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Abstract
In recent years, because of the growing desire to improve the noninvasiveness and 
safety of tumor treatments, sonodynamic therapy has gradually become a popular 
research topic. However, due to the complexity of the therapeutic process, the re-
levant mechanisms have not yet been fully elucidated. One of the widely accepted 
possibilities involves the effect of reactive oxygen species. In this review, the 
mechanism of reactive oxygen species production by sonodynamic therapy (SDT) 
and ways to enhance the sonodynamic production of reactive oxygen species are 
reviewed. Then, the clinical application and limitations of SDT are discussed. In 
conclusion, current research on sonodynamic therapy should focus on the 
development of sonosensitizers that efficiently produce active oxygen, exhibit 
biological safety, and promote the clinical transformation of sonodynamic 
therapy.

Key Words: Sonodynamic therapy; Reactive oxygen species; Hypoxic; Tumor Micro-
environment; Sonosensitizer
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Core Tip: This review mainly describes the mechanism of reactive oxygen species 
generation by sonodynamic therapy and enhances the efficiency of reactive oxygen 
species generation by improving hypoxia to increase the efficacy of sonodynamic 
therapy on tumor, and finally summarizes the clinical applications and prospects of 
sonodynamic therapy.
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INTRODUCTION
According to the latest statistics from Cancer Statistics, 2023, it is estimated that there will be 1958310 new cancer cases 
and 609820 cancer deaths in the United States in 2023[1]. Likewise, the cancer situation in China remains critical, with 
4.064 million new cases and approximately 2.41 million deaths, according to data released by the National Cancer Centre 
in 2023[2]. Thus, cancer has become one of the major global threats to human health. Surgery, radiotherapy and chemo-
therapy are still the main treatment modalities for most malignancies. For example, the standard treatment for ovarian 
cancer, a common malignancy in women, is extensive tumor reduction surgery in combination with platinum or 
paclitaxel-based drugs, with or without angiogenesis inhibitors such as bevacizumab[3,4]. Despite the clinical benefits of 
combining multiple modalities for cancer, the mortality rate of cancer patients unfortunately continues to rise each year: 
late detection because early symptoms of malignant tumors are atypical, tumor recurrence and metastasis, resistance to 
therapeutic agents, and the systemic toxicity of treatment are important causes of failure of cancer treatment[5-8]. 
Therefore, exploring novel cancer therapeutics with higher efficacy, lower toxicity and fewer adverse reactions has 
become an urgent challenge.

Noninvasive therapies such as high-intensity focused ultrasound (HIFU)[9], photodynamic therapy (PDT)[10], 
sonodynamic therapy (SDT)[11], and photothermal therapy (PTT)[12] have been widely used in clinical practice and have 
achieved good therapeutic effects. PDT is a treatment based on reactive oxygen species (ROS) that utilizes a photo-
sensitizer (PS) combined with a specific light source to exert cytotoxic activity on tumor cells[13]. The PS, light and 
oxygen are the three key factors in PDT, and the combination of the three factors can generate ROS. The antitumor effect 
of PDT comes from three interrelated mechanisms—the direct cytotoxic effect on tumor cells; the destruction of tumor 
blood vessels, resulting in the deprivation of nutrients needed for tumors to survive[14]; and the release of cytokines and 
exosomes by tumor cells, which stimulate the recruitment of immune cells into tumor tissues and promote the antitumor 
immune response, reducing the mobility and invasion ability of tumor cells[10,15,16]. However, due to adverse factors 
such as the phototoxicity of PSs, the lack of specific accumulation in malignant tissues, the lack of endogenous oxygen in 
tumors, and limited light penetration depth (depth < 0.5 cm), PDT has unsatisfactory therapeutic effects on deep tumors, 
impeding its practical application[17]. Ultrasound has great preclinical and clinical potential due to its noninvasive 
nature, low energy attenuation and deep tissue penetration[18]. Yumita et al[19] overcame the disadvantages of, such as 
shallow tissue penetration (depth < 0.5 cm) and phototoxicity, by first proposing SDT to treat solid tumors. SDT is a 
noninvasive therapeutic modality that synergizes low-intensity and low-frequency ultrasound (0.5-3 W/cm2, 1.0-2.0 
MHz) with a sonosensitizer. Its main principle is to irradiate tumor sites with ultrasound under aerobic conditions to 
achieve the directional activation of sensitizers and a series of sonochemical reactions to kill tumor cells and achieve a 
therapeutic effect[20]. As an advanced treatment method of low-intensity ultrasound combined with an acoustic sen-
sitizer, SDT has the advantages of high tissue penetration (> 10 cm), high long-range space-time selectivity, and noninvas-
iveness. It can treat deep lesions that are difficult to access by photodynamic therapy (PDT) and therefore has broad 
clinical application prospects[18,21].

The therapeutic effect of SDT depends on ROS-mediated oxidative stress. However, the production of ROS is low, and 
the overexpression of the antioxidant glutathione in tumor tissues leads to high ROS consumption, which significantly 
reduces the therapeutic effect of SDT[22,23]. Therefore, improving the production capacity of ROS and reducing their 
consumption are the main strategies to improve the therapeutic effect of SDT[24].

ROS AND THEIR PRODUCTION MECHANISM IN SDT
ROS are a class of oxygen-containing, chemically active substances formed by the incomplete reduction of O2. There are 
two types of ROS: Free radical ROS and non-free radical ROS. Common ROS include hydrogen peroxide (H2O2), 
hypochlorous acid, singlet oxygen (1O2), superoxide anion (O2•-), and the hydroxyl group (•OH)[25].

ACOUSTIC CAVITATION
In the 1890s, the British Army found that the propeller of a warship could produce a large number of bubbles during 
operation, resulting in serious damage to the propeller, which was the first historical description of the cavitation effect
[26]. Since then, scientists have performed extensive research on the cavitation effect. It is a special physical phenomenon 
of ultrasound propagation in liquid[27], referring to a series of dynamic processes including the nucleation, growth and 
oscillation of microbubbles (cavitation nuclei) in liquid under the action of ultrasound[20]. It can be divided into inertial 
cavitation and noninertial cavitation. Noninertial cavitation means that under low sound pressure, microbubbles contract 
under ultrasonic positive pressure and expand under negative pressure, and the bubble diameter remains relatively 
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constant without rupture; inertial cavitation occurs when the sound pressure exceeds the threshold, and microbubbles 
cannot maintain structural stability in the process of contraction and expansion: therefore, they collapse and implode in 
the compression stage and produce local high temperature (4000-25000 K) and high pressure (81 MPa) instantaneously, 
accompanied by high-speed shockwaves, microjets and sonochemical effects[20]. SDT produces ROS through sonolumin-
escence and pyrolysis[28]. The mechanism of ROS production by sonoluminescence is similar to that of PTD, which 
stimulates the production of active oxygen by sonosensitizers through type I and type II reactions (Figure 1A)[29]. In the 
type I reaction, under the action of ultrasound, the sonosensitizer is excited from the ground state S0 to the excited state S1 
and then changes to the excited triplet state (T1) through internal conversion. The T1 sonosensitizer reacts with the 
intracellular matrix to produce ROS (H2O2, 1O2,•OH)[30]. The energy generated by the cavitation effect in the type II 
reaction is directly transferred to excited 3O2 to produce 1O2[30,31]. The mechanism by which pyrolysis produces ROS 
includes the implosion of transient cavitation microbubbles to generate high temperature instantaneously: this high 
temperature directly decomposes H2O to produce •H and •OH, which can react with the sonosensitizer to produce ROS 
with a longer half-life[32]. In addition, the sonosensitizer can directly decompose at high temperature to generate free 
radicals, which further react with endogenous substances to generate other active forms of oxygen (Figure 1B)[32].

PIEZOCATALYSIS
Piezoelectric catalysis is an emerging active ROS generation method, especially in SDT, that can directionally trigger the 
generation of in situ ROS in particular[33]. When not mechanically stimulated, piezoelectric materials are in electrostatic 
equilibrium[34]. When ultrasound acts on piezoelectric materials, they are subjected to rapid periodic mechanical 
stimulation[33], and the polarization amplitude oscillates rapidly with the piezoelectric force field, resulting in the 
continuous separation of electrons and holes in piezoelectric materials and establishing a built-in electric field in 
piezocatalysts. This in turn catalyzes the generation of toxic •OH and •O2

− (Figure 1B)[34-36].

METHODS TO IMPROVE THE GENERATION OF ROS
Improving the hypoxic tumor microenvironment
The tumor microenvironment (TME) refers to the cellular environment in which tumors or tumor stem cells exist[37], 
including cancer-associated fibroblasts, vascular endothelial cells, and extracellular matrix[38], characterized by low pH, 
low oxygen (PO2 ≤ 2.5 mmHg), high H2O2 (50-100 × 10-6 mmol/L), glucose deprivation, and so on[39-41]. Hypoxia is one 
of the common and important characteristics of malignant tumors and is mainly caused by the imbalance between 
oxygen supply and consumption in tumor tissues[38]. The relevant mechanisms include oxygen perfusion limitation, 
oxygen diffusion limitation and anemic hypoxia[42]. Based on the dynamic changes in the TME, hypoxia is divided into 
acute hypoxia and chronic hypoxia. Acute hypoxia is related to perfusion and is caused by the instability of red blood cell 
flux in the tumor microvascular network, while chronic hypoxia is long-term or irreversible and is related to oxygen 
diffusion limitation[38].

Hypoxia inducible factor is activated by hypoxia and plays an important role in tumor progression, metastasis and 
immune escape, thus making tumors more resistant to many current treatments[43]. An increasing volume of data 
indicates that tumor hypoxia is the main reason for the failure of many current therapies. As the substrate for SDT to 
produce ROS, tumor hypoxia will inevitably affect the production efficiency of ROS and reduce the efficacy of SDT. 
Therefore, adding in situ oxygen-generating materials or oxygen carriers to sonosensitizers to increase the oxygen content 
in the TME and increase the efficacy of SDT has become a new tumor treatment approach[44-46].

IN SITU O2 GENERATION
Catalase (CAT) can catalyze endogenous H2O2 in tumors to generate O2, which is an effective method to overcome tumor 
hypoxia. One researcher designed a thermotriggered in situ hydrogel system (TCCP-CAT CS/GP) based on the catalytic 
properties of CAT, which couples meso-tetra (4-carboxyphenyl) porphine (TCCP) with CAT and then mixes it with 
chitosan (CS) and disodium β-glycerophosphate (GP) to form a solution. At mouse body temperature (37 °C), this 
acoustic sensitizer was injected into the tumor site and was able to undergo sol-gel conversion, leaving the acoustic 
sensitizer at the tumor site. CAT catalyzed the original hydrogen peroxide to produce O2, continuously relieving tumor 
hypoxia, promoting TCCP to produce large amounts of ROS, and exerting a tumor suppression effect[47]. Since the first 
report of Fe3O4 magnetic nanoparticles with intrinsic peroxidase-like activity in 2007[48], several O2-releasing 
nanosystems (e.g., manganese dioxide nanoparticles[49,50], gold nanoclusters, and Fe3+-doped structural units) have been 
shown to be transported to tumor sites to catalyze the conversion of endogenous H2O2 to O2 and alleviate tumor hypoxia. 
For instance, manganese dioxide (MnO2) nanoparticles have been reported to possess catalase properties, high reactivity 
with H2O2, and the ability to continuously produce O2 and were shown to effectively alleviate tumor hypoxia. Piao Zhu et 
al. introduced MnOx into hollow mesoporous organosilica nanoparticles (HMONs) in situ through a simple redox 
reaction, anchored PpIX with HMONs, MnOx, and cyclic arginine-glycine-aspartic pentapeptide (RGD, as a targeting 
peptide) to modify the surface of nanoparticles, and finally constructed a multifunctional nanosonosensitizer 
(PpIX@HMON-MnOx-RGD) (Figure 2A). Both in vivo and in vitro experiments showed that MnOx can act as a 
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Figure 1 Schematic diagram of the different mechanisms of reactive oxygen species generation. A: Schematic diagram of the principle of 
sonodynamic therapy. Citation: Greenwald BD. Photodynamic therapy for esophageal cancer. Update. Chest Surg Clin N Am 2000; 10(3): 625-637. Copyright © 2011 
American Cancer Society, Inc. Published by American Cancer Society, Inc; B: ROS generation by active piezoelectric catalysis. Piezoelectric materials in the 
electrostatic balance state release charge when under compressive stress and react with H2O to produce •OH, and O2 obtains negative charge to generate •O2−. 
Then Piezoelectric materials adsorb the charges from the surrounding electrolyte under reduced compressive stress, H2O loses negative electrons to generate ·OH, 
and O2 releases positive charge to generate •O2−. Citation: Wang Y, Wen X, Jia Y, Huang M, Wang F, Zhang X, Bai Y, Yuan G, Wang Y. Piezo-catalysis for 
nondestructive tooth whitening. Nat Commun 2020; 11(1): 1328. Copyright © The Author(s) 2020. Published by Springer Nature Limited.

nanoenzyme, catalyze the decomposition of excessive H2O2 in tumors, produce oxygen (Figure 2B), alleviate tumor 
hypoxia, provide a sufficient oxygen source for SDT, promote the production of reactive oxygen species (Figure 2C), and 
improve the efficacy of SDT (Figure 2D and E)[51]. In addition, platinum (Pt) nanocrystals can be used as nanoenzymes to 
decompose H2O2 and produce a large amount of O2. Based on the characteristics of Pt nanocrystals, Tian Zhang et al. 
constructed a Pt nanocrystal-encapsulated sonosensitizer (α-Fe2O3@Pt), and the pairing of α-Fe2O3 and Pt formed an 
effective electron capture trap to prevent the recombination of electrons and holes and promote the generation of 1O2 
(Figure 3). At the same time, Pt, as a nanoenzyme, can decompose H2O2 to generate a large amount of O2, which is a more 
effective means of O2 generation for SDT and the effective inhibition of tumor growth[52]. Nevertheless, the methods 
mentioned above inevitably consume H2O2, resulting in an insufficient supply of H2O2 in the SDT process. Based on this 
shortcoming, Jiang et al[53] developed an H2O2 economizer, namely, membrane-coated Fe-PDAP/Ce6 (MFC) coated with 
cancer cell membrane. Prior to ultrasound irradiation, the cancer cell membrane coated with the acoustic sensitizer could 
prevent the early release of catalase-like nanoenzyme Fe-PDAP and reduce the unnecessary consumption of H2O2 in the 
TME. After ultrasonic irradiation, MFC could be selectively dismantled to release Fe-PDAP, which could catalyze H2O2 to 
generate O2 and more effectively produce ROS.

EXOGENOUS OXYGEN TRANSPORT
Due to the limited H2O2 available in the TME and the inability to continuously provide O2[54], oxygen carriers 
(hemoglobin[55], microbubbles[56], fluorocarbon[57]) and sonosensitizers can better alleviate tumor hypoxia.

Hemoglobin (Hb), as a natural oxygen carrier, can bind four oxygen atoms per Hb unit. At the same time, the 
generation of ultrasonic-induced active ROS provides a rich source of oxygen. In one study, a pH-sensitive zeolitic 
imidazolate framework (ZIF-8) was used as the carrier to encapsulate Hb and synthesize Hb@ZIF-8 (HZ) to achieve the 
release of pH-responsive Hb/O2 at the tumor site[58]. In vitro experiments showed that adjusting the pH 5.5 could release 
a large amount of O2, alleviate tumor hypoxia, generate a large amount of ROS under ultrasonic response, activate the 
mitochondrial apoptosis pathway, and effectively inhibit the growth of tumor cells. In vivo experiments revealed that 
nanoparticles irradiated by ultrasound can not only inhibit the growth of subcutaneous tumors but also control the 
growth of deep tumors, revealing that SDT can be applied at different depths.
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Figure 2 Schematic representation of construction of PMR nanosonosensitizers and catalytic oxygen generation-enhanced sonodynamic 
therapy against cancer. A: Detailed steps for preparation of PMR nanosonosensitizers; B: Scheme of MnOx was used as the catalase-like nanoenzyme for the 
generation of O2 and further generation of 1O2 under ultrasonic irradiation; C: Confocal laser scanning microscope observation of the production of ROS after various 
treatment and flow cytometry analysis of cancer cells apoptosis after various treatments; D: Tumor-volume changes after varied treatments; E: Corresponding 
photographic images of tumor at the end of different treatments. Citation: Zhu P, Chen Y, Shi J. Nanoenzyme-Augmented Cancer Sonodynamic Therapy by Catalytic 
Tumor Oxygenation. ACS Nano 2018; 12(4): 3780-3795. Copyright © 2018, American Chemical Society. Published by ACS Publication. SDT: Sonodynamic therapy; 
MnOx: Manganese oxide; H2O2: Hydrogen peroxide; US: Ultrasound; 1O2: Singlet oxygen; O2: Oxygen; PpIX: Protoporphyrin; PMR: PpIX@HMONs-MnOx-RGD; PR: 
Protoporphyrin.

Furthermore, perfluorocarbons (perfluorobutane, perfluoropentane and the like) are widely used for the delivery of 
chemotherapeutic drugs, genes, oxygen, or contrast agents due to their high oxygen solubility and biocompatibility[59,
60]. Studies have shown that perfluorocarbon carries oxygen more efficiently than Hb, with 100 mL of perfluorocarbon 
carrying approximately 40 to 50 mL of O2 at 25℃, whereas the same volume of Hb carries only 20 mL of O2[61,62]. Chen 
et al[57] successfully developed the fluorocarbon-chain-media oxygen-self-produced nanoplatform (IR780@O2-FHMON). 
Both cellular and in vivo experiments have shown that the nanoplatform can better accumulate in tumors, accelerate the 
release of O2, permanently reverse hypoxia, and generate more ROS to achieve the high-efficiency treatment of PANC-1 
pancreatic cancer by SDT. Yang et al[63] also reported a hierarchical nanoformulation (PFCE@THPPpf-COPs) that can 
effectively alleviate hypoxia ub prostate cancer, generate a large amount of ROS, improve the curative effect of SDT, and 
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Figure 3 Schematic representation of construction ofα-Fe2O3@Pt nanosonosensitizers and catalytic oxygen generation-enhanced SDT 
against cancer. A, G: Schematic diagram of action mechanism of α-Fe2O3@Pt nanoparticles and synthetic method ofα- Fe2O3@Pt; B: The relative cell viability of 
Fe2O3 and α- Fe2O3@Pt with or without ultrasound under normoxic and hypoxic conditions; C and D: Qualitative and quantitative analysis of ROS by flow cytometer 
produced by α- Fe2O3@Pt; E: Fluorescence image stained with calcein AM (green, live cells) and PI (Propidium iodide, red, dead cells); F: The flow cytometer 
apoptosis assay staining with PI and Annexin-FTIC; H: Mechanism diagram of O2 and ROS produced by α- Fe2O3@Pt; I: Flow chart of in vivo study experiment; J-M: 
The variations of d body weight,relative tumor volume, tumor weight and tumor images of mice from different groups after sacrificing the mice on the 14th day. 
Citation: Zhang T, Zheng Q, Fu Y, Xie C, Fan G, Wang Y, Wu Y, Cai X, Han G, Li X. α-Fe2O3@Pt heterostructure particles to enable sonodynamic therapy with self-
supplied O2 and imaging-guidance. J Nanobiotechnology 2021; 19(1): 358. Copyright © The Author(s) 2021. Published by BioMed Central Ltd. US: Ultrasound; Fe2O3

: Ferric oxide; Pt: Platinum; FP:α-Fe2O3@Pt; 1O2: Singlet oxygen; O2: Oxygen; H2O2: Hydrogen peroxide; ROS: Reactive oxygen species.

achieve tumor eradication through the high-loading oxygen carrier perfluoropolyether.
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REDUCING THE ROS SCAVENGING CAPACITY
Glutathione (GSH), an important nonprotein mercaptan that contains thiols and amide linkages, is a major intracellular 
antioxidant that plays a key role in many physiological and pathological processes[64,65]. In addition to hypoxia, the 
overexpression of glutathione (1-10 × 10-3 mmol/L) is also an important feature of the TME[66]. High levels of glutathione 
can protect cancer cells from ROS-induced oxidative damage. Therefore, as SDT is an active oxygen-based therapy, 
excessive glutathione in the TME can negatively affect the efficacy[64]. At present, the intracellular glutathione level is 
mainly reduced through two pathways, namely, the upstream and downstream pathways of glutathione[67]. The 
glutathione upstream pathway refers to the inhibition of glutathione synthesis by cancer cells through the use of 
glutathione biosynthesis inhibitors, such as L-butynyl sulfoxide amine (BSO) and γ-glutamyl cysteine synthetase[68]. For 
example, a study successfully synthesized BSO-TCPP-Fe@CaCO3-PEG nanoparticles, which amplified the oxidative stress 
of tumors through Ca2+ overload-induced ROS generation, BSO-mediated GSH synthesis inhibition and meso-tetra-(4-
carboxyphenyl) porphine (TCPP)-mediated sonodynamic effects, leading to significant cancer cell death and overall 
effective inhibition of tumor growth to enhance the therapeutic effect of SDT[68]. The downstream pathway refers to the 
conversion of GSH to glutathione disulfide through a redox reaction between glutathione and some reducing agents. For 
example, Huang et al[64] designed GSH-depleting nanoplatelets consisting of cinnamic aldehyde (CA) and IR780-
supported mesoporous silica nanoparticles (MSNs) coated with a platelet membrane called PV-coated MSN-CA/IR780 
(PSCI). CA, serving as an oxidative stress amplification agent, consumes excessive glutathione in the TME, weakens the 
ability of tumor cells to produce active oxygen by eliminating SDT through glutathione, increases the content of active 
oxygen, and further enhances the therapeutic effect of SDT to effectively inhibit tumor growth.

CLINICAL APPLICATION AND LIMITATIONS OF SDT
Although good progress has been made in preclinical studies on SDT (Table 1), no large-scale clinical studies have been 
executed, and only a few cases have been reported. All the existing studies have combined SDT with other treatments 
(chemotherapy, hormone therapy, and immunotherapy)[69,70]. For example, Wang et al[71] reported the clinical results 
of SDT combined with photodynamic therapy (SPDT) after treating 3 patients with advanced refractory breast cancer. 
After sublingual absorption of the acoustic sensitizer SF1 for 2 to 3 d, the tumor area or the whole body was irradiated 
with a red LED lamp (wavelength: 630 nm, power: 20 Mw/cm2) for 30 min, and then the tumor area was irradiated with a 
portable ultrasound device (frequency: 1 MHz, power: 2.0 W/cm2) for 20 min for a continuous period of 3 d. After 
treatment, the tumors in all three patients were significantly reduced, and there was no significant effect of SPDT on vital 
organs throughout the body. Subsequently, Inui et al[72] used SDT in combination with immunotherapy to treat a patient 
with advanced breast cancer (invasive ductal carcinoma, grade 3, ER+, PR+, HER2+, right axillary, spinal, and pleural 
metastases). After 19 sessions of sonodynamic therapy with SDT (5-ALA (10 mg/kg)-modified Ce 6 (25 mg) in 
combination with exemestane (25 mg/d), the tumor in the right axilla and pleura completely disappeared, and tumor 
markers rapidly declined without serious side effects.

In the abovementioned examples, SDT combined with other treatments showed good therapeutic effects, but it is 
difficult to quantify the role of SDT in treatment success[70]. Most acoustic sensitizers have low biosafety and ROS-
producing ability, resulting in insufficient efficacy to replace traditional antitumor therapy. Therefore, SDT has not 
become widespread in clinical practice. The following problems exist regarding SDT: (1) The therapeutic mechanism of 
SDT has not been fully elucidated[73]; (2) there are relatively few ultrasonic treatment devices suitable for clinical 
application[74]; (3) for different types of tumors, more detailed studies are needed on the key parameters of ultrasonic 
frequency, intensity and irradiation time[11,75]; (4) further research is needed on sound-sensitive agents with good 
photoacoustic dynamic effects and biocompatibility[76]; and  (5) the biosafety of various kinds of sonosensitizers needs to 
be systematically studied in vivo and in vitro. In particular, inorganic sonosensitizers have poor biodegradability and are 
not easily metabolized[77]. Currently, the sonosensitizers approved by the Food and Drug Administration of the United 
States are mainly organic acoustic sonosensitizers[11], such as indocyanine green[44], sodium warfarin (DVDMS)[78], 
chlorin e6[60] and 5- aminolevulinic acid[79].

CONCLUSION
SDT, which relies on the strong penetration of ultrasound and the tumor-specific accumulation of sonosensitizers, has 
been proven to be an effective, low-cost and safe antitumor treatment technique with good clinical application prospects
[80]. SDT mainly relies on the research and development of sonosensitizers and the alleviation of the tumor hypoxic 
microenvironment to promote the efficient production of reactive oxygen species by sonosensitizers. Therefore, the 
development of sonosensitizers with strong ROS generation ability and good biodegradability will help SDT to obtain 
better clinical application prospects. In short, SDT has been proven to have good therapeutic effects on tumors, but most 
of these effects are based on preclinical research. In the future, more research efforts are needed to promote the clinical 
transformation of SDT[21,32].
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Table 1 Application of sonodynamic therapy in different tumors

Cancer type Sonosensitizer Therapeutic 
parameters Result Ref.

Glioma Ce6 0.6 W/cm2, 60 s SDT inhibits xenograft tumor growth by inducing apoptosis and inhibiting 
mitochondrial autophagy

[80]

Breast cancer Mn-MOF 1.0 MHz, 0.9 W/cm2, 
30% duty cycle

Mn-MOF catalyzes the in situ production of O2 to alleviate tumor hypoxia and 
reduce GSH and GPX4, which contributes to ROS formation and iron death, 
thereby killing cancer cells

[81]

Melanoma Ce6 2.0 MHz, 2.0 W/cm2, 
20% duty cycle

The combination of SDT and aPD-L1 immunotherapy effectively inhibits tumor 
infiltration and promotes activation of cytotoxic T cells, resulting in strong 
anticancer immunity and long-term immune memory, effectively inhibiting 
melanoma growth

[82]

Pancreatic 
cancer

Hematoporphyrin 1.0 MHz, 3.0 W/cm2, 
50% duty cycle

SDT exerts antitumor effects by suppressing the expression of immunosup-
pressive T-cell phenotypes

[83]

Cervical 
cancer

IR780 2.5W/cm2, 20 s IR780 selectively positions the nanoparticles into the mitochondria of cancer cells, 
and generates the acoustic droplet vaporization effect after perfluorohexane 
phase transition to achieve the synergistic treatment of tumors

[84]

Ovarian 
cancer

ICG 1.0 W/cm2, 1 min SDT in combination with PDT and oxaliplatin can increase antitumor effects, 
enhance immunological potency and improve dual-mode imaging

[85]

Prostate 
cancer

hematoporphyrin 1.0 MHz, 3.5 W/cm2, 
30% duty cycle, 3.5 
mim

pH- and histone B-responsive nanoparticles combined with SDT have a 
significant induced cytotoxic effect on prostate cancer cells and can effectively 
treat cancer

[86]

Gastric 
cancer

Pyropheophorbide-
lipid

1.0 MHz, 1.0 W/cm2, 
50% duty cycle, 3 min

Construction of an ultrasound microbubble using pyrophosphorylated lipids in 
combination with trastuzumab for the synergistic treatment of  HER2-positive 
gastric cancer with sonodynamic therapy and antibody therapy

[87]

Lung cancer DVDMS 0.5MHz, 0.5 W/cm2, 
10% duty cycle, 5 min

DVDMS in combination with SDT exerts antitumor effects via the mitochondria-
mediated apoptosis signaling pathway and the extrinsic apoptosis pathway

[88]

Ce6: Chlorin e6; Mn-MOF: Manganese metal-organic framework; GSH: Glutathione; GPX4: Glutathione peroxidase 4; ROS: Reactive oxygen species; SDT: 
Sonodynamic therapy; PDT: Photodynamic therapy; aPD-L1: anti-Programmed cell death 1 ligand 1 antibody; ICG: Indocyanine Green; HER2: Human 
epidermal growth factor receptor 2; DVDMS: Dinoporphyrin sodium.
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