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Abstract

BACKGROUND

Novel therapeutic strategies are urgently needed for patients with a delayed
diagnosis of pancreatic ductal adenocarcinoma (PDAC) in order to improve their
chances of survival. Recent studies have shown potent anti-neoplastic effects of
curcumin and its analogues. In addition, the role of histone methyltransferases on
cancer therapeutics has also been elucidated. However, the relationship between
these two factors in the treatment of pancreatic cancer remains unknown. Our
working hypothesis was that L48H37, a novel curcumin analog, has better
efficacy in pancreatic cancer cell growth inhibition in the absence of histone-
lysine N-methyltransferase 2D (KMT2D).

AIM
To determine the anti-cancer effects of L48H37 in PDAC, and the role of KMT2D
on its therapeutic efficacy.

METHODS

The viability and proliferation of primary (PANC-1 and MIA PaCa-2) and
metastatic (SW1990 and ASPC-1) PDAC cell lines treated with L48H37 was
determined by CCKS8 and colony formation assay. Apoptosis, mitochondrial
membrane potential (MMP), reactive oxygen species (ROS) levels, and cell cycle
profile were determined by staining the cells with Annexin-V/7-AAD, JC-1,
DCFH-DA, and Pl respectively, as well as flow cytometric acquisition. In vitro
migration was assessed by the wound healing assay. The protein and mRNA
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levels of relevant factors were analyzed using Western blotting,
immunofluorescence and real time-quantitative PCR. The in situ expression of
KMT2D in both human PDAC and paired adjacent normal tissues was
determined by immunohistochemistry. In vivo tumor xenografts were established
by injecting nude mice with PDAC cells. Bioinformatics analyses were also
conducted using gene expression databases and TCGA.

RESULTS

L48H37 inhibited the proliferation and induced apoptosis in SW1990 and ASPC-1
cells in a dose- and time-dependent manner, while also reducing MMP,
increasing ROS levels, arresting cell cycle at the G2/M stages and activating the
endoplasmic reticulum (ER) stress-associated protein kinase RNA-like
endoplasmic reticulum kinase/eukaryotic initiation factor 2a/activating
transcription factor 4 (ATF4)/CHOP signaling pathway. Knocking down ATF4
significantly upregulated KMT2D in PDAC cells, and also decreased L48H37-
induced apoptosis. Furthermore, silencing KMT2D in L48H37-treated cells
significantly augmented apoptosis and the ER stress pathway, indicating that
KMT2D depletion is essential for the anti-neoplastic effects of L48H37.
Administering L48H37 to mice bearing tumors derived from control or KMT2D-
knockdown PDAC cells significantly decreased the tumor burden. We also
identified several differentially expressed genes in PDAC cell lines expressing
very low levels of KMT2D that were functionally categorized into the extrinsic
apoptotic signaling pathway. The KMT2D high- and low-expressing PDAC
patients from the TCGA database showed similar survival rates,but higher
KMT2D expression was associated with poor tumor grade in clinical and
pathological analyses.

CONCLUSION
L48H37 exerts a potent anti-cancer effect in PDAC, which is augmented by
KMT2D deficiency.

Key words: Pancreatic neoplasms; Curcumin analog; Histone methyltransferase 2D;
Therapeutic effects; Bioinformatics

©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: We are the first to report an anti-tumor effect of L48H37 in pancreatic cancer,
and ascertain that KMT2D deficiency contributes significantly to the therapeutic effect,
in part through the protein kinase RNA-like endoplasmic reticulum kinase/eukaryotic
initiation factor 2a/activating transcription factor 4/CHOP signaling pathway. It is worth
noting that the relationship between the KMT2D expression pattern and treatment
efficacy in clinical practice has yet to be further explored.

Citation: Li SS, Jiang WL, Xiao WQ, Li K, Zhang YF, Guo XY, Dai YQ, Zhao QY, Jiang MJ,
Lu ZJ, Wan R. KMT2D deficiency enhances the anti-cancer activity of L48H37 in pancreatic
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-
related deaths, with a five-year survival rate below 10%. Due to its early
asymptomatic nature, only 15%-20% of the patients have the opportunity to undergo
surgery after diagnosis, which renders chemotherapy and radiotherapy as the
primary modes of treatment!’l. Therefore, an effective therapeutic strategy is urgently
needed to improve patient survival.

PDAC has a complex etiology involving genetic and epigenetic modifications like
DNA methylation and histone deacetylation, which are a reversible response to
external stimuli. The histone-lysine N-methyltransferase KMT2D, also known as
MLL2 or MLL4P, is frequently mutated in multiple cancers!*'?, including PDAC
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where it shows a mutation rate of 5%-7%">". KMT2D mutations affect the expression
of chromatin-regulated genes involved in cell cycle progression, survival and
epithelial-mesenchymal transition (EMT)!">"*l. Interestingly, KMT2D can act either as
an oncogene or a tumor suppressor, depending on the type and stage of the tumor. In
addition, studies show that variations in KMT2D expression patterns depend on the
genetic background of cancer cell lines and cancer types, which has a significant
impact on therapeutic responsel”'*'"*1. The role of KMT2D in PDAC is ambiguous,
with contrasting results reported in different studies!'>'>?**’l. In this study, we
analyzed the effect of KMT2D expression levels on the therapeutic efficacy of L48H37
on PDAC cells in order to determine the predictive value of KMT2D in PDAC.

L48H37 is a novel curcumin with an unsaturated monoketone structure compared
to the B-diketone structure of curcumin, which increases its stability and anti-cancer
effects. A recent study showed promising results with L48H37 in lung cancer cellsi™..
In the present study, we observed a potent anti-neoplastic effect of L48H37 on human
PDAC cells. Mechanistically, L48H37 triggered apoptosis via the endoplasmic
reticulum (ER) stress-associated protein kinase RNA-like endoplasmic reticulum
kinase (PERK)/elF2a/activating transcription factor 4 (ATF4)/CHOP signaling
pathway, which was accompanied by a slight decrease in KMT2D levels. Blocking this
pathway significantly decreased apoptosis and upregulated KMT2D. Consistent with
the above, KMT2D knockdown augmented the effects of L48H37 both in vitro and in
vivo. Taken together, KMT2D deficiency optimizes the therapeutic effects of L48H37
in PDAC cells by activating the ER stress pathway. Our findings provide new insights
into drug targets and therapeutic strategies for PDAC.

MATERIALS AND METHODS

Cell lines and patient tissue samples

The primary human PDAC cell lines PANC-1 and MIA PaCa, were cultured in high
glucose DMEM (HyClone, Logan, UT, United States), while the metastatic SW1990
and ASPC-1 lines (all from American Type Culture Collection, ATCC, Manassas, VA,
United States) were cultured in RPMI1640 medium (HyClone, Logan, UT, United
States). Both media were supplemented with 10% heat-inactivated FBS (HyClone,
Logan, UT, United States), penicillin-streptomycin solution (Gibco, CA, United
States), and 2.5% horse serum (Gibco, Carlsbad, CA, United States) was included for
MIA PaCa,. All cell lines were cultured at 37 °C under 5% CO,. The cells were
routinely tested using MycAway (Yeasen, Shanghai, China) to eliminate mycoplasma
contamination. Paired tumor and adjacent normal tissue samples were collected from
the Shanghai General Hospital, and informed consent was obtained from the patients.
The study was approved by the Ethics Committee of Shanghai General Hospital of
Shanghai Jiao Tong University.

Cell viability assay

The cells were seeded into 96-well plates at a density of 3 x 10° cells/well and
incubated overnight. Varying doses of L48H37 (Sigma Aldrich, St Louis, MO, United
States) reconstituted in DMSO (Yeasen, Shanghai, China) were added, along with
0.1% DMSO as the negative control, and the cells were cultured for another 24, 48 or
72 h. CCK-8 reagent (Dojindo, Tokyo, Japan) was then added, and the absorbance at
450 nm was measured after 2 h incubation. The IC,, values were calculated with the
help of a sigmoidal dose-response variable slope model using GraphPad PRISM6
(GraphPad Software, La Jolla, CA, United States)""l.

Colony formation assay

SW1990 and Aspc-1 cells were seeded into 6-well plates at a density of 5 x 102
cells/well in RPMI1640, and incubated overnight. Following a 24 h L48H37 treatment,
the medium was replaced with fresh medium, and the cells were cultured for 1 wk.
The plates were fixed with 4% paraformaldehyde (Sangon Biotech, Shanghai, China),
and the colonies were stained with crystal violet (Sangon Biotech, Shanghai, China)
and then counted®.

Annexin V/T-AAD and propidium iodide staining

Annexin V-PE and 7-AAD (BD PharMingen, San Diego, CA, United States) double
staining was performed to detect apoptotic cells, and propidium iodide (PI) (BD
PharMingen, San Diego, CA, United States) was used for cell cycle profile analysis,
each according to the manufacturer's instructions. The stained cells were analyzed
using a BD Accuri C6 Flow Cytometer, and both the percentage of apoptotic cells and
the cell cycle profile were analyzed using Flow]Jo software (Treestar Inc., Ashland, OR,
United States)"™.
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Western blotting

Cells were lysed with RIPA buffer (Beyotime, Shanghai, China), and protein lysates
were resolved by 6%-15% SDS-PAGE and transferred to PVDF membranes (Merk
Millipore, Billerica, MA, United States). The latter were blocked and incubated
overnight at 4 °C with primary antibodies against the following: f-actin (HRP-60008),
Histone H3 (17168-1-AP), PERK (20582-1-AP), EIF2A (11233-1-AP), ATF4 (10835-1-
AP), CHOP (15204-1-AP), Caspase8 (66093-1-Ig), Caspase9 (66169-1-Ig), KMT2D
(27266-1-AP; all from Proteintech Group, Wuhan, China), BAX (AF1270), Bcl-2
(AF0060; both from Beyotime Inc., Shanghai, China), cleaved caspase-3 (#9661; Cell
Signaling Technology, Danvers, MA, United States), p-PERK-ser713 (Biolegend, San
Diego, CA, United States), p-EIF2A-ser51 (NOVUS biological Inc., Littleton, CO,
United States), and H3K4me1-A2355 (ABclonal, Cambridge, MA, United States)!""l.
The immuno-positive bands were detected by incubating with HRP-conjugated
secondary antibody (Yeasen, Shanghai, China) for 2 h, followed by color development
using ECL reagent (Merk Millipore, Billerica, MA, United States). Protein expression
levels were calculated relative to that of 3-actin and histone H3.

Mitochondrial membrane potential analysis

The mitochondrial membrane potential (MMP) was analyzed using the JC-1 (BD
PharMingen, San Diego, CA, United States) probe, as previously described. The
treated cells were harvested and stained with JC-1 for 15 min, and evaluated by flow
cytometry and fluorescence microscopy (200 x magnification)™.

Measurement of reactive oxygen species generation

Intracellular reactive oxygen species (ROS) levels were assayed using the DCFH-DA
fluorescent probe (Sigma Aldrich, St Louis, MO, United States), as previously
described. The treated L48H37, SW1990 and Aspc-1 cells were incubated with the dye
for 30 min, and then analyzed with the BD Accuri C6 Flow Cytometer, followed by
analysis with FlowJo softwarel™.

Small interfering RNA transfection

SW1990 and Aspc-1 cells were seeded into 6-well plates, and transfected with si-ATF4
or control small interfering RNA (siRNA) using lipofectamine 2000 (Invitrogen,
Carlsbad, CA, United States) once the cells reached 70%-90% confluency. Briefly, 100
pmol siRNA was mixed with 5 pL lipofectamine 2000, and the cells were incubated
with the mixture for 48 hl"”l. The siRNA duplexes (GenePharma, Shanghai, China) had
the following sequences: Control siRNA: 5-UUCUCCGAACGUGUCACGUTT-3’
(sense); 5'-ACGUGACACGUUCGGAGAATT-3" (anti-sense); ATF4 siRNA # 15'-
CUGCUUACGUUGCCAUGAUTT-3 (sense) 5-AUCAUGGCAACGUAAGCAGTT-3’
(anti-sense); ATF4 siRNA # 25'-CUCCCAGAAAGUUUAACAATT-3’ (sense) 5'-
UUGUUAAACUUUCUGGGAGTT-3 (anti-sense).

Real-time quantitative PCR analysis

Total RNA was extracted from PDAC cell lines using the RNAiso Plus Reagent
(Takara Bio Inc., Shiga, Japan) according to the manufacturer's instructions, and 500
ng RNA per sample was reverse-transcribed into cDNA using the PrimeScript™ RT
Reagent Kit (Takara Bio Inc., Shiga, Japan). The cDNA samples were amplified using
SYBR® Premix Ex Taq™ II (Takara Bio Inc., Shiga, Japan), and relative mRNA
expression was determined by the 244 method using B-actin as the internal control™.

Immunofiuorescence

Cells were grown on glass slides and fixed with 4% paraformaldehyde for 15 min,
followed by permeabilization with 0.5% Triton X-100 (Sangon Biotech, Shanghai,
China) for 20 min at room temperature. The cells were blocked and then incubated
overnight with the specific primary antibody at 4 °C, followed by another incubation
with the secondary antibody and counterstaining with DAPI (Sangon Biotech,
Shanghai, China). The stained cells were observed under a fluorescence microscope!™.

Lentiviral transduction

Cells grown to 30%-50% confluency were transduced with the appropriate amount of
pLKD-CMV-EGFP-U6-shKMT2D or pLKD-CMV-EGFP-U6-shCTRL lentivirus (Obio
Technology, Shanghai, China) with 6 pg/mL polybrene (Hanbio, Shanghai, China).
The stably transfected cells were selected by 5 pg/mL puromycin (Sigma Aldrich, St
Louis, MO, United States) for at least 2 wk!™l.

Bioinformatics analysis

The RNA sequencing (RNA-Seq) data on the metastatic PDAC Colo357 and SUIT-2
cell lines were downloaded from the GEO databasel™, and the differentially expressed
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genes (DEGs) were screened using Morpheus softwarel””). Overlapping DEGs were
depicted by online Venn diagram analysis, and gene enrichment analysis was
performed online using Metascapel™!. Differential levels of KMT2D between tumor
and normal tissues were obtained from the GEPIA"! and Oncomine databases!*!], and
the KMT2D expression levels and clinical characteristics of PDAC patients were
obtained from the TCGA databasel*’l. The prognostic value of KMT2D was
determined using Kaplan Meier survival analysis.

Wound healing assay

Cell migration was determined using scratch assays, as previously described. Control
or KMT2D-knockdown SW1990 cells were cultured in 6-well plates until 70%
confluency, and treated with L48H37 or DMSO for 24 h. Once the cells were nearly
90% confluent, the monolayer was scratched using a sterile pipette tip. The number of
cells migrating into the “wound” area were counted for 2 consecutive days by manual
tracking using Fiji software (National Institutes of Health, Bethesda, MD, United
States)!“’l.

Tumor inhibition assay in vivo

Five-week-old BALB/c nude mice were provided by the Institutional Animal Care
and Use Committee of Shanghai General Hospital, housed at constant temperature
with a 12 h light/dark cycle, and given standard rodent diet and water ad libitum.
The mice were randomized into the L48H37-treated (n = 5) and negative control (n =
5) groups, and every animal was injected with cells transduced with ctrl-shRNA and
KMT2D-shRNA lentiviruses on opposite flanks. When tumors in the negative control
group reached a volume of 50-100 mm?’, five mice were injected with 5 mg/kg L48H37
intraperitoneally on alternate days, and five with the same volume of physiological
saline: the final groups were shCTRL, shKMT2D, shCTRL + L48H37 and shKMT2D +
L48H37. The tumor volume V was calculated as 0.5 x 1 x w?, where | and w are the
length and width at the indicated time points, respectively. At the end of treatment,
the animals were sacrificed under anesthesia, and tumors were removed and
weighed. All animal experiments complied with the Shanghai Jiao Tong University’s
Policy on the Care and Use of Laboratory Animals!™l.

Immunohistochemistry

PDAC and matched normal pancreatic tissue sections were deparaffinized and
rehydrated, bleached with 3% H,O, to remove endogenous catalase activity, and
boiled in citrate buffer for antigen retrieval. After blocking with serum for 30 min,
tissue sections were incubated overnight with primary antibodies against KMT2D and
H3K4mel at 4 °C. Sections were washed with PBS and incubated with HRP-
conjugated secondary antibody for 50 min, followed by color development using
DAB. The immuno-stained sections were observed under an optical microscope (200 x
and 400 x magnification) and analyzed by Fiji softwarel'*l.

Statistical analysis

Statistical analyses were performed using the IBM SPSS Statistics v23 software (IBM
Corp., Armonk, NY, United States), program R and GraphPad PRISM 6. The
continuous variables were expressed as mean + SEM of at least three biological
replicates, and compared using the Student’s t-test and one-way ANOVA. Categorical
variables were analyzed using the Chi-square test or Fisher’s exact test. Survival
curves were plotted using the Kaplan-Meier method, and evaluated by the log-rank
test. P values of less than 0.05 were considered statistically significant.

RESULTS

L48H37 inhibits proliferation and promotes apoptosis in PDAC cells in vitro

L48H37 is a novel curcumin analogue with greater stability, and has shown potent
anti-tumor activity against lung cancer™!. The molecular structures of curcumin and
L48H37 are shown in Supplement Figure 1A and 1B. The IC;, of L48H37 in the
metastatic SW1990 and Aspc-1 cell lines ranged from 12.2-16.34 pm and 3.8-9.45 pm,
respectively, after 3 consecutive days of treatment. In the primary PANC-1 and MIA
PaCa, cell lines, the IC,, values ranged from 7.89-976.5 pm and 9.17-333.7 pm,
respectively (Figure 1A-D). Thus, L48H37 acted more rapidly in the metastatic cells
compared to the primary PDAC cells, indicating a tumor stage-specific mode of
action. Furthermore, L48H37 also inhibited the colony forming abilities of the SW1990
and Aspc-1 cells in a dose-dependent manner (Figure 1E). Annexin V/7-AAD staining
showed that L48H37 increased apoptosis in PDAC cells in a dose-dependent manner
(Figure 1F and G), which corresponded with a significant increase in the levels of Bax
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and cleaved caspase 3, and a decrease in Bcl-2 and Bcl-2/Bax ratio in treated PDAC
cells (Figure 1H and I).

L48H37 alters MMP, increases ROS production, induces cell cycle arrest and

activates the ER stress pathway in PDAC cells

To further elucidate the specific mechanism of L48H37 action, we analyzed the MMP
changes (ym), ROS levels, cell cycle profile and ER stress pathway in treated PDAC
cells. As shown in Figures 2A and B, L48H37 significantly disrupted mitochondrial
homeostasis and increased MMP loss, eventually leading to apoptosis. ROS
accumulation in tumor cells mediates oxidative damage and MMP loss, which is one
of the underlying mechanisms of anti-cancer drugs!*l. As shown in Figure 2C-E,
L48H37 treatment increased intracellular ROS levels over 30% from the baseline in a
dose-dependent manner, indicating that L48H37 increases oxidative stress and
induces apoptosis in PDAC cells by activating the mitochondrial apoptotic pathway.
In addition, L48H37 also upregulated caspase 9 and caspase 8 in a dose-dependent
manner, which may contribute to a cross-talk between the intrinsic and extrinsic
apoptotic pathways (Figure 2K). Cell cycle arrest is another mechanism used by anti-
neoplastic agents to control cancer cell proliferation. We found that L48H37 induced a
G2 /M arrest in two PDAC cell lines (Figure 2F, G and H), indicating that it also
inhibits cancer cell proliferation by inducing cell cycle arrest.

ER stress is a critical factor leading to apoptosis. The activation of PERK
phosphorylates the eukaryotic initiation factor 2a (EIF2A), and inhibits protein
translation to promote cell survival. However, EIF2A can also induce activating
transcription factor-4 (ATF-4) and enhancer-binding protein-homologous protein
(CHOP) expression, which increase protein synthesis and lead to cell death!*>*l. As
shown in Figure 21 and ], L48H37 significantly upregulated p-PERK, p-EIF2A, ATF4
and CHOP in SW1990 cells in a time- and dose-dependent manner, indicating a role
of the ER stress pathway in mediating the effects of L48H37.

ATF-4 knockdown attenuates L48H37-induced apoptosis and upregulates KMT2D
To validate a potential role of the ER stress pathway in L48H37-induced apoptosis in
pancreatic cancer cells, we silenced ATF4 in SW1990 and ASPC-1 cells (Supplement
Figure 2A and B). Interestingly, ATF4 knockdown significantly upregulated KMT2D
(Figure 3A-C), and decreased apoptosis in human pancreatic cancer cells (Figure 3D).
KMT2D is associated with low proliferation rates and sensitivity of pancreatic cancer
cells to the antimetabolite 5-fluorouracil (5-FU)!">*l. However, little is known
regarding the relationship between histone methyltransferases and the ER stress
pathway!"**. We also analyzed the expression levels of the PERK/elF2a/ATF4/
CHOP signaling pathway mediators in ATF4 knockdown cells following L48H37
treatment, and found that the proteins upstream of ATF4 were unaltered, whereas
those downstream were significantly decreased (Figure 3E-F). This indicated that
ATF4 knockdown unidirectionally downregulated the ER stress pathway, and that
KMT2D was downstream of ATF4. Based on these findings, we hypothesized that
L48H37 induces apoptosis via the ER stress pathway, and depletion of KMT2D
sensitizes the cells to L48H37.

KMT2D knockdown enhances L48H37-induced apoptosis in pancreatic cancer cells

To further investigate the role of KMT2D in L48H37-induced apoptosis, we first
analyzed the basal expression of KMT2D in different PDAC lines. KMT2D levels were
higher in the metastatic cell lines compared to the primary cell lines (Supplement
Figure 3A). L48H37 treatment slightly decreased KMT2D expression along with that
of H3K4mel (Figure 4A-C). In addition, knocking down KMT2D in the SW1990 and
ASPC-1 cells lines (Supplement Figure 3B and C) significantly decreased their
viability for 3 consecutive days (Figure 4D and 4E), and augmented L48H37-induced
apoptosis (Figure 4F). These findings indicated a synergistic relationship between
KMT2D knockdown and L48H37. Consistent with this, KMT2D knockdown also
upregulated p-PERK, p-EIF2A, ATF4 and CHOP (Figure 4G and H), and triggered cell
cycle arrest at the GO/G1 or G2/M phases in L48H37-treated cells (Figure 41 and J).
Taken together, KMT2D deficiency is essential for L48H37-induced apoptosis, cell
cycle arrest and activation of the ER stress pathway. A smaller pool of cells in the S
and mitotic phases following KMT2D knockdown eventually sensitized the cells to
L48H37-induced apoptosis.

KMT2D knockdown synergizes with L48H37 to promote apoptosis and inhibit
migration

To further explore the effects of KMT2D deficiency in pancreatic cancer, we
downloaded RNA-Seq data on KMT2D-silenced and normal Colo357 and SUIT-2
metastatic PDAC cell lines from the GEO database GSE75327, and screened for DEGs.
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The heat map of the top 200 DEGs is shown in Supplement Figure 4A. A total of 579
genes were upregulated (blue), and 273 genes were downregulated (yellow) in
Colo357 cells (Figure 5A), while 680 and 292 genes were upregulated (red) and
downregulated (green) in SUIT-2 cells, respectively (Figure 5B). The functional
classification of the upregulated genes showed an enrichment in the extrinsic
apoptotic signaling pathway in the absence of ligand, and included PPP2R1B, IL1A,
MAPKS8IP2, MCL1, ELL3, PDCD6, HIC1 and PTPMT1. The downregulated genes,
including TULP1, AQP2 and ALOX12B, were mainly involved in multicellular
organismal homeostasis (Figure 5C and D). To determine the role of KMT2D in tumor
metastasis, wound healing assays were carried out with control and KMT2D
knockdown PDAC cells. In vitro migration was significantly decreased after KMT2D
silencing, which also increased the anti-migratory effects of L48H37 (Figure 5E-F).

KMT2D knockdown synergizes with L48H37 to inhibit PDAC xenograft growth in
vivo

Male BALB/c nude mice were injected with control and KMT2D knockdown PDAC
cells, followed by L48H37 or placebo injections. Both tumor weight and volume were
significantly decreased in the shKMT2D group compared to the shCTRL group (P <
0.01). L48H37 treatment further decreased the tumor load, especially in the shKMT2D
group (P < 0.05) (Figure 6A-C). Therefore, KMT2D depletion inhibited tumor growth
synergistically with L48H37. In addition, no systemic adverse effects were observed in
mice, consistent with a previous study that reported no structural damage to essential
organs in mice treated with L48H3701.

KMT2D expression is not related to clinico-pathological features and patient
prognosis

Studies have reported high mutation rates of KMT2D in PDAC, and KMT2D
expression levels correlate with tumor initiation and progression!’. Data from the
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Figure 2 L48H37 alters mitochondrial membrane potential, reactive oxygen species levels, cell cycle profile arrest and endoplasmic reticulum stress
pathway in pancreatic ductal adenocarcinoma cells. A, B: Representative images and FACS plots of SW1990 cells treated with 5, 10 and 15 ymol/L L48H37 and
stained with JC-1 probe (200x magnification); C, E: Reactive oxygen species (ROS) generation induced by L48H37 within 12 h was measured in SW1990 and Aspc-1
cells by staining with DCFH-DA (25 pmol/L) for 30 min. ROS level was acquired by flow cytometry. Histogram showing the DCFH-DA geometric mean in cells treated
with different L48H37 concentrations. Data were expressed as mean + SEM; D: ®P < 0.01 vs DMSO group. “P < 0.01 vs L48H37 (10 umol/L) group; E: ®P < 0.01 vs
DMSO group. P < 0.01 vs L48H37 (5 uM) group. P < 0.05 vs L48H37 (10 umol/L) group; F-H: SW1990 and Aspc-1 cells were harvested 24 h with L48H37 or
DMSO, and then cycle distribution was assessed by Propidium lodide staining. Histogram illustrating the rate of G2/M phase cells. Data were expressed as mean +
SEM; G: ®P < 0.01 vs DMSO group. P < 0.01 vs L48H37 (10 umol/L) group. ‘P < 0.01 vs L48H37 (15 umol/L) group; H: ®P < 0.01 vs DMSO group. 4P < 0.01 vs
L48H37 (5 pmol/L) group; I-K: SW1990 cells were treated with L48H37 for the indicated times or treated with various concentrations of L48H37 or DMSO. The protein
levels of p-PERK, PERK, p-EIF2a, EIF2a, ATF4, CHOP, cleaved caspase-9, and cleaved caspase-8 were analyzed by Western blot. 3-actin was used as an internal
control.

ICGC database showed that lower KMT2D levels correlated to better overall survival
in pancreatic cancer patients!"”l. Based on our in vitro findings, we hypothesized that
KMT2D deficiency sensitizes tumor cells to chemotherapeutic drugs or other
treatments, and improves prognosis. To this end, we analyzed KMT2D expression
levels in a PDAC patient cohort, and found significantly elevated levels in tumor
tissues compared to adjacent normal tissues (P < 0.01). Accordingly, H3K4mel levels
were also markedly elevated in tumor tissues (P < 0.01) (Figure 7A-D). Similar results
were obtained from PDAC patient data downloaded from the TCGA and Oncomine
databases (Figure 7E and F).

To determine the clinical significance of KMT2D in PDAC, we analyzed the RNA-
Seq data of 106 patients from the TCGA database, and classified them into KMT2Dkis"
and KMT2D"* groups using the median KMT2D mRNA expression level. We found
no correlation between KMT2D levels and overall or disease-free survival (Figure 7G
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Figure 3 ATF-4 knockdown attenuates L48H37-induced apoptosis and upregulates KMT2D. A, B: KMT2D mRNA and protein levels in the control and ATF-4-
knockdown SW1990 and ASPC-1 cells treated with 15 uM L48H37 for 12 h. B-actin was used as an internal control. Data were expressed as mean + SEM. ®P < 0.01
vs siCTRL + DMSO group. 9P < 0.01 vs siCTRL + L48H37 group; C: Representative IF image showing KMT2D expression in control and ATF4-knockdown SW1990
cells treated with L48H37; D: FACS plot showing apoptosis in control and ATF4 knockdown SW1990 cells treated with L48H37; E, F: Western blotting showing levels
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PERK: Protein kinase RNA-like endoplasmic reticulum kinase; EIF2A: Eukaryotic initiation factor 2a; ATF-4: Activating transcription factor-4; CHOP: Enhancer-binding

protein-homologous protein.

and H). In addition, higher KMT2D expression was found to be associated with poor

tumor grading in clinico-pathological features analysis (Supplement Table 1).

DISCUSSION
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Figure 4 KMT2D knockdown enhances apoptosis in pancreatic ductal adenocarcinoma cells. A-C: Immunoblot showing KMT2D and H3K4me1 protein levels in
SW1990 and ASPC-1 cells treated with 15 uM L48H37 for 8 h. B-actin and Histone H3 were used as an internal control. The KMT2D mRNA levels were measured by
RT-qPCR 24 h later. Data were expressed as mean + SEM. 2P < 0.05 vs DMSO group; D, E: KMT2D mRNA and protein levels in control and KMT2D-knockdown
SW1990 and ASPC-1 cells treated with L48H37 (5, 10 and 15 pymol/L) or DMSO for three consecutive days, and percentage of viable cells. Data were expressed as
mean + SEM. P < 0.05 vs shCTRL group at the same time point. ®P < 0.01 vs shCTRL group at the same time point; F: Apoptosis rates in the control and KMT2D-
knockdown SW1990 and ASPC-1 cells; G, H: Western blotting showing levels of p-PERK, PERK, p-EIF2a, EIF2a, ATF4 and CHOP in the control and KMT2D-
knockdown SW1990 and ASPC-1 cells. B-actin was used as an internal control; I, J: sShKMT2D or shCTRL SW1990 cells were harvested 24 h with L48H37, then cycle
distribution was assessed by Propidium lodide staining. Histogram showing the percentage of control and KMT2D knockdown SW1990 and ASPC-1 cells in the
G0/G1, S, and G2/M phases. Data were expressed as mean + SEM; J: °P < 0.01 vs shCTRL group in the same cell cycle. “P < 0.01 vs shKMT2D group in the same
cell cycle. PERK: Protein kinase RNA-like endoplasmic reticulum kinase; EIF2A: Eukaryotic initiation factor 2a; ATF-4: Activating transcription factor-4; CHOP:
Enhancer-binding protein-homologous protein.
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Figure 5 KMT2D knockdown augments L48H37-induced apoptosis and blocks migration in vitro. A, B: Venn diagram showing overlapping DEGs in KMT2D
knockdown Colo357 and SUIT-2 cells. Upregulated genes are shown in blue and red, and the downregulated in yellow and green in the Colo357 and SUIT-2 cells,

respectively; C, D: Functional analysis of the overlapping DEGs; E, F: Graph showing the number of manually tracked migrating control and KMT2D knockdown
SW1990 cells treated with L48H37.

Gemcitabine and 5-FU are the standard treatments for advanced pancreatic cancer,
but they are ineffective and highly toxicP*?l. Therefore, targeted therapies against
PDAC are urgently needed. L48H37, a stable curcumin analog, inhibits lung cancer
cell growth and induce apoptosis in vitro and in vivo. Its mechanism of action includes
increased production of ROS, activation of the ER stress pathway and inhibition of
STAT3 phosphorylation™. In addition, L48H37 triggers the release of mitochondrial
cytochrome ¢, and activates caspase-9, caspase-8 and caspase-3 to induce the
apoptotic pathway™!. L48H37 treatment significantly increased ROS levels in PDAC
cells, which resulted in loss of MMP. L48H37 also promoted Bax elevation and
decreased Bcl-2 in a dose-dependent manner during apoptosis initiation, and blocked
the cell cycle at the G2/M phase. Taken together, L48H37 inhibits PDAC cell growth
vig multiple targets and pathways.

Pancreatic cancer is driven by both genetic and epigenetic aberrations, especially in
histone-modifier genes, which have been associated with tumor progression and
chemo-resistance™ .. L48H37 downregulated the histone methyltransferase KMT2D,
which in turn augmented L48H37-induced apoptosis and blocked migration. KMT2D
is an essential epigenetic modifier containing highly conserved SET domains, and
catalyzes the monomethylation of lysine at position 4 of histone H3 (H3K4). In
addition, L48H37 also downregulated H3K4mel, an epigenetic marker of the active
transcription of genes associated with tumorigenic pathways*l. However, the
function of KMT2D in the tumor is highly complex, with some studies showing a
tumor suppressing and others a tumor promoting function. For example, KMT2D
upregulated p53 in cancer cells following doxorubicin-induced DNA damage™, while
KMT2D inhibition increased aerobic glycolysis in tumor cells and altered the
lipidomic profiles mediated by the glucose transporter SLC2A3, resulting in increased
tumor growth®l. On the other hand, the overexpression of KMT2D in ER-positive
breast cancer cells increased the recruitment and activation of FOXA1, PBX1 and ER,
which limited the efficacy of PI3K inhibitors™!. KMT2D deficiency has also been
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Figure 6 KMT2D knockdown synergizes with L48H37 to inhibit pancreatic ductal adenocarcinoma xenograft growth in vivo. A: The gross image of resected
tumors; B: Effect of 5 mg/kg L48H37 treatment on wet tumor weight in relatively independent four sub-groups (shCTRL group, shKMT2D group, shCTRL + 5 mg/kg
L48H37 group and shKMT2D + 5 mg/kg L48H37 group). Data were expressed as mean + SEM. PP < 0.01 vs shCTRL group. P < 0.05 vs shkMT2D group. ¢P < 0.05
vs shCTRL + 5 mg/kg L48H37 group; C: Tumor volumes recorded at different follow-up times in the above four sub-groups. Data were expressed as mean + SEM. P
<0.01 (shCTRL group vs shKMT2D group; shCTRL group vs shCTRL + 5 mg/kg L48H37 group; shCTRL group vs shKMT2D + 5 mg/kg L48H37 group; shkMT2D
group vs shKMT2D + 5 mg/kg L48H37 group; shCTRL + 5 mg/kg L48H37 group vs shKMT2D + 5 mg/kg L48H37 group).

associated with reduced proliferation and increased apoptosis in gastric!'"],
pancreaticl’”], prostatel'! and colon®”! cancer cells. In addition, a KMT2D mutation in T-
lymphoma cells increased their sensitivity to the histone deacetylase inhibitor
chidamide, in combination with the hypo-methylating agent decitabine, by
modulating the KMT2D/H3K4me axis!*). Based on our and others’ findings, we
hypothesize that KMT2D has a tumor type- and stage-specific role, and can be
manipulated to limit tumor growth and enhance chemotherapeutic effects.

KMT2D knockdown further activated the PERK/elF2a/ ATF4/CHOP ER stress
pathway in PDAC cells in the presence of L48H37. This is the first study to link
KMT2D with ER stress-induced apoptosis. ER stress activates the unfolded protein
response (UPR) via IREla, PERK/ATF4 and ATF6, which eventually leads to cell
deathl. Due to higher translation rates in cancer cells, they are more susceptible to
the generation and accumulation of misfolded proteins, which triggers ER stress, UPR
and apoptosis®’. Previous studies showed a link between histone methyltransferase
and ER stress. The euchromatin histone-lysine N-methyltransferase 2 (EZH2)
inhibitor sensitizes breast cancer cells to TRAIL by upregulating ATF4/CHOP-
dependent DR5 expression in a ROS-dependent manner!l. EZH?2 inhibitors also
reverse the high levels of histone 3 lysine 27 trimethylation on the IRE1 promoter,
which restores IRE1 expression and impairs tumor growth!”’l. The histone lysine
demethylase KDM4C activates ATF4 transcription, and reprograms amino acid
metabolism for cancer cell proliferation®l. Inhibition of eukaryotic histone
methyltransferase G9a by BIX01294 downregulates MCL1 and suppresses
proliferation in lung and bladder cancer cells!”. Deficiency of MLL1, a homologue of
KMT2D, enhances tunicamycin-induced UPR and apoptosis®. Nevertheless, the
specific interaction between methyltransferases and the ER stress pathway requires
further study.

Bioinformatics analysis of the RNA Seq data of KMT2D knockdown PDAC cell
lines revealed elevated expression of genes involved in the regulation of extrinsic
apoptotic signaling pathways, including PPP2R1B, IL1A, MAPKS8IP2, MCL1, ELL3,
PDCD6, HIC1 and PTPMT1. Downregulation of PPP2R1B increases AKT
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Figure 7 The prognostic value of the KMT2D in pancreatic ductal adenocarcinoma. A-D: Representative immunohistochemistry images showing KMT2D or
H3K4me1 expression in PDAC tissues and paired normal tissues (200x and 400x magnification). The histogram shows the percentage of positively-stained area as
calculated by Fiji. Data were expressed as mean + SEM. ®P < 0.01 vs shCTRL group; E, F: Box-plot graph showing KMT2D expression in tumor and normal tissues
from GEPIA and Oncomine databases; G, H: Kaplan-Meier curves showing overall survival and disease-free survival of TCGA database patients based on KMT2D

expression.

Jaishidengs WJGO | https://www.wjgnet.com

phosphorylation and 5-FU resistance in colorectal cancer, and restoring PPP2R1B
sensitizes the cells to 5-FU-induced apoptosis!®’l. Unlike secretory IL-1a, which
promotes tumor growth, surface IL-1a enables adhesion of tumor cells to immune
effector cells and blocks tumor invasion®l. Higher expression of MAPKS8IP2 was
significantly associated with improved overall survival (but not disease-free survival,
data not shown) in the TCGA cohort, and was reportedly increased in malignant
mesothelioma following treatment with quercetin and cisplatin!®!. MCL1 is usually
highly expressed in tumor cells, and blocking it rapidly induced apoptosis and
reduced drug resistancel”). ELL3 stabilizes p53 expression in breast cancer cells and
induces chemo-sensitivity via the ERK1/2 pathway!!l. However, it is also known to
initiate anti-5-FU resistance by activating the Wnt pathway!?. HIC1 and PDCD6
induce apoptosis in a p53-dependent manner in response to DNA damagel”""..
PTPMT1 is involved in cancer cell metabolism, and sub-lethal downregulation with
low-dose paclitaxel synergistically promotes cancer cell death!"l. Interestingly,
alternative splicing to PTPMT1B instead of PTPMT1A sensitizes cancer cells to
radiotherapy!””l. However, the precise roles of these molecules in pancreatic cancer
need to be further explored.

In clinical PDAC specimens, we found significantly higher KMT2D mRNA and
protein levels in cancer tissues compared to adjacent normal tissues, with a
concomitant increase in H3K4mel, indicating that the expression and catalytic activity
of KMT2D were consistent. A recent study™! showed low levels of KMT2D in the
pancreatic cancer tissues, indicating that KMT2D expression varies according to
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tumor staging and sample heterogeneity, and therefore needs to be validated in larger
cohorts consisting of samples from different stages. In addition, KMT2D mRNA levels
were not correlated to the degree of DNA methylation (Supplement Figure 4B), but
weakly associated with the methylation degree of specific sites (e.g., ¢g229610; cor = -
0.301, P < 0.01, Supplement Figure 4C), which may act as an alternative mechanism
for KMT2D transcription. Previous studies have shown that more than half of
pancreatic cancer patients with inherited KMT2 mutations have a significantly higher
median survival duration compared to wild-type patients (32 mo vs 15.3 mo, P =
0.0063), while low levels of KMT2D was independently associated with better overall
survival (19.9 mo vs 11.8 mo, log-rank P = 0.001). However, other studies show
contrasting results!'>*l. Based on patient data from the TCGA database, there was no
significant relationship between KMT2D expression and overall or disease-free
survival,but higher KMT2D expression was found to be associated with poor tumor
grading in clinical and pathological analyses. These discrepancies could be the result
of different stratification criteria and treatment regimens, and require further studies
for clarification.

In conclusion, KMT2D deficiency enhances the therapeutic effects of L48H37
against PDAC. Our findings provide new insights into targeting histone
methyltransferases in combination with chemotherapy in order to improve efficacy of
the latter.

ARTICLE HIGHLIGHTS

Research background
Pancreatic ductal adenocarcinoma is a kind of refractory disease with high mortality. Novel
therapeutic strategies are urgently needed for patients with advanced pancreatic cancer.

Research motivation

Recent findings showed the predictive and therapeutic value of targeting lysine methylation
signaling in pancreatic ductal adenocarcinoma (PDAC). L48H37, a novel curcumin analog,
which potentially acts on histone-lysine N-methyltransferase 2D. The relationship between these
two factors in the treatment of pancreatic cancer remains unknown, and the answer to this
question gives significant insight into the additional ways in which these interventions work and
may improve treatment efficacy.

Research objectives

To determine the anti-cancer effect of L48H37 alone and combined with KMT2D deficiency in
PDAC. L48H37 turned out to have better efficacy in anti-pancreatic cancer in the absence of
KMT2D. Targeting histone methyltransferase in combination with chemotherapy provides a new
direction for cancer treatment.

Research methods

In vitro, the viability and proliferation of PDAC cell lines were determined by CCK8 and colony
formation assay. Apoptosis, mitochondrial membrane potential (MMP), reactive oxygen species
(ROS) levels and cell cycle profile were investigated by flow cytometry methods. Migration was
assessed by the wound healing assay. The protein and mRNA levels of relevant factors in cells or
tissues were analyzed by immunologic- and molecular-based assays. In vivo tumor xenografts
were also established. In addition, a bioinformatics prediction was run throughout this entire
study.

Research results

L48H37 inhibited proliferation and induced apoptosis in SW1990 and ASPC-1 cells in a dose-
and time-dependent manner, while also reducing MMP, increasing ROS levels, arresting cell
cycle at the G2/M stages and activating the ER stress pathway. Silencing KMT2D significantly
augmented L48H37-induced apoptosis and the ER stress pathway. Targeting KMT2D in
combination with L48H37 remarkably reduced tumor loading in nude mice. The differentially
expressed genes in KMT2D-deficient PDAC cell lines were functionally categorized into the
extrinsic apoptotic signaling pathway. However, in contrast to other research, there is no
evidence that KMT2D expression level is related to prognosis. The key target of KMT2D
deficiency for treatment remains to be studied.

Research conclusions

We report here for the first time that L48H37 exerts a potent anti-cancer effect in PDAC, which is
augmented by KMT2D deficiency. These results pave the way for the combined application of
targeting epigenetic therapy and chemotherapy.

Research perspectives

Our findings provide new insights into targeting histone methyltransferases in combination with
chemotherapy in order to improve the efficacy of the latter.
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