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Abstract
Solid malignancies have to develop their own blood 
supply for their aggressive growth and metastasis; a 
process known as tumor angiogenesis. Angiogenesis 
is largely involved in tumor survival, progression and 
spread, which are known to be significantly attributed to 
treatment failures. Over the past decades, efforts have 
been made to understand the difference between nor-
mal and tumor vessels. It has been demonstrated that 
tumor vasculature is structurally immature with chaotic 
and leaky phenotypes, which provides opportunities for 
developing novel anticancer strategies. Targeting tumor 
vasculature is not only a unique therapeutic interven-
tion to starve neoplastic cells, but also enhances the 
efficacy of conventional cancer treatments. Vascular dis-
rupting agents (VDAs) have been developed to disrupt 
the already existing neovasculature in actively growing 
tumors, cause catastrophic vascular shutdown within 
short time, and induce secondary tumor necrosis. VDAs 

are cytostatic; they can only inhibit tumor growth, but 
not eradicate the tumor. This novel drug mechanism has 
urged us to develop multiparametric imaging biomark-
ers to monitor early hemodynamic alterations, cellular 
dysfunctions and metabolic impairments before tumor 
dimensional changes can be detected. In this article, 
we review the characteristics of tumor vessels, tubulin-
destabilizing mechanisms of VDAs, and in vivo  effects 
of the VDAs that have been mostly studied in preclinical 
studies and clinical trials. We also compare the differ-
ent tumor models adopted in the preclinical studies on 
VDAs. Multiparametric imaging biomarkers, mainly diffu-
sion-weighted imaging and dynamic contrast-enhanced 
imaging from magnetic resonance imaging, are evalu-
ated for their potential as morphological and functional 
imaging biomarkers for monitoring therapeutic effects of 
VDAs.
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INTRODUCTION
For non-surgical anticancer strategies such as convention-
al radiotherapy and chemotherapy, the main disadvantage 
is lacking specificity for cancer tissue, i.e. concomitant 
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cytotoxic effects on normal tissues. In order to find more 
selective treatments, researchers have made efforts to 
exploit morphological, physiological and microenviron-
mental differences between normal and malignant tissues, 
including microvasculature, oxygenation and necrosis. 
One of  the most prominent differences lies in the tumor 
neovasculature[1]. 

Tumor vasculature is a crucial component of  patho-
physiology in solid tumors, which affects growth, metas-
tasis and therefore, response to therapy. Compared with 
the normal vasculature, tumor vessels are less mature in 
structure and leakier, where blood flow is spatially and 
temporally heterogeneous and often compromised. Fur-
thermore, hyperpermeability of  the vascular wall and lack 
of  functional lymphatics within tumors elevate interstitial 
fluid pressure in solid tumors[2,3]. The molecular mecha-
nisms of  abnormal tumor vasculature may result from the 
imbalance between pro- and antiangiogenic regulating fac-
tors in tumor as well as host stromal cells[4]. Such vascular 
characteristics of  solid tumors are sufficiently different 
from those of  normal tissues and thus provide a unique 
target for tumor treatment[1]. 

Drugs developed for vascular targeting therapies can 
be divided into two different groups: antiangiogenic agents 
for inhibiting the formation of  new vessels and vascular 
disrupting agents (VDAs) for destroying the existing ves-
sels[5]. Hallmark characteristics with VDAs are selective 
reduction in tumor blood flow, induction of  ischemic 
tumor necrosis, presence of  viable neoplastic cells at the 
tumor periphery, and effect on delaying tumor growth[6]. 
According to their action mechanisms, VDAs can be 
further categorized into ligand-directed VDAs and small 
molecule VDAs. Small molecule VDAs include flavonoids 
such as 5,6-dimethylxanthenone-4-acetic acid (DMXAA/
ASA404), and tubulin-destabilizing agents[7]. As a tubulin-
destabilizing VDA, cis-1-(3,4,5,-trimethoxyphenyl)-2-(4’-
methoxyphenyl)ethene-3’-0-phosphate or combretastatin 
A-4-phosphate (CA4P/Oxi2021) is most representative, 
and has been under phase Ⅲ clinical trials.

Unlike other conventional chemotherapies, VDAs are 
cytostatic rather than cytotoxic to malignant cells. They 
starve and indirectly kill tumor cells by depleting their 
blood supply, and can only delay tumor growth but not 
eradicate the tumor. Given this novel action mechanism, 
imaging biomarkers have been elaborated to detect and 
quantify non-invasively VDA-induced morphologi-
cal, functional and metabolic alterations. Relative to the 
conventional clinical endpoints such as mortality and 
morbidity, these imaging biomarkers work in a more 
prompt, predictable and precise way[8,9]. Hereby, the term 
biomarker is adopted more broadly than its traditional 
definition, i.e. a biomarker can be derived not only from 
biofluid samples with the techniques of  biochemistry and 
molecular biology, but also from modern imaging metrics 
including magnetic resonance imaging (MRI), computed 
tomography (CT), positron emission tomography (PET) 
or single photon emission tomography (SPECT), ultra-
sound, and optical imaging[10]. In this article, we review 

the action mechanisms of  tubulin-destabilizing VDAs 
and the preclinical and clinical results of  two lead VDAs, 
CA4P and ZD6126 (N-acetylcolchinol-O-phosphate), 
with the emphasis on the role of  MRI in the preclinical 
evaluation of  VDA effects. 

VDAs
Pathophysiological features of tumor vessels as targets 
of VDAs
Oxygen diffusion distance from capillaries is only 150-200 
μm. Because of  the unrestrained growth, tumor cells 
growing outwith this effective diffusion distance become 
hypoxic and eventually necrotic[11-13]. Therefore, a tumor 
has to develop its own vessels to maintain its growth, i.e. 
angiogenesis, when its diameter exceeds about 0.5 mm[14]. 

These newly developed tumor vessels are often imma-
ture: the endothelial cells are irregular-shaped with larger 
interendothelial conjunctions[15,16] and poor connections 
between the endothelial lining and irregular basement 
membrane[17,18]. Due to these characteristics, tumor ves-
sels are hyperpermeable and interstitial fluid pressure is 
higher than in normal tissues. Such high pressure is also 
contributed by the inefficient drainage with dysfunctional 
tumor lymphatics, which can be caused by rapid prolif-
eration of  tumor cells in a confined space, which creates 
mechanical stress that compresses intratumor lymphat-
ics[19,20]. Besides, malignant tumors are known to feature 
with lymphatic deficiency or retarded development of  
lymphatics[19,20]. Tumor vessels are tortuous, disorganized 
and non-hierarchical, with complex branching of  hetero-
geneous length and diameters, leading to high resistance 
to perfusion[21]. Under such conditions, any slight fluctua-
tion of  blood perfusion may cause catastrophic events in 
tumor vessels, while it has little effect on normal tissue, 
because mature vessels are more robust against perfusion 
changes due to efficient regulating mechanisms[21]. 

Role of cytoskeleton in the regulation of endothelial 
barrier function
The endothelial barrier keeps the blood cells from expo-
sure to surrounding tissues. Endothelial cells (ECs) line 
the inner surface of  blood vessels and rely on their cyto-
skeleton to maintain the structural integrity of  confluent 
monolayer and flat shape. Dysfunction in cellular shape 
can cause subsequent vascular hyperpermeability[22]. 
The cytoskeleton consists of  three distinct components: 
microtubules, actin microfilaments and intermediate fila-
ments[23], and the former two are associated via linking 
proteins, which, in turn, interact with these two cytoskel-
etal components for signaling[24]. As the scaffolding of  
the cell, the cytoskeleton plays a vital role in cell motility, 
division, shape maintenance, and signal transduction[24]. 
In tumor vessels, actin is ill-developed and thus the main-
tenance of  cell shape depends more on microtubules[25,26]. 

The delicate dynamic balance between the centripetal 
tension and centrifugal force to ensure the cellular shape 
is finely modified by cytoskeleton and intercellular junc-

� January 28, 2011|Volume 3|Issue 1|WJR|www.wjgnet.com



tional complexes of  membrane-binding proteins that 
provide intercellular adherence, which is regulated by sev-
eral signaling pathways[22]. Reorganization of  actin leads 
to the assembly of  bundled stress fibers, and therefore, 
increased cellular contractility. The main constituent of  
intercellular junctions is vascular endothelial (VE) cad-
herin/β-catenin complex anchored to actin[22]. Disruption 
of  the VE-cadherin/β-catenin pathway causes the loss 
of  intercellular junctional organization, dysfunction of  
monolayer barrier, and eventual rounding up of  ECs[27]. 

Mechanisms of VDA action
The mechanisms of  action with VDAs still need to be 
fully elucidated. It has been speculated that CA4P binds 
to tubulin of  microtubule at or close to the colchicine-
binding site[28]. Unlike the antitumor effect with colchicine 
that is only achievable at a dose close to the maximum 
tolerated dose (MTD), the effect with VDAs is observed 
within a wide therapeutic window lower than the MTD. 
Their ability to selectively target the cytoskeleton and 
compromise the endothelial intercellular junctions is vital 
to their mechanisms of  action[7]. CA4P has been most ex-
tensively studied. Therefore, we take CA4P as an example 
to discuss the potential molecular and cellular mecha-
nisms of  action, which are likely to be applicable to other 
tubulin-binding VDAs such as ZD6126. 

On a long-term basis, CA4P inhibits the microtubule 
dynamics, interferes with the mitotic spindle function 
and leads to cell cycle arrest, which results in prolifera-
tion blockage and/or apoptosis[29]. Although such a direct 
cytotoxic or antiproliferative effect may contribute to the 
antivascular effects of  CA4P, it would be too slow to ac-
count for the rapid vascular shutdown observed in vivo, 
which can occur within minutes after CA4P treatment in 
animal models[30]. Rather, immediate morphological and 
functional changes are more likely to be involved in such 
vascular collapse.

In vitro, it has been shown that Rho-GTPase plays an 
important role in the capillary-like collapse (Figure 1). 
Belonging to signaling G protein (GTPase), Rho proteins 
(Ras homologous proteins) are interconnected with mi-
crotubules[31]. The members of  the Rho-GTPase family 
are essential in converting and amplifying external signals 
into cellular effects, including regulation of  actin dynam-
ics and cadherin/β-catenin pathway[32,33]. 

CA4P selectively binds to microtubules and depoly-
merizes tubulin, which results in the activation of  Rho-
GTPase and its associated Rho kinase[34-36] (Figure 1). 
Activation of  the Rho/Rho-kinase pathway may cause 
downstream morphological and/or functional changes in 
ECs, which can lead to dysmorphism and hyperperme-
ability: (1) assembly of  actin stress fibers and fortified 
contractility of  ECs[24]; (2) disruption of  the VE-cad-
herin/β-catenin complex to induce the loss of  intercellu-
lar adhesion and the appearance of  paracellular gaps[22]; (3) 
blebbing of  ECs with regulation of  stress-activated pro-
tein kinase p38 (SAPK-2/p38) to bring about increased 
monolayer permeability and resistance to blood flow[36,37]; 

and (4) vasoconstriction to give rise to increased geometric 
resistance to blood flow[38]. In addition, the direct bind-
ing of  CA4P to tubulin compromises the integrity of  
cytoskeleton, and morphological changes of  endothelial 
monolayer architecture further deteriorates[7,39] (Figure 1). 

With the increased vascular permeability, the conse-
quent leakage of  plasma macromolecule into extravascu-
lar extracellular space (EES) results in fluid loss, increased 
hematocrit and formation of  rouleaux[40]. As a result, the 
resistance to blood flow is increased. After EC damage, 
direct exposure of  basement membrane to flowing blood 
initiates coagulation and hemorrhage[40]. Accordingly, the 
drop in blood flow induces hypoxia and deprivation of  
nutrients and subsequent necrosis of  tumor (Figure 1).

In vivo, the increase in permeability may be the key 
event responsible for the VDA-induced vascular col-
lapse[41]. Although the primary effects of  CA4P have 
been confirmed in vivo, including morphological changes 
in ECs, such as blebbing[42] and increased permeability 
and vasoconstriction in arterioles[38], direct evidence of  
mechanisms via the activation of  Rho/Rho-kinase path-
way are still sparse. However, the CA4P-induced vascular 
shutdown effect is attenuated in combination with Rho 
or Rho kinase inhibitors[7,36,43], while amplified in combi-
nation with an anti-VE-cadherin agent[44], which may be 
considered indirect proof  of  the link between the cyto-
skeletal remodeling and permeability.

Dose of VDAs
Some VDAs are orally active, e.g. ABT-751[39] and CYT 
997[45], while intraperitoneal (ip) and intravenous (iv) ad-
ministrations are most frequently applied in the treatment 
of  tumors in rodent models. The ip injection is conve-
nient for the handing of  rodents, while it fails to mimic 
the clinical practice where iv injection is applied. Success-
ful iv injection ensures an effective dose of  VDA in the 
systemic circulation.

For single doses of  CA4P, the MTD is estimated to be 
around 68 mg/m2 in patients[46], which gives the clinically 
relevant dose of  about 10 mg/kg in rats[47,48]. In mice, the 
roughly estimated MTD is 1000-1500 mg/kg[49]. However, 
the lowest effective dose is 25 mg/kg, which is already 
higher than the MTD in humans. Therefore, the CA4P ef-
fect with higher doses in mice is difficult to translate into 
humans[50]. 

For single doses of  ZD6126, the MTD in patients is 
about 112 mg/m2, which gives the clinically relevant dose 
of  about 10 mg/kg in rats[51]. In mice, the MTD is about 
750 mg/kg[52]. 

The tumor response to various VDAs depends mainly 
on drug type, tumor model and dosing regimen in pre-
clinical studies. Generally speaking, the higher dose of  
VDAs can induce more striking antivascular effect, while 
the results cannot be convincingly translated into clinical 
practice if  the dose for animal models exceeds the MTD 
in patients. Therefore, the results with clinically relevant 
doses in tumor models may better predict the outcomes 
in patients. 
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In vivo effect
After VDA treatment, a rapid increase in tumor vascular 
permeability triggers the catastrophic cascade of  vessel 
collapse in vivo. A decrease in blood flow occurs almost 
immediately, and reaches the maximum in the following 
several hours. The collapsed blood supply induces central 
necrosis of  the tumor. However, tumor sparing still ex-
ists at the periphery, leading to relapse after single-dose 
treatment[53-56]. The efficacy of  such therapy relies largely 
on how fast blood supply is recovered. This restoration 
is unavoidable, because the tumor cells at the periphery 
can obtain a direct supply of  oxygen and nutrients from 
neighboring normal tissues and engulfed normal vessels 
during the fast growth of  malignancies[7,56]. Thus, growth 
of  the tumor is only delayed due to the compromised 
blood supply and it cannot be eradicated. 

Histopathologically, VDA-induced necrosis is located 
in the center of  the tumor with a characteristic viable 
rim of  a few cell layers adjacent to the normal tissue sur-
rounding the tumor mass, which persists irrespective of  
differences in potency and efficacy of  VDAs. In addition, 
hemorrhage often occurs together with necrotic tumor 
cells several hours after treatment[57]. Besides, the infiltra-
tion by inflammatory leukocytes may also contribute to 
the vascular-disrupting effect[41,42]. 

After VDA treatment, tumors may become phenotypi-
cally more aggressive due to hypoxia. With the regulation 
of  hypoxia inducible factor 1α (HIF-1α), expression 
of  angiogenic gene is activated and the level of  vascular 
endothelial growth factor (VEGF) is thus increased[55,58]. 
Therefore, antiangiogenic therapy may be complementary 
to VDA, providing dual targeting at both preexisting and 
new vessels.

ANIMAL TUMOR MODELS
In vivo cancer research in clinically relevant animal models 
bridges the in vitro studies of  cell culture and biochemi-
cal assays with the more costly, time-consuming clinical 
practice. Considering the greater costs and stricter ethical 
regulations on human studies, a variety of  rodent tumor 
models have been introduced particularly in combination 
with multiparametric imaging biomarkers to envisage the 
internal real-life events in experimental VDA research. 

These animal models with various tumor cell lines 
can be classified according to several features. For ex-
amples, they can be categorized by locations such as 
subcutaneous[51,59], intramuscular[60-62] or visceral organ[57] 
tumors; by destination relative to source graft such as 
orthotopic[63-65] or ectopic tumors; by carcinogenesis such 
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Figure 1  Schematic mechanisms of action with tubulin-binding vascular disrupting agents. VE: Vascular endothelial; VDAs: Vascular disrupting agents; EC: 
Endothelial cell.
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as primary[26,48,65,66] or secondary tumors; by graft origins 
such as allograft[63] or xenograft human[61,67,68] or animal[69] 
tumors; and by immune status of  tumor recipient such as 
the tumors growing in immunocompetent or immunode-
ficient[64,68] animals. 

A wide range of  diverse VDA effects have been 
observed in various tumor models[70,71]. Tumor microen-
vironment and host-tumor interaction may account for 
such discrepancy in responsiveness. Besides tumor cells 
with gene mutations, host stromal cells are also greatly in-
volved in the tumor initiation, progression, invasion, and 
metastasis. For instance, with the expression of  VEGF, 
stromal fibroblasts play a role in the formation and main-
tenance of  tumor vessels[2]. Accordingly, when transplant-
ed into various host locations or organs, the same neo-
plastic graft may have different angiogenesis and vascular 
functions. Thus, response to the same treatment may dif-
fer depending on tumor location and host-tumor interac-
tion, because the organ-specific regulation of  the balance 
between pro- and anti-angiogenic factors is responsible 
for the different angiogenesis activities[2,4,62,72]. As a result, 
tumor models of  orthotopic transplantation into visceral 
organs of  host animals with intact immune functions are 
thought to be more relevant to the conditions of  clinical 
patients in terms of  better mimicking tumor microen-
vironment, therefore, the treatment outcomes are more 
translatable into patients[62,72]. 

For imaging studies of  VDA effects in small rodents, 
image quality has been shown to be satisfactory, even 
for organs susceptible to motion artifacts with non-
respiratory-gated acquisition at a clinical magnet[56]. How-
ever, imaging in mice is more challenging than in rats, 
because the body weight of  a mouse is about one-tenth 
of  a rat, which results in lower signal-noise ratio (SNR) 
and poorer spatial resolution. In addition, success rate is 
sometimes compromised for the repetitive cannulations 
for intravenous injection of  VDAs or contrast agents in 
mice during the dynamic follow-up of  treatment moni-
toring, leading to some missing data. 

MEASURING TUMOR RESPONSE 
TO VDAs WITH IN VIVO IMAGING 
BIOMARKERS
VDAs have been shown to induce vascular shutdown in 
tumors within minutes, and how to evaluate accurately and 
promptly such effects remains a challenge to preclinical re-
search and clinical practice. Ineffective treatment may not 
only hamper or delay the effective alternative therapies, but 
also cause unnecessary side effects and waste of  resources. 
Considering the presence of  possible non-responders to 
certain therapies, it is of  immense importance to individu-
alize the treatment regimens, in which early feedback after 
VDA treatment is deemed crucial. 

For the assessment of  anticancer effects, traditional 
clinical endpoints are difficult to quantify and may re-
quire lengthy and larger scales to complete[8,9]. Thus, it is 

impractical to perform such endpoints in the assessment 
of  early effects with VDAs. Recently, multiparametric 
imaging biomarkers have been developed as “surrogate 
endpoints” to act as indispensable substitutes for such 
clinical endpoints. The quantitative structural, functional 
and metabolic information derived from these imaging 
biomarkers may enable more comprehensive assessments 
and predictions of  clinical outcomes, and in this case, the 
possibility for timely therapeutic justification and adjust-
ment in oncological patients under the VDA regimen. 

Out of  various imaging modalities, MRI has been 
most frequently applied for the evaluation of  VDA effects 
due to its advantages such as excellent spatial and tempo-
ral resolution, imaging in arbitrary planes, no ionizing radi-
ation and ability to provide morphological, functional and 
metabolic information (with MR spectroscopy) for serial 
post-treatment follow-up. In the following section, we fo-
cus on the role of  MRI in the evaluation of  VDAs and its 
validation with other robust and specific techniques. 

Clinical and high-field-strength MRI scanners
For preclinical research and clinical trials of  VDAs, some 
animal studies have been performed with clinical 1.5 T 
MRI scanners[56,59,73], and more studies on small-bore re-
search scanners[51,53,62,64,68,69,74,75]. The clinical and animal 
scanners are different in terms of  availability in research 
centers, accessibility during working hours, usability, diffi-
culty in method development, and translatability. Most im-
portant, with some parametrical optimization of  built-in 
sequences, clinical scanners yield more translational results 
from small rodents to clinical patients than do dedicated 
animal scanners. 

Recently, 3.0 T clinical scanners have become widely 
available with a trend for introducing even higher field 
whole body scanners (7-11 T) throughout the industry, 
since the safety approval of  3.0 T scanners in patients 
in 2002[76]. For intracranial tumors, 3.0 T scanners have 
shown better SNR, spatial and temporal resolution, 
contrast-to-noise ratio, and spectral resolution than 1.5 T 
scanners with the same acquisition parameters[76-79]. How-
ever, the applications in other regions of  the body, the 
added value of  3.0 T compared with 1.5 T scanners is still 
controversial, due to issues such as specific absorption rate 
and motion and susceptibility artifacts. The modification 
of  acquisition parameters and development of  new coils 
may lead to wider applications in body imaging with 3.0 T 
MRI[80,81]. 

Biomarkers from conventional MRI sequences
Conventional MRI biomarkers are derived from T2-
weighted imaging (T2WI), T1-weighted imaging (T1WI) 
and contrast-enhanced T1WI (CE-T1WI). Despite the 
topographic information such as tumor location, shape 
and volume, the quantification of  tumor signal intensity 
(SI) on T2WI can help to detect VDA-induced hemor-
rhage[64]. SI on T2WI can also help to differentiate the 
viable tissue from necrosis on a pixel-based image texture 
analysis[82]. The heterogeneous SI on T2WI after VDA 
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treatment is associated with (hemorrhagic) necrosis and 
complicated by evolving stages of  necrosis and/or deoxy-
hemoglobin. Accordingly, SI change in T2WI is not con-
sidered a consistent imaging biomarker of  hemorrhagic 
necrosis[51,71]. 

To date, the most frequently used surrogate endpoint 
for therapeutic evaluation of  tumor response is the change 
in tumor size[83]. Tumor size can be measured linearly 
with 1D or 2D longest axis, although it may often lead to 
the overestimation of  tumor volume of  irregular shape. 
Manual delineation of  tumor in tumor-containing slices 
or computer-assisted 3D analysis is more accurate for the 
estimation of  tumor volume. Tumor volume of  3D analy-
sis is predictive of  survival in patients with tumors[84,85]. 
However, the change in tumor size/volume always falls 
as a late event behind the earlier and complex changes in 
microstructure and function induced by the downstream 
molecular and cellular events after VDA treatment[42,57], 
because VDAs only slow down the tumor growth without 
tumor eradication or size reduction[86]. Therefore, tumor 
size/volume is not a suitable imaging biomarker for very 
early assessment of  the outcomes with VDAs (Figure 2).

Enhancement ratio is defined as the enhancement de-
gree of  tumor post-treatment on CE-T1WI relative to that 
before treatment[56]. It largely reflects the proportional dis-
tribution of  contrast agent in blood vessels and EES of  
viable tumor tissues, and can be used for roughly assess-
ing tumor vascularity, but it lacks the specific physiological 
meaning (Figure 2). 

The necrosis ratio as an imaging biomarker for the 
evaluation of  anticancer therapy has been endorsed as well 
as tumor size by the European Association for the Study 
of  the Liver and the American Association for the Study 
of  Liver Diseases[87,88]. The necrosis ratio can be measured 
on CE-T1WI, exploiting the perfusion deficit caused by 
the vascular shutdown in the non-viable tumor tissue  
(Figure 2). However, in this way, the necrosis ratio with 
non-specific contrast agent is underestimated due to in-
ward diffusion of  the contrast agent from the viable rim to 
the necrotic center of  the tumor, when correlated with the 
necrosis ratio measured by histopathology[56,89]. Another 
method is to delineate the necrotic part on dynamic con-
trast-enhanced MRI (DCE-MRI) in order to minimize the 
diffusion of  contrast agent[90]. Nevertheless, DCE-MRI has 
a relatively poor spatial resolution despite its high temporal 
resolution, i.e. the viable and necrotic tumor is sometimes 
difficult to discern on DCE-MRI. It needs to be explored 
which way to determine necrosis ratio can correlate better 
with the histopathological results. As an alternative to his-
topathology, the necrosis ratio from MRI may provide an 
imaging tool for assessing necrosis for the serial follow-up 
of  patients after reliable necrosis develops. The ultimately 
reliable determination of  necrosis may only be realized 
with the use of  necrosis-avid contrast agents, which are 
not clinically available[91,92].

Conventional MRI biomarkers are easier to acquire 
and analyze, while they only reveal incomplete pathophysi-
ological processes, and are often too late compared with 
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Figure 2  In vivo magnetic resonance imaging findings of an implanted tumor in rat liver. Before treatment, the tumor (arrows) appeared hyperintense on T2WI 
(A1); hypointense on T1WI (A2); strongly enhanced on CE-T1WI (A3); and slightly hypointense on ADChigh (b = 500, 750, 1000 s/mm2) (A4). At 24 h after the intrave-
nous treatment with CA4P at 10 mg/kg, obvious vascular shutdown was observed. The tumor (arrows) was still hyperintense on T2WI (B1) and hypointense on T1WI 
(B2). On CE-T1WI, the tumor (arrow) appeared hypointense in the center with an enhanced rim of viable neoplastic cells (B3). On ADChigh map (B4), the hyperintensity 
in the center corresponded to necrosis, and the isointense ring was concordant with the viable tumor rim (arrow) on CE-T1WI. Note the viable tumor nodule at the 
periphery, shown as hyperintensity (arrowhead) on CE-T1WI (B3), and hypointensity (arrowhead) on ADChigh (B4). 
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very rapid shutdown after VDA treatment. Thus, it is im-
perative to develop more prompt, accurate, quantifiable, 
and specific imaging biomarkers for characterizing those 
early molecular and cellular changes, which can be clini-
cally applicable to depicting early functional and metabolic 
changes, offering the insight into VDA mechanisms of  ac-
tion, dictating the course of  therapy, and predicting treat-
ment outcomes. Fortunately, the recent rapid advances in 
MRI and other modalities have made such requirements 
feasible for developing functional imaging biomarkers. 

Diffusion-weighted imaging
First applied in neuroimaging, diffusion-weighted imaging 
(DWI) has rapidly evolved into a non-invasive oncological 
tool in the body, including the brain[93,94]. As a quantitative 
functional biomarker for detection and characterization of  
tumor, DWI is easy-to-perform and contrast-agent-free, 
and its innate imaging contrast is not significantly affected 
by exogenous contrast agents[95,96]. Therefore, DWI can be 
applied in patients with renal dysfunction, where contrast 
agents are contradicted, for repetitive monitoring after 
VDA treatment[97,98]. 

Basic principles: At a microscopic level, all water mol-
ecules undergo thermally driven random movement in 
three dimensions, so-called Brownian motion. Diffusion 
is a measure for the effective moving distance of  water 
molecules within a given time[99,100]. In biological tissue, the 
mobility of  water molecules are unavoidably hampered 
by their interaction with cell membranes, intracellular 
organelles and macromolecules, so that their apparent dif-
fusion coefficient (ADC) within tissues in physiological or 
pathological conditions is determined by tissue cellularity, 
tissue components, and tortuosity of  EES[101,102]. On the 
other hand, ADC is also affected by microscopic flow due 
to microcirculation within a voxel and water exchange be-
tween intracellular and extracellular compartments[8,103]. In 
general, ADC reflects the information of  cellular density 
and membrane integrity, as well as different weighting of  
perfusion components, depending on the various diffu-
sion gradients applied in the acquisition[103].

DWI can be obtained by applying two symmetrical 
diffusion-sensitizing gradients on the either side of  a 180° 

refocusing pulse to a T2-weighted sequence. In a DWI se-
quence, moving water molecules undergo a phase shift af-
ter the first diffusion gradient and their phase shift cannot 
be canceled out as for static molecules after the second 
gradient, which causes the signal loss of  moving water 
molecules on DWI. The imaging contrast between mobil-
ity-restricted and normal water molecules is thus created 
on SI[99]. For example, tumor tissues normally have higher 
cellular density, and after VDA treatment, edema with 
restricted mobility of  water and necrosis with elevated dif-
fusion in EES can be differentiated from normal tissues 
on DWI[86,104]. A diffusion gradient is characterized by the 
amplitude, duration and direction of  diffusion-sensitizing 
factor (b value with the units s/mm2), and the weighting 
of  diffusion on SI depends on b value[99]. For quantifica-

tion of  ADC, gradients are applied in three directions (X, 
Y and Z axes). However, in tissues in which mobility of  
water molecules is restricted by some structural barriers 
such as fiber bundles in the brain, diffusion anisotropy is 
quantified in more than six directions on diffusion tensor 
imaging (DTI)[105]. 

ADC-Quantification of  DWI: Frequently expressed 
in a unit of  10-3 mm2/s, ADC is more robust against the 
influence of  magnetic field strength and T2 shine-through 
effect, which facilitates intra- and inter-subject compari-
sons[106]. ADC can be quantified with the following least-
squares algorithm[99]: ADC = ln(S0/Si)/bi (1), where Si is 
the SI measured on the ith b value image and bi is the 
corresponding b value. S0 is a variable that estimates the 
intrinsic SI (for b = 0 s/mm2). In tumors, such quantifi-
cation requires at least two values in one direction, while 
more than three values are used to reduce noise[107]. ADC 
value can be generated with mono-exponential fit between 
SI and b value for each voxel, and displayed as a paramet-
ric map for all voxels[94]. 

It is important to bear in mind that intravoxel incoher-
ent motion (IVIM) may dominate ADC values in biologi-
cal tissues when lower b values are used. This means that, 
for a given voxel, not only the diffusion of  water mole-
cules contributes to its ADC, but also the microcirculation 
of  blood in capillary within the voxel[103]. In tumors, rapid 
blood flow leads to non-linearity of  ADC fitting within 
lower range of  b values, i.e. small increase in b value 
causes bigger attenuation of  SI[108,109].

For the calculation of  ADC, the usual method is to 
obtain an overall ADC fitting of  mono-exponential decay 
through a range b values from 0 to about 1000 s/mm2, 
or more specifically, flow-sensitive ADClow with lower b 
values (< 100-200 s/mm2) and diffusion-sensitive AD-
Chigh with higher b values (> 500 s/mm2) can be quanti-
fied. The difference between ADClow and ADChigh can 
be defined as ADCperfusion to assess the perfusion fraction 
roughly[59,110] (Figure 3). Taking advantage of  simplified 
calculation, mono-exponential analysis neglects the non-
linearity of  signal decay. To characterize the decay curve 
more adequately, bi- or multi-exponential models, as well 
as their alternative method, stretched model, are also ex-
plored in order to derive the perfusion fraction (f) and 
true diffusion coefficient (D). Despite the wider range 
of  b values, longer acquisition time and requirement for 
higher SNR, the advantage of  these more complicated 
models over mono-exponential methods still needs to be 
fully elucidated[8,108,111]. For any analytic method, the noise 
should be reduced whenever possible to ensure accurate 
fitting of  ADC.

Visual interpretation: DW images can be evaluated on 
source DWI or quantitative ADC maps. DWI with b =  
50 s/mm2 is often called black blood imaging, due to its 
nullification of  blood signals to render vessels black. Black 
blood DWI has a better detection rate for small tumor le-
sions than T2WI has[112], and has been recommended as 
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an alternative to T2WI with conspicuity of  small lesion 
on 3.0 T scanners[113]. The combination of  DWI with 
T2WI and CE-T1WI has been suggested to improve the 
diagnostic accuracy of  small tumor lesions[94]. However, 
due to T2 shine-through, hyperintensity on high b value 
(800-1000 s/mm2) images does not always indicate in-
creased cellularity, e.g. fluid shows hyperintense on both 
DWI and ADC maps. For this reason, ADC maps are 
preferable to DWI, and DWI should be always interpreted 
concurrently with the ADC map and all other available 
morphological images to prevent misinterpretation[104].

For the display of  DWI or ADC maps, the inverted 
gray-scale (PET-like) for the suppression of  background 
signal is used for whole-body DWI of  high contrast from 
high b values, to detect multiple metastatic lesions[114]. 
With the co-registration between DWI or ADC maps with 
a color scale and structural T1WI or T2WI, fusion imag-
ing can be obtained to integrate functional and anatomic 
information[8,94].

Quantitative interpretation: For the quantification of  
ADC, the most frequently used method is to draw a free-
hand region of  interest (ROI) or volume of  interest (VOI) 
over the whole tumor, and mean or median values of  all 
pixels/voxels within the ROI/VOI are obtained. Such 
manual delineation is easy but fails to characterize tumor 
heterogeneity. Histogram-based analysis can reflect the 

frequency of  pixels with different diffusion, and the pixels 
can be divided into subgroups according to their ADC 
values. Therefore, it may better reflect how many pixels 
undergo change in ADC after treatment[8,115]. It has been 
demonstrated that ADC histogram analysis may be a su-
perior and quicker biomarker of  tumor response to beva-
cizumab than tumor volume[116]. With the spatially varying 
change in ADC after treatment, an ideal approach is to 
analyze the pixels present both before and after treatment 
with spatial tags to detect any change in ADC pixel by 
pixel. By using a threshold diffusion map, the pixels can 
be categorized into decrease, increase or no change after 
treatment. The segmented tumor can be overlaid on struc-
tural images to demonstrate clearly the heterogeneous 
response of  a tumor to treatment depending on different 
locations within the tumor[117]. However, the pixel-wise 
registration is more susceptible to motion, and its applica-
tions in the body is more difficult than in the brain[8]. 

Evolution of  ADC changes: In tumors, the mobility of  
water molecules is restricted due to cellular membranes or 
interaction with structural proteins. The high tumor cellu-
larity results in lower diffusivity and thus lower measured 
ADC in most tumors. However, the restriction on diffu-
sion is multifactorial and also influenced by the unique 
intracellular water diffusion and microscopic tissue/tumor 
organizational characteristics. Consequently, the ADC of  
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Figure 3  ADCperfusion and initial area under the gadolinium curve in an implanted tumor in rat liver. At 48 h after iv treatment with CA4P at 10 mg/kg, obvious 
tumor recurrence with partial recovery of blood supply was demonstrated. The tumor (arrows) appeared hyperintense on T2WI (A) and hypointense on T1WI (B); On 
CE-T1WI, the tumor relapsed at the periphery, shown as ring enhancement of viable tumor cells (C); ADC10b (derived from 10 b values from 0 to 1000 s/mm2) revealed 
the hyperintense necrotic center and isointense viable tumor rim (D); On ADCperfusion (ADClow-ADChigh) maps, the relative hyperintensity at the periphery suggested the 
partial recovery of perfusion, compared to the hypointensity in the necrotic center with perfusion deficit (E); ADCperfusion matched well with CE-T1WI-overlyaed initial 
area under the gadolinium curve (IAUGC) map (F). 
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untreated tumors can occasionally be higher than that of  
native tissue[8,110], and it is vital to monitor intrasubject dy-
namic changes in ADC pre- and post-treatment.

Although the mechanism has not been fully explored, 
there is a temporary decrease in tumor ADC after VDA 
treatment. The probable reason may lie in abrupt decline 
in blood flow, subsequent cytotoxic edema due to the 
acute hypoxia, and resultant increased tortuosity of  wa-
ter molecules in EES[7,104]. Some preclinical studies have 
shown a transient decrease in ADC at 1 h after CA4P 
treatment[107,57]. The duration of  decreased ADC was dif-
ferent in these two studies with the same tumor cell line 
but in different transplantation locations: ADC rebounded 
to pretreatment values in the intrahepatic tumor at 6 h[57]; 
however, ADC decreased gradually from 1 h until 6 h in 
the subcutaneous tumor[107]. The difference in doses of  
CA4P and tumor locations may have accounted for the 
phase discrepancy in ADC drop. On the other hand, the 
reduction in blood flow also contributed to the decrease 
in ADC[8,110], which was confirmed by the fact that ADClow 
decreased more significantly than ADChigh

[56,107]. 
After the transient drop, ADC rebounds due to the col-

lapsed cell membranes and decreased cellularity, and thus 
increased mobility of  water molecules in EES throughout 
the progressing necrosis formation, during which the 
ADC value may reach the pretreatment baseline, and thus 
shows no significant difference from the baseline at some 
time points[74]; so-called pseudonormalization of  ADC[118]. 
The onset and duration of  pseudonormalization vary de-
pending largely on tumor model and treatment strategy. 
If  MRI falls within the window of  pseudonormalization, 
there can be no significant change in ADC value, which, 
however, does not necessarily mean that ADC has not dy-
namically changed.

As necrosis develops, tumor cell volume is reduced 
with increased EES. The displacement of  water molecules 
is less hampered, which increases ADC. The increase in 
ADC after VDA treatment has been shown in preclinical 
and clinical studies[53,57,68,119,120]. The peripheral sparing of  
tumor after VDA treatment has lower ADC, and can be 
distinguished from central necrosis of  high ADC[8,110] 
(Figures 2 and 3). After single doses of  VDA, the residual 
tumor unavoidably gives rise to recurrence, which in turn, 
leads to decreased overall ADC[59].

Derived from the different b values applied in DWI, 
ADChigh mainly reflects the true diffusion and is more 
accurate for the characterization of  VDA-induced ne-
crosis; ADClow, on the other hand, indicates the different 
weightings by several factors such as diffusion, micro-
circulation and structural barriers, which deteriorate its 
measurement reproducibility for individual or intergroup 
comparisons[119]; and ADCperfusion is most correlated with 
blood supply and can thus be used to approximate tumor 
blood perfusion as an alternative when venous access is 
limited[56,59] (Figure 3). 

DCE-MRI
DCE-MRI enables quantitative characterization of  micro-

circulation in terms of  blood flow, blood volume and/or 
capillary permeability, as well as pathophysiological insight 
into the mechanism of  VDA action in tumors. Therefore 
DCE-MRI has been applied as a promising imaging bio-
marker for the assessment of  VDA effects[121,122]. 

Basic principles: DCE-MRI involves serial acquisition 
of  sequential images before, during and after injection 
of  a contrast agent to cover the volume of  the tumor. By 
tracking the pharmacokinetics of  injected contrast agent, 
DCE-MRI is capable of  the non-invasive quantification 
of  microvascular structure and function. In VDA studies, 
two kinds of  contrast agents are often used: low molecu-
lar weight agents (< 1000 Da, e.g. gadolinium diethyl-
enetriaminepentaacetic acid or Gd-DTPA) that rapidly 
traverse from capillary into the EES, but not into tumor 
cells; and large molecular agents (> 20 kDa) with low cap-
illary permeability for prolonged intravascular retention, 
so-called blood pool agents[123]. DCE-MRI sequences can 
be designed to be T1-weighted or T2*-weighted, which 
exploit different physiological properties to derive differ-
ent kinetic variables. T1-weighted DCE-MRI is sensitive 
to the presence of  contrast agent in the EES and reflects 
microvascular blood flow, permeability and extracellular 
leakage space, whereas T2*-weighted DCE-MRI, or more 
specifically, dynamic susceptibility contrast (DSC) MRI, is 
sensitive to the vascular phase of  contrast agent delivery 
and reflects blood flow and volume[124]. 

Upon bolus injection, the contrast agent enters arteri-
oles and passes through the capillary network, known as 
the first pass of  the contrast agent. Its paramagnetic prop-
erties render a decrease in both the T1 and T2* (or T2) 
relaxation times of  water molecules. On T2*-weighted 
DEC-MRI, the transient drop of  SI of  nearby tissue is 
due to the presence of  contrast agent within the capillary 
compartment. Therefore, such a sequence performs bet-
ter in brain with intact blood brain barrier (BBB) or when 
combined with blood pool contrast agents, since the 
tracer largely remains intravascular[125]. Measurement of  
the T2* effect during the rapid decrease and subsequent 
recovery in SI necessitates rapid sampling acquisition to 
ensure high temporal resolution. T2*-weighted DEC-MRI 
is mostly applied in brain tumors due to the presence of  
the BBB[124,126]. In extracranial tumors, the contrast agent 
readily extravasates from the intravascular space into the 
EES at a rate determined by several physiological factors 
including tissue blood flow, permeability of  the capillaries 
and surface area. On T1-weighted DCE-MRI, contrast 
agent in EES shortens the T1 relaxation time of  nearby 
water hydrogen nuclei and causes increased SI. Therefore, 
T1-weighted DEC-MRI is widely applied in the extracra-
nial tumors[127]. 

Quantification of  DCE-MRI: For the quantification of  
DCE-MRI, we need to convert SI into the concentration 
of  contrast agent at each time point during the acquisi-
tion. This is accomplished by measuring the T1 map on 
T1-weighted DCE-MRI, while it is more complicated in 
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T2*-weighted DCE-MRI. It is usually necessary to derive 
arterial input function (AIF) by measuring the SI in arter-
ies near the locations of  tumor, and AIF is useful for the 
compensation of  the influence of  injection speed of  con-
trast agent and cardiac output[128]. 

T2*-weighted DCE-MRI: The quantification of  T2*-
weighted DCE-MRI can be semi-quantitative or quantita-
tive. The former method does not employ complicated 
kinetic modeling or AIF, and derived summary parameters 
from contrast agent concentration time curve (or SI time 
curve) include area under the peak (AUP), and time to 
peak (TTP). Such analysis is straightforward, while it does 
not provide pathophysiological information of  perfusion 
related to vascular shutdown[129], and may also be com-
plicated with the leakage of  contrast agent into the EES, 
which is likely in tumors with high permeability[130].

For quantitative analysis of  T2*-weighted DCE-MRI, 
the most robust biomarker is relative blood volume (rBV) 
from the first-pass technique, calculated as the integral 
area under the concentration-time curve, with the inter-
pretation of  AIF and kinetic models[131]. Relative blood 
flow can also be quantified, and mean transit time (MTT) 
is obtained according to the central volume theorem BF 
= BV/MTT. However, extracranial tumors are usually hy-
perpermeable, and the compartmentalization of  contrast 
agent is usually lost. Thus quantification of  these param-
eters are less reliable due to the leakage of  contrast agent 
into the EES and subsequent T1 effect on T2*-weighted 
sequence. The possible solutions include the correction 
with gamma-variate function by using more complicated 
kinetic models, preloaded dose of  contrast agent to elimi-
nate the effect of  its leakage into the EES or its recircula-
tion, and dual or multiecho imaging sequences[130,132-135]. 

T1-weighted DCE-MRI: T1-weighed DCE-MRI ex-
ploits the distribution of  contrast agent in the EES, 
which increases the T1 relaxation rate (1/T1) of  nearby 
hydrogen nuclei. The concentration of  gadolinium ions 
is known to be directly proportional to the change in 
1/T1, and the latter is related to changes in SI on T1WI. 
With a low gadolinium dose, we can assume that there is 
a linear relation between the amount of  contrast agent 
in the tissue and the resultant difference in relaxation 
time[136]. Semi-quantitative and quantitative analyses of  T1-
weighted DCE-MRI are possible.

For semi-quantitative analysis, the model-free method 
utilizes the enhancement curve in terms of  curve shape, 
time from injection to arrival of  contrast agent, gradient of  
upslope or wash out phase and maximal intensity[124]. The 
most frequently used parameter is initial area under the 
gadolinium curve (IAUGC) (Figure 3), as well as maximal 
initial slope of  curve, TTP, and the slope of  washout[56,127]. 
The simplicity of  this method with computer routine en-
ables its easy accessibility to many investigators, and it has 
been shown to be successful to monitor the responses to 
VDA[59,137]. However, these semi-quantitative measures fail 
to show any direct correlation with underlying physiologi-

cal measures of  tumor perfusion, permeability or leakage 
space, and only provide a mixed complex that hampers the 
interpatient or interscanner comparison[122,138]. 

Quantitative analysis of  T1-weighed DCE-MRI involves 
a pharmacokinetic model to characterize the underlying 
physiological process of  the contrast agent in tissues, in-
cluding its administration, first pass, transendothelial pro-
cess, distribution in EES, and wash out[124,139]. On the basis 
of  some simplifying assumptions, biological tissues can be 
regarded as several compartments, e.g. two-compartment 
model with blood plasma and EES, within which contrast 
agent is instantaneously mixed and uniformly distrib-
uted[127]. The Tofts model is one of  the frequently used 
pharmacokinetic models to fit concentration-time serial 
data in order to derive physiological parameters[140,141]. The 
robust parameters include Ktrans (volume transfer constant 
of  the contrast agent, unit/min), Kep (rate constant of  
wash out of  contrast agent refluxing from EES into blood, 
unit/min) and Ve (the extravascular extracellular volume 
fraction, unit %). 

Although quantification of  Ktrans is often overestimat-
ed due to the innate assumptions in all kinetic models[142], 
and dedicated software has to be involved in the analysis, 
quantitative analysis of  T1-weighted DCE-MRI high-
lights the underlying mechanism of  VDA action in terms 
of  the permeability change and subsequent perfusion 
collapse after VDAs, and it facilitates the direct compari-
son of  these physiological parameters for intra- and inter-
subject studies (Figure 4). Thus, the imaging biomarkers 
from DCE-MRI are most correlative to the VDA effects. 

Interpretation of  DCE-MRI: In general, successful VDA 
treatment causes the immediate vascular shutdown of  
tumors, shown as a rapid drop in semi-quantitative and 
quantitative DCE-MRI parameters within minutes or 
hours, and neoplastic recurrence is reflected as recovery 
in such measures to baseline level, which depends on the 
dose of  VDAs and tumor models[7,26,39,53,54,73,143] (Figure 4). 

Ktrans reflects a composite of  both blood flow and 
vascular permeability-area product, and therefore, its in-
terpretation depends on the rate-limiting step between 
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Figure 4  Dynamic changes in Ktrans. The tumor (arrows) in rat liver showed an 
abundant blood supply with high Ktrans before treatment (A); At 6 h after CA4P 
treatment, vascular shutdown was indicated with low Ktrans in the center, sur-
rounded by tumor residue at the periphery, with moderate Ktrans (B); At 48 h after 
treatment, the tumor relapsed upon the residue at the periphery with rebounding 
Ktrans (C). 
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perfusion in vessels and diffusion into the EES. In un-
treated tumors, the vascular permeability-area product 
is often high, and the tissue is described as flow-limited, 
so that Ktrans approximates blood flow[140]; after the treat-
ment with VDAs, the permeability transiently increases 
and then the blood flow drops abruptly, which decreases 
Ktrans. However, in this mixed situation, the blood flow 
and permeability cannot be decoupled and it is difficult to 
identify the dominating factor between the perfusion and 
permeability-area product[56,124,140] (Figure 4). 

For example, in a rat subcutaneous tumor model, tu-
mor perfusion decreased by 57% with ABT-751 treatment 
after 1 h, but recovered to near pretreatment levels within 
6 h[39]. In a rat liver tumor model with ZD6126 treatment, 
Ktrans dropped to its lowest at 24 h and partially recovered 
at 48 h[56], while for the same tumor cell line but in sub-
cutaneous model with CA4P, Ktrans decreased to its lowest 
level at 6 h and recovered at 9 d[59]. Values of  DCE-MRI 
parameters are derived from an ROI covering the whole 
tumor in most studies, which however, ignores the tumor 
heterogeneity due to the persistence of  the viable rim af-
ter VDA treatment. Therefore, inclusion of  non-enhanc-
ing pixels in the center artificially underestimates the mean 
and/or median parameter values[144]. Some authors have 
defined the tumor center and periphery and have analyzed 
the DCE-MRI parameters respectively, and have success-
fully shown the different responses in necrotic center 
and viable rim, which have helped to elucidate tumor 
pathophysiology and drug action of  VDAs[46]. However, 
the definition of  core and rim is debatable[145] and manual 
delineation of  tumor center and periphery suffers from 
relatively poor spatial resolution on DCE-MRI, even with 
cross reference to other structural images of  higher spatial 
resolution such as that derived from CE-T1WI. 

Alternatively, pixel-based analysis of  DCE-MRI quan-
tifies the value of  each pixel within a tumor, and distribu-
tion histogram and mean and/or median values can be 
derived, which is especially helpful in the dynamic follow-
up of  VDA treatment[146,147]. Nonetheless, this pixel-based 
method suffers more from motion artifacts in extracranial 
tumors, than whole-tumor-based analysis, and the tech-
nique remains challenging for physiological motion, such 
as cardiac and respiratory movements[148]. 

VALIDATION OF MRI FINDINGS
The tumor response to VDA treatment has been widely 
validated using a number of  methods. As an established 
index for determining VDA treatment efficacy, treatment-
induced necrosis, as well as cytotoxic edema, has been 
confirmed with postmortem histopathology[57,107]. Necro-
sis has been an established end point of  drug response 
with histopathological proofs in preclinical VDA studies, 
and the extent of  necrosis is consistent with the DCE-
MRI parameters. Considering uneasily accessible histopa-
thology in patients, DCE-MRI is regarded as a promising 
biomarker to demonstrate the VDA-induced necrosis in 
patients[149]. 

Unfortunately, the validation of  VDA-induced vascu-
lar collapse with resultant stoppage of  tumor blood supply 
is still technically challenging due to a lack of  more robust 
methods. One frequently adopted method is microvas-
cular density (MVD) determination with immunohisto-
chemical staining by using vascular markers such as CD31, 
CD34 or CD105[150]. Some studies with antiangiogenic 
treatment have shown a correlation between DCE-MRI 
parameters and immunohistochemical findings, whereas 
others have not[133]. There is a paucity of  such correla-
tion data in VDA studies. Gaya et al[151] have shown no 
strong relationship between changes in DCE-MRI kinetic 
variables following CA4P and the immunohistochemical 
angiogenic profile. There is always a discrepancy between 
histological MVD and functional vascular density: not all 
tumor vessels are perfused at a given time[124], and it is not 
surprising that MVD fails to characterize the functional 
properties including vessel permeability, which contribute 
to DCE-MRI parameters. On the other hand, blood ves-
sels are often distended early after VDA treatment, with 
severe comprise of  blood flow, which can be false-nega-
tive on MVD measurement[152]. Accordingly, its value as an 
indicator of  the efficacy of  VDA therapies is limited[153]. 
In other words, the absence of  decreased MVD does not 
necessarily indicate ineffective VDA treatment[150]. Alter-
natively, Hoechst 33342 is a dye that stains the nuclei of  
ECs lining blood vessels that are perfused at the time of  
injection, and therefore, may provide a better histological 
measurement of  functional vasculature via fluorescence 
microscopy after VDA treatment[149,153-155].

In a rat tumor model treated with CA4P, Maxwell  
et al[156] have compared Ktrans with tumor blood flow mea-
sured by the uptake of  radiolabeled iodoantipyrine (IAP). 
They have shown that dynamic changes in Ktrans and AUC, 
and tumor blood flow from IAP uptake after treatment 
are highly correlated, although with the changes in Ktrans 
and AUC being smaller than those in blood flow by IAP. 
However, it is still uncertain to what extent Ktrans can 
mirror the blood flow changes, especially in the condi-
tion limited by permeability-surface area product, which 
may be the case in extracranial tumors after VDA treat-
ment[156,157]. In VDA studies, the correlation still needs to 
be explored with other robust techniques such as H215O-
PET[158] and microbubble ultrasound[159]. 

FUTURE PERSPECTIVES 
Multiparametric MRI biomarkers enable non-invasive 
characterization of  tumor response to VDA, while the 
variety of  biomarkers also leads to the challenges in 
terms of  robust protocol for standardization of  imaging 
acquisition and analysis on intrasubject or intersubject 
basis. Therefore, it is imperative to develop a standardized 
protocol to facilitate the comparative evaluation of  VDA 
treatment effects in multicenter studies. 

Due to practical limitations, advanced MRI methods 
of  imaging acquisition and analysis for DWI and DCE-
MRI are only accessible in research centers with expertise. 
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However, this should not be a hurdle to perform exami-
nations. Therefore, to circumvent technical limitations, a 
hierarchical protocol with compromises can be expected, 
in which the protocols from the most ideal conditions to 
some practical alternatives are given, according to their 
relevance to the insight of  pathophysiological mechanisms 
of  VDA action[56]. 

Heterogeneity is involved throughout VDA treatment: 
tumors can be responders or non-responders to VDAs; 
the response degree can vary; and most importantly, tu-
mor residue unavoidably remains at the periphery due to 
the incomplete tumoricidal effect of  VDAs. The most ad-
opted whole-tumor-based quantitative analysis neglects the 
spatial heterogeneity with central necrosis and peripheral 
sparing, which, however, may affect therapeutic evaluation 
and prognostic prediction for the adjustment of  individual 
therapy strategy[144]. Other alternatives such as co-regis-
tration between pre- and post-treatment images facilitate 
the pixel-based demonstration of  treatment response, 
although they are still problematic for application in areas 
with significant movement, such as the abdomen[117]. 

It is only by combining multiparametric imaging bio-
markers that we may begin to understand how VDAs 
affect tissue environment and tumor cells. To date, DCE-
MRI and DWI, as well as 18F fluorodeoxyglucose PET are 
the most advanced biomarkers, from which we can gain 
insights into vascular function, programmed cell death or 
necrosis, and glucose metabolism. However, procedural 
rigor of  these multiparametric imaging biomarkers has to 
be established before they can take up an essential posi-
tion in clinical decision making[56,160]. 

CONCLUSION
Considering the requirements of  prompt therapeutic 
justification and adjustment for oncological patients with 
VDA treatment, there are urgent demands for establish-
ing comprehensive imaging protocol for “go or no-go” 
clinical decisions. Investigations in preclinical animal 
models can provide the insights into the mechanism of  
VDA action; realized by applying multiparametric imaging 
biomarkers with validation at microscopic levels. There-
fore, it is possible that combination of  these quantitative 
imaging biomarkers, especially DWI and DCE-MRI, can 
play an imperative role in clinical treatment regimens that 
involve VDAs. Standardization of  imaging acquisition and 
analysis with advanced hardware and software needs to be 
developed to improve the accuracy and comparability of  
VDA studies in multicenter studies.
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