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Abstract
The intestinal epithelial cells (IECs) form a selective 
permeability barrier separating luminal content from 
underlying tissues. Upon injury, the intestinal epithe-
lium undergoes a wound healing process. Intestinal 
wound healing is dependent on the balance of three 
cellular events; restitution, proliferation, and differen-
tiation of epithelial cells adjacent to the wounded area. 
Previous studies have shown that various regulatory 
peptides, including growth factors and cytokines, mod-
ulate intestinal epithelial wound healing. Recent studies 
have revealed that novel factors, which include toll-like 
receptors (TLRs), regulatory peptides, particular dietary 
factors, and some gastroprotective agents, also modu-
late intestinal epithelial wound repair. Among these fac-
tors, the activation of TLRs by commensal bacteria is 
suggested to play an essential role in the maintenance 
of gut homeostasis. Recent studies suggest that muta-
tions and dysregulation of TLRs could be major contrib-
uting factors in the predisposition and perpetuation of 
inflammatory bowel disease. Additionally, studies have 
shown that specific signaling pathways are involved in 
IEC wound repair. In this review, we summarize the 
function of IECs, the process of intestinal epithelial 

wound healing, and the functions and mechanisms of 
the various factors that contribute to gut homeostasis 
and intestinal epithelial wound healing. 
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INTRODUCTION
The surface of  the gastrointestinal tract is covered with 
epithelial cells that function under physiological condi-
tions as a barrier preventing undesirable luminal antigens 
from entering the body[1]. Upon injury, the intestinal 
epithelium undergoes a wound healing process. Intestinal 
wound healing is dependent on the precise balance of  
migration, proliferation, and differentiation of  the epithe-
lial cells adjacent to the wounded area[2]. Previous studies 
have shown that various regulatory peptides, including 
growth factors and cytokines, modulate intestinal epithe-
lial wound healing[3]. Recent studies have revealed that 
novel factors, which include toll-like receptors (TLRs)[4], 
regulatory peptides[5], particular dietary factors[6,7], and 
some gastroprotective agents[8-10], also modulate intestinal 
epithelial wound repair. In addition, it has been shown 
that the activation of  specific signaling pathways is in-
volved in intestinal epithelial wound healing[11,12].

Ulcerative colitis (UC) and Crohn’s disease (CD) are 
chronic inflammatory intestinal disorders and known as 
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inflammatory bowel disease (IBD). Although an etiology 
of  both diseases remains unknown, it is suggested that 
disruption of  the intestinal barrier function and repeated 
intestinal epithelial damage are key features of  IBD, as 
well as other intestinal disorders[1,3]. In this context, it is 
suggested that the identification of  the specific factors 
that improve wound healing of  the intestinal epithelium 
might contribute to therapeutic strategies in IBD, and 
many studies using animal colitis models and intestinal 
epithelial cell (IEC) lines have been conducted.

We summarize the function of  intestinal epithelium, 
the process of  intestinal epithelial wound healing, and 
the functions and mechanisms of  the various factors that 
contribute to intestinal epithelial wound healing and gut 
homeostasis. We also discuss the association of  some of  
these factors with IBD.

BARRIER FUNCTION OF INTESTINAL 
EPITHELIAL CELLS
The intestinal epithelial cells (IECs) form a selective per-
meability barrier separating luminal content from underly-
ing tissues[1,13]. The gastrointestinal epithelial lining con-
sists of  a monolayer of  columnar cells[13]. This monolayer 
of  IECs is constantly moving at a speed of  5-10 μm/h[14] 
and is renewed every 2-5 d. The maintenance of  this barri-
er is critical for normal growth, development, and disease 
prevention[15]. Normally, IECs function as a barrier that 
prevents undesirable solutes, microorganisms, viruses, and 
luminal antigens from entering the body[1,16]. Several ele-
ments that participate in the barrier function include the 
epithelial cells themselves along with tight junctions, ad-
herens junctions, and luminal secretions such as mucus or 
unstirred layers on the apical aspects of  the epithelium[1]. 

Tight junctions function as semi-permeable gates that 
regulate the passive movement of  luminal fluid and sol-
utes through the paracellular pathway, and limit passive 
diffusion of  proteins and lipids between the outer leaflet 
of  the apical and basolateral plasma membrane do-
mains[1,17]. Subjacent to tight junctions, adherens junctions 
are important in regulating intercellular adhesion[1]. Both 
tight junctions and adherens junctions are positioned in 
the apical end of  the lateral plasma membrane, and are 
intimately linked in their regulation and function. Thus, 
the tight junctions and adherens junctions are collectively 
referred to as the apical junctional complex (AJC)[1,13,17]. 
Major transmembrane proteins in the AJC include oc-
cludin, claudins, junctional adhesion molecules (JAMs), 
coxsackie adenovirus receptor (CAR), and E-cadherin[1]. 
Subjacent to the AJC are spot-like intercellular junctions 
referred to as desmosomes; the function of  which in 
IECs is poorly understood[13].

Despite the barrier function of  IECs, this barrier has 
to allow some non-pathological gut-derived bacteria ac-
cess to the immune system, thereby promoting matura-
tion of  the immune system and evolution of  immune 
tolerance[1]. As is described later, recent studies have 

demonstrated that the activation of  TLRs by commensal 
bacteria plays an essential role in inhibiting inflammatory 
responses and maintaining colonic homeostasis[18]. 

PROCESS OF WOUND HEALING OF 

INTESTINAL EPITHELIAL CELLS
The intestinal epithelium can be injured by toxic luminal 
substances, normal digestion, inflammation, interactions 
with microbes, oxidative stress, and pharmaceuticals, de-
spite its barrier function[19,20]. After injury, the intestinal 
epithelium undergoes a wound healing process. Intestinal 
wound healing is dependent on the precise balance of  
migration, proliferation, and differentiation of  the epithe-
lial cells adjacent to the wounded area[2]. First, epithelial 
cells surrounding the wound lose their columnar polarity, 
take on a flattened morphology, and rapidly migrate into 
the denuded area to restore barrier integrity. This process 
has been termed “epithelial restitution”[3,15,21]. Restitu-
tion starts within minutes to hours of  injury and is inde-
pendent of  proliferation[3,21]. Then, proliferation of  the 
mucosal epithelium to increase the pool of  enterocytes 
available to resurface the defect generally begins hours or 
days after the injury[21]. Finally, maturation and differenti-
ation of  epithelial cells is needed to maintain the mucosal 
barrier function[3]. Rat IECs (IEC-6) at 24 h after wound 
formation are shown in Figure 1A. Most of  the epithelial 
cells found in the wounded area across the wound border 
are thought to have migrated in the process of  restitu-
tion. The process of  repair of  IEC-6 cells wounded by 
mechanical cell denudation is shown in Figure 1B. These 
wound assays were performed in our laboratory. 

During the restitution of  IECs, extensive reorganization 
of  the actin cytoskeleton is necessary[22]. The organization 
and remodeling of  the actin cytoskeleton is suggested 
to be controlled by the Rho family of  small GTPases, 
which includes Rho, Rac and Cdc42[23]. These proteins 
have been implicated in the formation of  stress fibers, 
lamellipodia (cytoskeletal protein actin projection on the 
mobile edge of  the cell), and filopodia (slender cytoplas-
mic projections, similar to lamellipodia, which extend 
from the leading edge of  migrating cells)[23]. In detail, 
Rho regulates stress fibers and focal adhesion assembly; 
Rac regulates the formation of  lamellipodia protrusions 
and membrane ruffles; and Cdc42 triggers filopodial 
extensions at the cell periphery[24,25]. The wound margin 
of  IEC-6 cells is shown in Figure 1C. Lamellipodia- and 
filopodia-like epithelial cells are found at the leading edge 
of  the wounded IEC-6 cells (Figure 1C). Other investi-
gations regarding the mechanism of  cell migration have 
also been reported[26-28]. 

Chemokines can be subdivided into distinct inflam-
matory or homeostatic subsets, with the latter being mini-
mally regulated by pro-inflammatory cytokine stimula-
tion[29]. It has been shown in leukocytes that Rho-GTPase 
regulates homeostatic chemokine receptor CXCR4-
mediated chemotaxis or metastasis to the sites of  cognate 
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ligand CXCL12 production[30]. Moyer et al[2] have dem-
onstrated that CXCL12 increases Rho-GTP and F-actin 
localization to the leading edge of  wounded IEC-6 and 
T84 monolayers. Since Rho-GTP is known to be required 
for membrane protrusions in intestinal cell lines[28], it has 
been postulated that CXCR4-mediated activation and lo-
calization of  Rho at the leading edge of  restitutive epithe-
lial cells may facilitate the formation of  lamellae that are 
required for wound healing[2]. It has also been suggested 
that CXCR4 and CXCL12 function as an autocrine and 
paracrine mucosal signaling network that regulates the 
competency of  the epithelial barrier to withstand injury 
and mediate repair following damage[2]. 

Defensins are highly conserved key molecules that 
participate in host defense through the direct killing of  
microbes[31]. Like the homeostatic chemokine receptor 
CXCR4, the chemokine receptor CCR6 is expressed by 

immature dendritic cells and circulating T cells, which 
directs their trafficking to sites of  inflammation follow-
ing binding by the chemokine ligand CCL20[19,32]. Vongsa 
et al[19] have demonstrated that human β-defensins and 
CCL20 stimulated accumulation of  F-actin, phosphoryla-
tion of  the myosin light chain and RhoA, and restitutive 
migration of  IEC-6 cells. These findings suggest that 
chemokines and β-defensins are protective host defense 
molecules that function not only to recruit immune cells 
and kill microbes, but also to increase the efficiency of  
wound healing in the gut. Annexin 2 is a calcium-depen-
dent phospholipid-binding protein that also plays a role in 
regulating the actin cytoskeleton, and has been implicated 
in cell migration[33,34]. It has been shown that annexin 
2 regulates IEC migration and wound closure through 
Rho-dependent signaling pathways and related actin cy-
toskeletal remodeling[33]. We have summarized various 
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Figure 1  Wounded rat intestinal epithelial cell-6 cells. A: Confluent monolayers of intestinal epithelial cell (IEC)-6 cells were wounded with a razor blade. Wounded 
IEC-6 cells 24 h after wound formation. Wound line is shown with an arrow; B: IEC-6 cells wounded by mechanical cell denudation (× 40). Wounded cells at 0, 24 and 
72 h after wound formation are shown; C: Wound margin of IEC-6 cells (× 200).

Iizuka M et al . Wound healing of IECs



factors that can have specific effects on IEC or intestinal 
mucosal wound healing in Table 1. 

REGULATORY PEPTIDES AND SIGNALING 
PATHWAYS IN INTESTINAL WOUND 
HEALING
Previous studies have shown that various growth fac-
tors [including transforming growth factor (TGF)-α and 
TGF-β, epidermal growth factor (EGF), hepatocyte 
growth factor (HGF), fibroblast growth factor (FGF), ke-
ratinocyte growth factor (KGF), insulin-like growth fac-
tor (IGF)-Ⅰ and IGF-Ⅱ], the cytokine interleukin (IL)-
1β and IL-2, and trefoil peptides enhance restitution or 
proliferation of  IECs[3,21,35-42]. In contrast, platelet-derived 
growth factor (PDGF), IL-6, and tumor necrosis factor 
(TNF)-α have no effect on cell migration[21]. With regard 
to interferon (IFN)-γ, a previous study has shown that 
IFN-γ enhanced epithelial cell restitution by 3.8-fold[21]. 
However, a recent study has shown that IFN-γ inhib-
its enterocyte migration by preventing inter-enterocyte 
gap junction communication[5]. Among the regulatory 
peptides, TGF-β is known to be a central factor that 
intrinsically contributes to the restitution of  wounded 

IECs, although it inhibits IEC proliferation[21]. It is note-
worthy that cytokines (IL-1β, IL-2), EGF, FGF, HGF 
and TGF-α promote epithelial cell restitution through 
enhanced production of  bioactive TGF-β, namely, the 
TGF-β-dependent pathway[21,35,36,41]. On the other hand, 
it has been shown that both trefoil peptides, which are 
secreted onto the surface of  the gastrointestinal tract, 
and galectin-2 and -4, which ameliorate colitis in several 
models of  intestinal inflammation, promote IEC resti-
tution through a TGF-β independent pathway[42,43]. In 
contrast, TGF-α mediates its stimulatory effects on the 
proliferation and restitution of  IECs through different 
mechanisms; as described above, it enhances IEC restitu-
tion through a TGF-β-dependent pathway but promotes 
IEC proliferation through the activation of  extracellular 
signal-regulated kinase (ERK)1/ERK2 mitogen-activated 
protein kinase (MAPK)[44]. 

It has been shown that the activation of  specific sig-
naling pathways is involved in intestinal epithelial wound 
repair. El-Assal et al[11] have demonstrated that heparin-
binding epidermal growth factor-like growth factor (HB-
EGF) enhances restitution of  the intestine in vivo and  
in vitro in a phosphatidylinositol 3-kinase (PI3K)/Akt- and 
MAPK/ERK kinase (MEK)/ERK1/2-dependent fash-
ion. Using mouse epithelial cell lines, Dise et al[15] have 
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Table 1  Various factors promoting or inhibiting wound healing of intestinal epithelium and mucosa

Categories Factors Promoting effect Inhibitory effect No effect Models

(Chemokines) CXCL12 + Cells[2]

CCL20, defensins + Cells[19]

Annexin 2 + Cells[33]

(Growth factors) TGF-α + Cells[21,44] 

TGF-β + Cells[40]

EGF, HB-EGF + Cells[11,21]

HGF + Cells[36]

FGF + Cells[35]

KGF + Cells[35], rat[37] 

IGF-Ⅰ, -Ⅱ + Mice[38], cells[39]

(Cytokines) IL-1β + Cells[21]

IL-2 + Cells[41]

IFN-γ +[21] +[5] Cells[21], mice and cells[5]

PDGF, IL-6, TNF-α + Cells[21]

Trefoil peptide + Cells[42]

Prostaglandin, COX-1, COX-2 + Mice[51-54]

(Toll-like receptors) TLR2 + Mice and cells[92-94,97]

TLR3 +[95] +[96] Mice[95], cells[96]

TLR4 +[97-99] +[100] Mice[97-99] and cells[100]

TLR5 + Mice and cells[101,102]

TLR9 + Mice[103-105]

(Dietary factors) Glutamine + Rats[6], cells[68]

Histidine + Mice[7]

Vit D + Mice and cells[72]

(Gastroprotective agents) Rebamipide + Rats[8,77]

Ecabet sodium + Cells[9] and rats[79]

Sucralfate + Cells[10]

(Other factors) Epimorphin + Cells[60]

 Muc3 + Mice and cells[62]

HIF + Mice[63]

 GM-CSF + Mice[64]

COX: Cyclooxygenase; TGF: Transforming growth factor; EGF: Epidermal growth factor; HB-EGF: Heparin-binding epidermal growth factor; HGF: Hepatocyte growth 
factor; FGF: Fibroblast growth factor; KGF: Keratinocyte growth factor; IGF: Insulin-like growth factor; IL: Interleukin; IFN: Interferon; PDGF: Platelet-derived growth 
factor; TLR: Toll-like receptor; HIF: Hypoxia-inducible factor; GM-CSF: Granulocyte-macrophage colony stimulating factor; TNF: Tumor necrosis factor.
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shown that the PI3K and Src signaling cascades cooper-
ate with Rac and promote IEC migration in response to 
EGF. Other studies have shown that the activation of  the 
ERK1/2 MAPK or PI3/Akt pathway plays an important 
role in the regulation of  intestinal epithelial proliferation, 
survival, and wound healing[12,45-47]. Recent studies have 
suggested that nuclear factor (NF)-κB has not only pro-
inflammatory but also has a tissue-protective function in 
IECs[48]. In addition, Pickert et al[49] have reported using 
conditional knockout mice with an IEC-specific deletion 
of  signal transducer and activator of  transcription (STAT) 
3 activity that intestinal epithelial STAT3 activation regu-
lates immune homeostasis in the gut by promoting IL-22 
dependent mucosal wound healing. Trem2 is a cell sur-
face receptor that is specifically induced in macrophages 
by IL-4/IL-13. Seno et al[50] have shown that Trem2 sig-
naling promotes efficient wound healing of  colonic mu-
cosal injuries by inhibiting cytokines that can enhance M1 
macrophage activation, and by promoting cytokines that 
can promote M2 macrophage activation. 

Previous studies have shown that prostaglandin (PG) 
E2 plays a major role in the regeneration of  the epithelial 
crypts and in the prevention of  decreased epithelial cells 
proliferation after radiation- or dextran sodium sulfate 
(DSS)-induced intestinal injury[51,52]. Mucosal PGs are syn-
thesized from arachidonate by cyclooxygenase (COX)-1 or 
COX-2[52]. Thus, it has also been shown that COX-1 and 
COX-2 share a crucial role in the defense of  the intestinal 
mucosa[53,54]. In this context, Brun et al[55] have shown that 
the neuropeptide neurotensin (NT) significantly increases 
COX-2 mRNA levels and stimulates PGE2 release in the 
colonic cell line HT29. They also have shown that NT sig-
nificantly enhances the migration of  HT-29 cells into the 
denuded area of  a wound model. It has also been shown 
that PGE2 reduces radiation-induced apoptosis in the 
intestine through transactivation of  the EGFR, enhanced 
activation of  Akt, and reduced Bax translocation from the 
cytoplasm to the mitochondria[56].

Epithelial-mesenchymal interactions are necessary for 
proper gut morphogenesis[57]. These interactions also play 
important roles in intestinal epithelial wound healing. 
Epimorphin is expressed on the surface of  mesenchymal 
cells in various organs, including intestinal mucosa, and 
is suggested to play a key role in the morphogenesis of  
epithelial cells[58,59]. We found that epimorphin also has 
a novel function to promote restitution of  IECs under 
oxidative stress conditions through the activation of  the 
EGF receptor and MEK/ERK, PI3K/Akt signals[60]. 
HGF, FGF and KGF are also secreted by mesenchymal 
cells[57]. Göke et al[61] have shown that fibroblasts, which 
are derived from primitive mesenchyme, promote intes-
tinal cell proliferation in addition to affecting secretory 
responses, differentiation, and morphogenesis, and that 
this function is predominantly mediated by the paracrine 
action of  HGF.

Recent studies using experimental colitis models have 
shown that the Muc3 mucin cysteine-rich domain[62], 
hypoxia-inducible factor (HIF)[63], and granulocyte-mac-

rophage colony stimulating factor (GM-CSF)[64] improve 
wound healing of  the colonic mucosa. We summarize the 
various factors and signaling pathways that contribute to 
intestinal epithelial and mucosal wound healing in Figure 2.

DIETARY FACTORS AND INTESTINAL 
WOUND HEALING 
Several studies have shown that enteral nutrition with 
an elemental diet is efficacious in the treatment of  CD, 
especially for maintaining clinical remission or reducing 
clinical and endoscopic recurrence after resection[65-67]. Al-
though some of  this effectiveness may be due to the low 
antigenic load, low fat content, and modulation of  the 
commensal bacterial flow, the precise mechanisms remain 
unclear. In this context, the effectiveness of  the constitu-
ent amino acids of  the elemental diet for intestinal epi-
thelial and mucosal wound healing has been reported. 

Glutamine, the most abundant free amino acid in the 
bloodstream, is a non-essential amino acid that is es-
sential for gut homeostasis and is an essential respiratory 
substrate for cells in the small intestinal mucosa[68,69]. En-
teral glutamine is thought to stimulate intestinal mucosal 
protein synthesis and protect against apoptosis[68]. Larson 
et al[68] have shown that glutamine supplementation stimu-
lates IEC growth and prevents apoptosis, and that activa-
tion of  ERK is an important contributor to glutamine-
mediated intestinal cell survival. Sukhotnik et al[6] have 
evaluated the preventive effects of  oral glutamine supple-
mentation in an intestinal ischemia-reperfusion injury in 
a rat. It was found that pretreatment with oral glutamine 
prevents mucosal injury and improves intestinal recovery 
following ischemia-reperfusion injury through the stimu-
lation of  cell proliferation rather than the inhibition of  
cell apoptosis. 

On the other hand, Andou et al[7] have assessed the role 
of  histidine, an essential amino acid, in controlling colitis 
by using an IL-10-deficient cell transfer model. In this 
study, it was shown that dietary histidine reduced histo-
logical damage of  the colon and TNF-α mRNA expres-
sion by inhibiting NF-κB activation, following the down-
regulation of  pro-inflammatory cytokine production by 
macrophages. Son et al[70] also have reported that histidine 
significantly inhibits both hydrogen peroxide- and TNF-
α-induced IL-8 secretion and mRNA expression in in-
testinal epithelial-like cell lines. This study has also shown 
that histidine abolishes the NF-κB-dependent activation 
of  the IL-8 promoter induced by TNF-α, suggesting 
that histidine has the potential to attenuate intestinal in-
flammation. These reports investigating the function of  
glutamine and histidine have suggested the efficacy of  
an elemental diet for improvement of  intestinal mucosal 
wound healing in patients with CD.

Previous studies have suggested a link between vita-
min D deficiency and IBD risk[71]. Kong et al[72] have inves-
tigated the role of  the vitamin D receptor (VDR) in mu-
cosal barrier homeostasis by using the DSS-induced colitis 
model. In this study VDR+/+ mice were mostly resistant 
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to 2.5% DSS, but VDR-/- mice developed severe colitis, 
leading to death. They also found severe disruption in the 
epithelial junctions in VDR-/- mice after DSS treatment. 
In cell cultures, 1,25-dihydroxy-vitamin D3 [1,25(OH)2D3] 
markedly enhanced tight junctions and stimulated epithe-
lial cell migration in vitro. These observations suggest that 
VDR plays a critical role in mucosal barrier homeostasis 
by preserving the integrity of  junction complexes and the 
healing capacity of  the colonic epithelium.

GASTROPROTECTIVE AGENTS IN 
INTESTINAL EPITHELIAL WOUND 
HEALING 
Recent studies have shown that some gastroprotective 
agents, including ecabet sodium (ES), rebamipid, and 
sucralfate, have therapeutic effects on IBD and other 
types of  colitis[73-76]. Previous studies have shown that 
rebamipide enema is effective for treatment of  experi-
mental DSS-induced colitis in rats[8,77]. Okayama et al[77] 
have suggested that the protective effect of  rebamipide 
may be attributable to both the radical scavenging action 
and the increase in the production of  mucus in the colon.  
Watanabe et al[78] have performed wound assays using 
gastric epithelial cells and have shown that rebamipide 

prevents delay of  wound repair induced by hydrogen per-
oxide. On the other hand, Sasaki et al[9] have investigated 
the therapeutic mechanism of  ES for intestinal mucosal 
injury by using the rat IEC-6 cell line. The investigation 
clarified that ES prevents the delay of  wound repair in 
IEC-6 cells induced by hydrogen peroxide, probably 
through the activation of  ERK 1/2 MAPK and the in-
duction of  COX-2. Takagi et al[79] have shown that intra-
colonic administration of  ES accelerates TNBS-induced 
ulcer healing in vivo. Shindo et al[10] have investigated the 
therapeutic mechanism of  sucralfate for intestinal mu-
cosal injury. It has been demonstrated that sucralfate 
also prevents the delay of  wound repair in IEC-6 cells 
induced by hydrogen peroxide through the induction of  
COX-2 and an anti-apoptotic mechanism. The effects of  
sucralfate may be initiated by the activation of  the NF-
κB pathway. These studies have suggested the possibility 
that some gastroprotective agents could be used for the 
treatment of  IBD.

ROLE OF THE INNATE IMMUNE SYSTEM 
IN COLONIC HOMEOSTASIS AND 
INTESTINAL WOUND HEALING 
The commensal bacteria population is comprised of  at 
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Figure 2  Various factors and signaling pathways contributing to the process of wound healing of intestinal epithelial cells and intestinal mucosa. IEC: 
Intestinal epithelial cell; TGF: Transforming growth factor; EGF: Epidermal growth factor; HGF: Hepatocyte growth factor; FGF: Fibroblast growth factor; KGF: Kerati-
nocyte growth factor; IGF: Insulin-like growth factor; HB-EGF: Heparin-binding epidermal growth factor; IL: Interleukin; COX: Cyclooxygenase; TLR: Toll-like receptor; 
HIF: Hypoxia-inducible factor; GM-CSF: Granulocyte-macrophage colony stimulating factor; ERK: Extracellular signal-regulated kinase; MAPK: Mitogen-activated 
protein kinase; PI3K: Phosphatidylinositol 3-kinase; NF: Nuclear factor; STAT: Signal transducer and activator of transcription.
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least 400 species, with a load of  as many as 1012 bacteria 
per gram of  intestinal content[80]. As described previ-
ously, IECs are the first line of  defense against com-
mensal or pathogenic luminal microflora. Recognition 
of  enteric bacteria is mediated by several mechanisms, 
the most important of  which rely on host receptors 
specific for conserved bacterial structures not found in 
the host[81]. The two major host receptors currently rec-
ognized in humans are TLRs and the nucleotide-binding 
oligomerization domain (NOD)-containing proteins[81]. 
In this context, it is notable that mutations in NOD2, a 
cytoplasmic innate immune-recognition receptor, are as-
sociated with susceptibility to CD[82,83]. TLRs are innate 
immune-recognition receptors that bind a spectrum of  
pathogen-associated molecular patterns (PAMPs) pres-
ent in pathogenic and commensal bacteria and viruses, 
as well as some endogenous proteins[84-86]. TLR family 
members were first noted to be expressed by immune 
cells such as monocytes and dendritic cells[84-86], then, it 
was shown that IECs also express TLRs[4]. With regard 
to the association of  TLRs with IBD, several studies have 
shown the alteration of  TLR expression and the specific 
antibody to the TLR ligand in patients with IBD. First, 
Cario et al[87] reported the upregulation of  TLR4 in IECs 
in UC and CD, and the downregulation of  TLR3 in CD. 
A recent study has shown the association between the 
TLR2 polymorphism R753Q and the severe UC pheno-
type[88]. Such associations have also been found between 
the TLR4 polymorphism at Asp299Gly and the develop-
ment of  CD and UC, and the TLR4 polymorphism at 
Thr399Ile and UC[89,90]. On the other hand, the presence 
of  high titers of  flagellin-specific antibodies in the serum 
of  CD patients has been reported[91]. 

The following in vivo and in vitro studies have pro-
vided evidence that each TLR contributes to intestinal 
homeostasis and intestinal mucosal repair. TLR2 rec-
ognizes lipoproteins derived from a variety of  bacteria, 
peptidoglycan, lipoteichoic acid from many Gram-positive 
bacteria, and lipopolysaccharide (LPS) from Leptospira 
and Porphyromonas gingivalis[4]. Cario et al[92] have shown 
that TLR2 stimulation effectively preserves the tight 
junction-associated barrier assembly in IECs against 
stress-induced damage, and suppresses mucosal inflam-
mation and apoptosis of  IECs in vivo. The same group 
has shown that TLR2 controls gap junction intercellular 
communication and commensal-mediated intestinal 
epithelial wound repair by modulating intestinal epithe-
lial connexin-43[93]. Furthermore, they have shown that 
TLR2 controls terminal goblet cell differentiation by 
selectively regulating trefoil factor 3 expression in the 
intestine and confers anti-apoptotic protection to the in-
testinal mucosa[94].

TLR3 recognizes double-stranded RNA, which is a 
molecular pattern associated with viral infection[86]. A re-
cent study has shown that administration of  TLR3 ligand 
polyinosinic acid: cytidylic acid protects against DSS-
induced colitis[95]. In contrast, Sato et al[96] have performed 

wound assays using IEC-6 cells and have shown that 
TLR3 ligand rotavirus double-stranded RNA induces 
apoptosis and diminishes wound repair of  IECs in vitro.

TLR4 recognizes LPS that is an integral component 
of  the outer membranes of  Gram-negative bacteria[4]. 
Using DSS-induced colitis mice, Rakoff-Nahoum et al[97] 
have demonstrated that commensal bacteria are recog-
nized by TLRs (TLR2 and TLR4) under normal steady-
state conditions, and that this interaction plays a crucial 
role in the maintenance of  intestinal epithelial homeosta-
sis. They have shown that activation of  TLRs by either 
the TLR2 or TLR4 ligand is critical for the protection 
against gut injury and associated mortality. This group 
has also shown that TLR-mediated signaling plays a 
critical role in intestinal inflammation in the context of  
deficiency in the anti-inflammatory cytokine IL-10, but 
not in the context of  insufficient activity of  regulatory T 
cells[98]. Another study using a murine colitis model also 
has shown that TLR4 is important in intestinal response 
to injury and in limiting bacterial translocation[99]. On the 
other hand, Cetin et al[100] have reported that LPS inhibits 
IEC-6 cell migration through a RhoA-dependent increase 
in focal adhesions and enhanced cell adhesiveness.

Flagellin, the primary structural component of  bacte-
rial flagella, is recognized by TLR5 present on the baso-
lateral surface of  IECs[101]. A recent study has shown that, 
in salmonella infections, flagellin plays a dominant role in 
the activation of  not only innate immunity but also anti-
apoptotic processes in epithelial cells[102]. The same group 
also has shown that pretreatment of  epithelial cells with 
flagellin can protect cells from a subsequent bacterium-
mediated apoptotic challenge through the activation of  
NF-κB and PI3K/Akt signaling[101]. These studies sug-
gest that the TLR5 ligand flagellin has a fundamental 
cytoprotective effect in inflammatory stress.

TLR9, an intracellular protein in immune cells, is ex-
pressed on the surfaces of  IECs, both on the apical and 
basolateral membrane[18]. TLR9 recognizes CpG motifs, 
derived from bacterial DNA[4]. Recent studies have dem-
onstrated that TLR-9 signaling in IECs contributes to 
colonic homeostasis[18,103-105]. Katakura et al[103] have shown 
that TLR9 agonist suppresses the severity of  experimen-
tal colitis by inducing type I IFN (IFN-α/β). The same 
group also has shown that administration of  probiotics 
(non-viable irradiated or viable probiotics) ameliorates the 
severity of  DSS-induced colitis[105]. They have suggested 
that TLR9 signaling is essential in mediating the anti-
inflammatory effect of  probiotics, and that live microor-
ganisms are not required to attenuate experimental colitis. 
They have shown that while basolateral TLR9 signaling 
is fully capable of  inducing an NF-κB-mediated pro-
inflammatory response, apical TLR9 signaling does not 
induce an inflammatory response due to a defect in NF-
κB activation[18,104]. They have suggested that stimulation 
of  apical TLR9 compromises the inflammatory cascade 
induced basolaterally by several other TLR ligands, and 
thus, apical exposure to luminal microbial DNA restrains 
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intestinal inflammation and supports colonic homeostasis 
via the activation of  TLR9. 

In conclusion, most of  these studies investigating the 
function of  TLRs strongly suggest the possibility that 
the activation of  TLRs by commensal bacteria plays an 
essential role in maintaining colonic homeostasis and 
protection of  IECs from gut injury. These studies also 
support the therapeutic efficacy of  some antibiotics[106-108] 
or probiotics[109] in IBD patients. Thus, modulations of  
host-commensal interactions via TLRs might be targeted 
for optimal therapeutic strategies in IBD. 
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