatic tumorigenesis have been identified or are being 
actively studied; because of it, novel therapies for PC patients by targeting specific genes are a promising future, 
associated with a lot of new trials searching novel possibilities[154,156,158]. This approach to personalized medicine can 
be utilized for patients with PC, providing appropriate treatment that is tailored to their individual needs.

Manipulation of intrinsic and extrinsic mechanisms associated with T cells
The mechanisms of resistance to immunotherapy present in PC are rooted in an intense interaction between molecules 
and cells of the TME and cells of the immune system, with this impact being particularly focused on the activity of T cells, 
leading to a reduction in the tumor activity of these cells[186]. Thus, novel approaches to treating immunotherapy-
resistant PC involve manipulating the activity of T cells and immune system cells that directly interact with these anti-
tumor cells[187].
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One of the primary immunotherapy strategies used in oncology is to block the immune checkpoint, but resistance to 
existing methods has prompted the need to employ immunomodulators, such as PD1-IL2v[188,189]. PD1-IL2v is a 
bispecific antibody molecule that binds to PD-1 on CD8+ T cells and incorporates a modified IL-2 molecule in its structure
[189]. This modification stimulates the cytotoxic activity of CD8+ T cells without binding to CD25 present on Treg cells, 
consequently avoiding the activation of these regulatory cells[189]. Thus, the study conducted by Tichet et al[189] in mice 
was based on the combination of anti-PD-L1 with the immunomodulator PD1-IL2v and achieved promising results, 
including tumor regression, improved efficiency of anti-tumor T cells, increased infiltration of CD8+ T cells into the TME, 
modulation of TAMs, and demonstrated a positive response for cancers resistant to immunotherapy[189].

From another perspective, Siglec-15 was detailed by Wang et al[190] in 2019, demonstrating that it can be expressed in 
cancer cells and TAMs, with increased expression in macrophages leading to the inhibition of anti-tumor T cell prolif-
eration[190]. Consequently, Siglec-15 has become a new target for therapy based on blocking the immune checkpoint, 
despite the absence of published studies to comprehend all its functions in PC[190,191]. Sun et al[191] describe Siglec-15 
as a potential therapeutic target for cancer based on ongoing clinical studies[191]. Therefore, as analyzed by Chen et al
[192], Siglec-15-based therapy may offer a promising solution for PC patients resistant to anti-PD-1 treatment[192]. It can 
be utilized alone or in conjunction with other immune checkpoint blockade techniques, resulting in increased infiltration 
of CD8+ T cells into the TME[192].

Another growing immunotherapy technique in cancer treatment is ACT, based on the ex vivo manipulation of T cells to 
expand their anti-tumor activity[193]. After manipulation, these cells are reinserted into the individual to exert more 
potent anti-tumor effects[193]. Despite the various factors contributing to resistance to immunotherapy in PC, impacting 
the efficiency of ACT for this type of cancer, the primary obstacle remains the immunosuppressive and challenging-to-
access TME, hindering the infiltration of immune cells[72]. In this regard, Rataj et al[194] demonstrated a promising 
approach to overcoming resistance by developing a fusion protein with the extracellular domain of the PD-1 receptor 
fused to the intracellular T-cell activation domain of CD28[194]. This fusion protein was implanted into CD4+ T cells 
using the ACT technique. When these modified cells were introduced into the TME, the PD-1 domain interacted with its 
ligand PD-L1[194]. However, instead of inducing immunosuppression, the activated CD28 protein coupled to PD-1 
resulted in increased antitumor activity of CD4+ T cells through enhanced cytokine secretion and stimulation of the 
cytotoxic activity of CD8+ T cells[194].

Still from the perspective of manipulating the extrinsic and intrinsic mechanisms associated with T cells, even more 
recent studies have concentrated on the use of nanomedicines to overcome resistance to immunotherapy[195]. In this 
context, Jung et al[196] conducted a study in humanized mice employing an siRNA nanoparticle targeting PD-L1 as the 
therapeutic approach[196]. The study yielded promising results, leading to an increase in CD8+ T cells in the TME as a 
result of the blockade of PD-L1 induction caused by the nanoparticle absorbed by cells in the TME[196].

When analyzing molecular pathways, it is known that the use of cytokines as immunomodulators is an immunothera-
peutic strategy employed in cancer treatment, but it has not yielded promising responses when used alone in PC, 
primarily due to immune resistance mechanisms[197]. Many therapies utilizing cytokines with immunosuppressive 
activity are employed as adjuvants to other immunotherapy models[197]. Nonetheless, more targeted studies invest-
igating the action of specific cytokines may lead to new strategies for addressing immunotherapy-resistant PC.

With this in mind, Huang et al[198] conducted a study with the aim of inhibiting the immunosuppressive activity 
resulting from the action of IFN-γ, a pivotal cytokine in the process of resistance to immunotherapy[198]. According to 
this analysis, the action of gamma interferon leads to the production of proteins such as indoleamine 2, 3-dioxygenase 1 
and CD274, which possess immunosuppressive properties and are included in the category of therapies based on 
inhibiting the immune checkpoint[198]. The study utilized dinaciclib to block the expression of these proteins induced by 
IFN-γ in murine models and achieved promising results in curtailing the immunosuppressive activity of IFN-γ, reducing 
cancer immune invasion, and blocking the expression of immune checkpoint[198].

In a similar vein, Tsukamoto et al[199] demonstrated in a study involving 235 patients that TNF-α overexpression is 
directly associated with increased PD-L1 expression in TME cells, leading to immunosuppression through the neutral-
ization of cytotoxic T cells[199]. Consequently, anti-TNF-α may also exhibit promising efficacy in addressing resistance to 
existing immunotherapy in PC by impacting the PD-L1 receptor, which is immunosuppressive and also a target of 
immune checkpoint blockade[199]. Nevertheless, additional clinical trials aimed at analyzing the impact of anti-TNF-α on 
PD-L1 expression are still necessary.

Combined immunotherapy
The mechanisms of resistance to immunotherapy in the treatment of PC have brought a new challenge for medicine: To 
identify therapeutic combinations that help overcome resistance, thus increasing the efficiency of immunotherapy and 
improving the patient's prognosis[200].

From this perspective, Mehla et al[201] utilized a murine monoclonal antibody (mAb-AR20.5), which modulates the 
TME by binding to MUC1, in conjunction with PolyICLC (a vaccine adjuvant) and anti-PD-L1 in their murine models for 
the treatment of PC[201]. The combined therapy induced superior anti-tumor activity, leading to the rejection of tumor 
cells expressing MUC1 and heightened cytotoxic activity of CD8+ T cells[201]. This resulted in immune modulation and 
promising tumor control for PC through the use of an TME modulator, an immune checkpoint blocker and a vaccine 
adjuvant[201].

In the same context, it is pertinent to examine the promising aspect of using TME modulators alongside immune 
checkpoint inhibitors, as demonstrated by Rana et al[202]. They conducted a preclinical study with murine models, 
employing an inhibitor of the TGF-β receptor, responsible for TME progression, and an immune checkpoint blocker (anti-
PD-L1/anti-CTLA-4)[202]. The study resulted in the inhibition of tumor growth, enhanced CD8+ T cell infiltration, and 
increased the population of M1 macrophages in the TME[202]. Additionally, Cappellesso et al[203] adopted a similar 
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Table 1 Preclinical studies of combined immunotherapy for resistant pancreatic cancer

Methods Combination Results Ref.

TME modulator + Vaccine + ICI mAb-AR20.5 + PolyICLC + 
anti-PD-L1

Rejection of tumor cells expressing MUC1 and increased cytotoxic 
activity of CD8+ T cells

[201]

TME modulator + ICI TGF-β inhibitor + anti-PD-
L1/anti-CTLA-4

Inhibited tumor growth, improved CD8+ T cell infiltration and increased 
the population of M1 macrophages in the TME

[202]

TME modulator + ICI SLC4A4 inhibitor + anti-PD-
1/anti-CTLA-4

It reduced the acidity of the TME, increased the infiltration of CD8+ T 
cells and the number of M1 macrophages

[203]

TME modulator + ICI MEK and STAT3 inhibitors + 
anti-PD-1

Attenuated the pro-inflammatory CAF myofibroblastic phenotypes 
expressing IL6/CXCL1 and increased the recruitment of CD8+ T cells

[204]

IL-17 signaling blocker + ICI Anti-IL17+ anti-IL17R + anti-
PD-1/anti-CTLA-4

Favored the activation of CD8+ T cells, achieved a 50% response rate and 
increased survival

[205]

NKT activation + recombinant 
oncolytic virus + ICI

NKT + VSV-IL-15 + anti-PD-1 It increased overall tumor regression, survival time, NK/T CD8 cell 
infiltration and resulted in complete tumor elimination in 20% of the 
mice

[206]

Vaccine + ICI + TME modulator 
+ chemotherapy

GVAX + anti-PD-1 + anti-CSF-
1R + gemcitabine

It increased the number of infiltrated CD8+T cells, reduced the infilt-
ration of myeloid cells, myeloid-derived suppressor cells and reduced 
the number of TAMs

[207]

TGF-β: Transforming growth factor-β; TME: Tumor microenvironment; ICI: Immune checkpoint inhibitor; MUC1: Mucin 1; CAF: Cancer-associated 
fibroblast; CXCL1: C-X-C chemokine ligand 1; NKT: Natural killer T cell; TAMs: Tumor-associated macrophages; PD-1: Programmed cell death-1; IL-6: 
Interleukin-6; NK: Natural killer.

approach by analyzing the single-cell RNA of individuals with PC and identifying solute carrier family 4 member 4 
(SLC4A4), primarily responsible for maintaining the acidity of the TME and, consequently, tumor progression[203]. This 
led to the association of an SLC4A4 inhibitor with ICI, such as anti-PD-1/anti-CTLA-4, in studies with mice, resulting in 
improved survival and overcoming resistance mechanisms that impact treatment alone[203]. Finally, Datta et al[204] 
employed mitogen-activated protein kinase/extracellular signal-regulated kinase and signal transducer and activator of 
transcription 3 inhibitors, crucial components of existing resistance mechanisms in the TME, in conjunction with anti-PD-
1 in mice[204]. This approach yielded promising responses in terms of enhanced survival and increased anti-tumor 
response, driven by the greater recruitment of cytotoxic T cells in the TME[204]. These preclinical studies underscore the 
significant clinical potential of combining TME modelers with immune checkpoint blockers, opening up new possibilities 
for innovative therapies in the treatment of resistant PC.

In the context of resistance mediated by immunosuppressive molecules, Zhang et al[205] demonstrated the 
involvement of IL-17 in the process of triggering the inactivation of CD8+ T cells and shaping the TME[205]. Subsequent 
to this analysis, a study in murine models was established utilizing a triple combination of anti-IL17/IL17R/PD-1 
antibodies[205]. This approach resulted in a reduction in tumor size based on increased sensitization of the TME to the 
action of ICI, a fact corroborated when replacing anti-PD-1 with anti-CTLA-4 in the combination[205]. Similarly, Nelson et 
al[206] devised a triple combination involving natural killer T cells, a recombinant oncolytic virus designed to express the 
cytokine IL-15, and anti-PD-1[206]. The study's triple therapy tested in mice exhibited promising results, including 
prolonged tumor regression and complete elimination of the tumor in 20% of the mice[206].

Another compelling approach was demonstrated by Saung and Zheng[207] using a cancer vaccine (GVAX) in 
conjunction with anti-PD-1, anti-CSF-1R, and the chemotherapy drug gemcitabine in murine models[207]. The 
combination yielded enhanced survival of the mice, along with more efficient infiltration of anti-tumor cells and a 
reduction in myeloid cells[207]. Table 1 summarizes all the pre-clinical studies reported and their respective findings.

The realm of combined immunotherapy to overcome resistant PC has expanded in recent years, and clinical trials are 
already underway to tackle this significant challenge. Thus, Bockorny et al[208] conducted a phase IIa study to assess the 
efficacy of the combination of a CXCR4 blocker, BL-8040 (motixafortide), and pembrolizumab (anti-PD-1) for the 
treatment of 37 patients[208]. They achieved a disease control rate of 34.5% and an increase in OS of 7.5 months, 
attributed to greater infiltration of anti-tumor CD8+ T cells and a reduction in immunosuppressive cells such as MDSCs 
and T regs[208]. Similarly, Overman et al[209] used a Bruton's TKI combined with anti-PD-1 in a randomized phase II 
clinical trial with 40 patients[209]. Although the combination was tolerated and showed limited clinical activity, with a 
disease control rate of only 21.1%, blood analysis revealed a reduction in MDSCs[209]. Consequently, these clinical trials 
reveal a relevant potential, paving the way for new studies aimed at manipulating the TME in combination with ICI and 
other treatment models, seeking improved results for the treatment of patients with PC.

Finally, it is important to analyze the clinical studies carried out with a combination of different PC vaccine models. 
From this perspective, Le et al[210] employed a combination of the GVAX vaccine and CRS-207 (live attenuated 
mesothelin-expressing Listeria monocytogenes) in a clinical trial with 90 patients[210]. They observed prolonged survival in 
these patients treated with this vaccine combination, with little toxicity in the therapeutic process[210]. Similarly, Nair et 
al[211] used the same immunotherapy combination in a phase IIa clinical trial with 38 patients[211]. They found that 
patients with higher CD8+ T expression achieved a longer OS under this therapeutic regimen[211]. Table 2 summarizes 
all the clinical studies reported and their respective findings.
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Table 2 Clinical studies of combined immunotherapy for resistant pancreatic cancer

Combination Pacients Phase Results Identification Ref.    
   

Motixafortide (CXCR4 blocker) + 
pembrolizumab (anti-PD-1)

37 IIa The disease control rate was 34.5%, survival rate of 7.5 months, a 
more efficient infiltration of CD8+ T cells and a reduction in 
MDSCs

NCT02826486 [208]

Acalabrutinib (BTK inhibitor) + 
pembrolizumab (anti-PD-1)

40 II The disease control rate was 21.1%, the survival rate was 1.4 
months and there was a reduction in MDSCs

NCT02362048 [209]

GVAX + CRS-207 90 II The disease control rate was 31%, the survival rate was 6.1 months 
and there was an increase in mesothelin-specific CD8+ T cells

NCT01417000 [210]

GVAX + CRS-207 200 IIb The survival rate of 175 days (average) and a more efficient infilt-
ration of CD8+ T cells

NCT02004262 [211]

CXCR4: C-X-C chemokine receptor 4; MDSCs: Myeloid-derived suppressor cells; BTK: Bruton's tyrosine kinase; PD-1: Programmed cell death-1.

CONCLUSION
In summary, PC has evolved into a complex challenge for the medical community, given the intricate resistance to 
immunotherapy treatments and other applied therapies. Due to its distinctive tumor environment coupled with 
underlying genetic and immunosuppressive factors, various mechanisms of opposition to immunomodulatory methods 
manifest, with the primary one associated with immune checkpoint inhibitors. Given this perspective, it is imperative to 
progress to unexplored stages, elucidating and presenting solutions that enable science to overcome the challenges posed 
by this demanding oncological model. In this context, emerging approaches aimed at modulating the TME to reduce 
immunosuppression are proving promising, as are innovative techniques for modulating the immune system. The goal is 
to enhance the efficacy and infiltration of anti-tumor cells by manipulating the intrinsic and extrinsic systems within the 
immune system. Based on these considerations, a combination of these techniques is feasible to achieve more auspicious 
prognoses and results, as evidenced in clinical studies exploring the efficacy of a combination of a CXCR4 blocker and 
pembrolizumab, yielding promising results, and the combination of two vaccine models, such as GVAX and CRS-207. In 
this way, a new path is emerging that presents itself as a promising prospect for overcoming the resistance to immuno-
therapy present in the treatment of PC.
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