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Abstract
Bile acids (BAs) are classically known to play a vital role in the metabolism of 
lipids and in absorption. It is now well established that BAs act as signaling 
molecules, activating different receptors (such as farnesoid X receptor, vitamin D 
receptor, Takeda G-protein-coupled receptor 5, sphingosine-1-phosphate, 
muscarinic receptors, and big potassium channels) and participating in the 
regulation of energy homeostasis and lipid and glucose metabolism. In addition, 
increased BAs can impair cardiovascular function in liver cirrhosis. 
Approximately 50% of patients with cirrhosis develop cirrhotic cardiomyopathy. 
Exposure to high concentrations of hydrophobic BAs has been shown to be 
related to adverse effects with respect to vascular tension, endothelial function, 
arrhythmias, coronary atherosclerotic heart disease, and heart failure. The BAs in 
the serum BA pool have relevant through their hydrophobicity, and the lipophilic 
BAs are more harmful to the heart. Interestingly, ursodeoxycholic acid is a 
hydrophilic BA, and it is used as a therapeutic drug to reverse and protect the 
harmful cardiac effects caused by hydrophobic elevated BAs. In order to elucidate 
the mechanism of BAs and cardiovascular function, abundant experiments have 
been conducted in vitro and in vivo. The aim of this review was to explore the 
mechanism of BAs in the cardiovascular system.

Key Words: Bile acids; Cardiovascular; Arteries; Receptors; Signaling; Cirrhosis

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: In the literature, there are some reviews on the relationship between bile acids 
(BAs) and the cardiovascular system. However, this is the first review to use molecular 
and cellular mechanisms of related pathways to explore the possible mechanism of 
BAs in the pathogenesis of cardiovascular disease and to classify the role of BAs in 
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heart and other organs using a tabular form. The goal was to provide readers a more 
comprehensive, deeper, and clearer understanding of the function of BAs.
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INTRODUCTION
Bile acids (BAs) comprise the primary catabolic pathway of cholesterol metabolism in 
the body, consisting of steroid cores and side-chains that can bind with either taurine 
or glycine groups[1]. BAs are also the primary lipid component of bile, because their 
side chains can combine with carboxylic acid or sulfonic acid group, granting these 
molecules water-soluble and lipid-soluble amphiphilic properties. BAs are divided 
into the free and combined types according to their structure. Cholic acid (CA), 
chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), lithocholic acid (LCA), and 
ursodeoxycholic acid (UDCA) constitute the main free BAs. The 24-carboxyl groups of 
the above free BAs combine with glycine or taurine to form combined BAs, which 
increase water solubility[2]. The hydrophobicity of BAs depends on the location and 
number of hydroxyl groups in the structure of the ring, which is related to cytotoxicity 
that can be reduced by hydroxylation of the BAs[3-5].

There are several mechanisms for the cytotoxicity of hydrophobic BAs. For example, 
BAs facilitate the production of reactive oxygen species (ROS) that oxidize and modify 
lipids, protein, and nucleic acids, eventually leading to apoptosis of the hepatocyte[6]. 
In addition, hydrophobic BAs can activate liver Kupffer cells to produce ROS, which 
may further insult liver cells[7]. In addition, mitochondria also play a role in the toxicity 
of BAs[8]. The order of BA hydrophobicity is LCA > DCA > CDCA > CA > UDCA[9] 
(Table 1). Hydrophilic BAs antagonize the cytotoxicity of hydrophobic BAs, and this 
antagonism correlates with their hydrophilicity[10]. BAs are also divided into primary 
and secondary BAs according to their sources. Primary BAs are directly synthesized 
from cholesterol in liver cells and are stored in the gallbladder. When stimulated by 
food digestion, primary BAs are secreted into the intestine. Secondary BAs are 
produced from primary BAs by intestinal bacteria, which are then reabsorbed by the 
brush border cells of the small intestine and transported back to the liver through the 
hepatic portal vein circulation. In normal physiological conditions, approximately 95% 
of BAs are reabsorbed.

BA flow occurs continuously between the intestines and the liver and is called 
“enterohepatic circulation”, which is a critical regulatory mechanism of the rate of BA 
metabolism, maintaining the balance of BAs and cholesterol in the body and 
preventing the formation of cholesterol stones[11].

BAs AS SIGNALING MOLECULES
The farnesoid X receptor (FXR) was the first identified receptor of BA signaling, 
discovered in 1999[12]. The G-protein-coupled receptor specific for BAs, the Takeda G-
protein-coupled receptor 5 (TGR5), was subsequently identified[13]. Moreover, there are 
other types of receptors reportedly involved in regulating BA signaling, such as the 
muscarinic (M) receptors, sphingosine-1-phosphate (S1P), and large conductance 
voltage-and Ca2+-activated potassium (K+) [big potassium (BK)] channels. This section 
primary summarizes research on BAs as signaling molecules (Table 2)[14-28].

Nuclear receptor signaling
The FXR was identified as a BA receptor in 1999 and is highly expressed in the liver, 
kidney, and gastrointestinal tract[29]. Since then, many studies on BA receptors have 
been performed, and CDCA is the most potent endogenous ligand of FXR. CDCA 
binding to FXR causes a conformational change of FXR, facilitating formation with the 

http://creativecommons.org/Licenses/by-nc/4.0/
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Table 1 Hydrophobicity of bile acid increases with the decrease of OH groups

Hydrophobicity Types of bile acids

Low UDCA

CA

CDCA

↓

DCA

High LCA

CA: Cholic acid; CDCA: Chenodeoxycholic acid; DCA: Deoxycholic acid; LCA: Lithocholic acid; UDCA: Ursodeoxycholic acid.

retinoic acid X receptor in the cytoplasm. The latter enters the nucleus to recognize 
target gene promoter regions and regulates the transcription of target genes by FXR 
response elements[30]. For the LCA-induced cholestasis model, it was reported that 
CDCA activity down-regulated the bile salt export pump expression. This resulted in 
increased BA concentration and decreased liver bile secretion, which precipitated liver 
injury[31]. CDCA can also activate the expression of FXR in the intestinal tract, thereby 
activating intestinal acid-binding protein expression to mediate cholesterol 
secretion[32]. FXR is also expressed in the cardiovascular system, including in the 
coronary arteries, aorta, atherosclerotic arteries, and cardiomyocytes[33]. It was reported 
that suppression of the proliferator-activated receptor-γ co-activator 1α gene, which is 
a key regulator of fatty acid metabolism, caused development of cardiac dysfunction 
in FXR and SHP double-knockout mice (a model of cirrhosis)[34]. This suggested that 
BAs may reduce plasma triglyceride levels and prevent signs of atherosclerosis[35]. FXR 
ligands also inhibit the inflammatory response of rat aortic smooth muscle cells 
induced by interleukin-1β. The putative mechanism of this effect includes activating 
the ligand resistance of FXR binding nuclear factor-kappa B (NF-κB) to resist this pro-
inflammatory pathway. This suggested that FXR agonists have anti-atherosclerosis 
potential[36,37]. Liu et al[38] and Yang et al[39] reported that increased tumor necrosis factor 
alpha (TNFα) and NF-κB and decreased cardiac function were observed in bile duct 
ligation (BDL) animal models, and anti-TNFα antibody therapy significantly improved 
this cardiac dysfunction. These studies suggested that there are relationships among 
bacterial translocation, increased activity of the endocannabinoid TNFα, NF-κB, and 
cardiac dysfunction. BAs (primarily DCA) have antibacterial properties because they 
can destroy the integrity of bacteria, which can affect the composition of the intestinal 
microbiota[40]. Pu et al[41] found in cultured cardiomyocytes that activation of FXR 
through mitochondrial death signal transduction causes significant apoptosis, which 
was verified in a myocardial ischemia/reperfusion injury mouse model, demons-
trating that FXR signaling might be involved in the growth and apoptosis of 
cardiomyocytes. These studies suggest that BAs play diverse roles by activating 
distinct receptors in different tissues, including different BAs that activate FXR 
receptors in the heart tissue to exert anti-atherosclerosis or pro-atherosclerosis 
functions.

After FXR was identified as a nuclear BA receptor, two other receptors, the 
pregnane X receptor (PXR) and the vitamin D receptor (VDR), were found[42]. FXR, 
PXR, and VDR play essential roles in eliminating BA-induced toxicity by down-
regulating cholesterol 7α hydroxylase (CYP7A1) expression[43], which is a rate-limiting 
enzyme for BA synthesis. In an animal study, activation of PXR was shown to regulate 
energy and lipid metabolism, thereby preventing obesity and insulin resistance caused 
by a high-fat diet. Thus, this study demonstrated the essential role of PXR in 
maintaining lipid metabolism[44]. VDR is expressed in almost every tissue in the human 
body and is classified as an endocrine nuclear receptor[45]. The VDR receptor can be 
activated by LCA, its natural ligands, and 1α, 25-dihydroxy-vitamin D3 [1α, 25 (OH)2-
D3]. Two ligands were found to activate the VDR signaling pathway through 
extracellular signal-regulated kinase 1/2, leading to phosphorylation of VDR and 
translocation into the nucleus. VDR can inhibit CYP7A1 transcription, thereby 
protecting hepatocyte cells from further damage due to cholestatic liver injury[46]. It 
localizes the cardiomyocyte t-tubules. According to previous studies, the t-tube is the 
ideal location for regulating intracellular calcium flow and contractile forces. The 
inflow rate of calcium through calcium channels primarily determines the speed and 
pressure of myocardial contraction[47]. Loss of VDR selectivity in cardiomyocytes leads 
to enlargement, hypertrophy, and systolic and diastolic dysfunction of cardiomy-
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Table 2 Central receptor involved in bile acid signaling

Receptor Tissue Cardiovascular tissue Ligand Regulatory mechanism Direct action Ref.

FXR Liver, kidney, gastrointestinal Arteries, cardiomyocytes CDCA, LCA, DCA Regulates BSEP expression and participates in the process of liver injury, 
activates I-BABP expression to mediate cholesterol secretion, inhibits vascular 
inflammation, decreases lipogenesis synthesis, increases lipoprotein clearance to 
prevent atherosclerosis, ameliorates post-MI cardiac dysfunction and remodeling

No [14-16]

PXR,VDR Liver t-Tubulescardiomyocytes LCA Down-regulates CYP7A1 expression to eliminate BA toxicity, maintains lipid 
metabolism, regulates intracellular calcium flow and contractile forces, maintains 
the normal operation of cardiomyocytes

No [17-19]

M Nervous, intestinal, 
gastrointestinal

Aorta, cardiomyocytes TC, LCT, TCA Stimulates acetylcholine-induced inositol phosphorylation and MAP kinase 
phosphorylation, inhibits cAMP, amplitude, reduces CM contraction

Yes [20,21]

S1P Liver, nervous, immune Endothelial smooth muscle, 
cardiomyocytes

TCA, UDCA Inhibits formation of cAMP and antagonizes adrenergic receptor-mediated 
contractile force, protects heart from ischemia/reperfusion injury, involved in 
remodeling and differentiation of cardiac fibroblasts

No [22,23]

TGR5 Liver, glands, fat, muscle, 
enteric, immune

Aortic endothelial CA, DCA, CDCA, 
TLCA, TCDCA

Inhibits the secretion of TNF induced by LPS, downregulates GSK3 and 
upregulates PKB associated with cardiac hypertrophy, metabolic transformation 
of energy in cardiomyocytes

Yes [24,25]

BK channel Liver, brain Endothelial, cardiomyocytes LCA Cause vasodilation in liver and cerebral artery, plays role in diabetes, through 
mitochondrial BK channels confer cardioprotection

Yes [26-28]

BA: Bile acid; BK channel: Large conductance voltage- and Ca2+-activated potassium (K+) (BK) channels; BSEP: Bile salt export pump; CA: Cholic acid; cAMP: Cyclic AMP; CDCA: Chenodeoxycholic acid; CM: Myocardial cell; CYP7A1: 
Cholesterol 7α hydroxylase; DCA: Deoxycholic acid; FXR: Farnesoid X receptor; GSK3: Glycogen synthase kinase-3; I-BABP: Encoding intestinal bile acid binding protein; LCA: Lithocholic acid; LCT: Lithocholyltaurine; LPS: 
Lipopolysaccharide; M: Muscarinic; MAP: Mitogen-activated; MI: Myocardial infarction; PKB: Protein kinase B; PXR: Pregnane X receptor; RXR: Retinoic acid X receptor; S1P: Sphingosine-1-phosphate; TC: Taurocholate; TCA: Taurocholic 
acid; TCDCA: Taurodeoxycholic acid; TGR5: Takeda G-protein-coupled receptor 5; TLCA: Taurolithocholic acid; TNF: Tumor necrosis factor; UDCA: Ursodeoxycholic acid; VDR: Vitamin D receptor.

ocytes[48]. Vitamin D supplementation improves left ventricular structure and function 
in heart failure (HF) patients[49], illustrating that expression of VDR is vital for 
maintaining the normal function of cardiomyocytes. Nuclear receptors are 
transcription factors and cannot explain the immediate changes in myocardial function 
caused by BA stimulation. However, as the duration of action of BAs varies, their 
possible effects on the heart vary.

Muscarinic receptor
BAs also interact with membrane receptors to activate a cascade of intracellular 
effectors. BAs interact with three membrane G-protein-coupled receptors, the M 
receptors, TGR5, and S1P receptor. M receptors are widely expressed in the 
gastrointestinal tract, intestinal smooth muscle, and central nervous system and can be 
divided into M1, M2, M3, M4, and M5 receptors. Among these, there are two classes 
based on conjugation with different G proteins that stimulate phosphoinositide 
hydrolysis (M1, M3, and M5) or inhibit adenylate cyclase (M2 and M4)[50]. The ligand 
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for M3 receptors is the BA lithocholyltaurine[51], which can stimulate acetylcholine-
induced inositol phosphorylation and mitogen-activated kinase phosphorylation[52]. 
Taurocholate binds to the M2 receptor, inhibiting cyclic AMP (cAMP), affecting 
transient calcium amplitude, and reducing myocardial cell contraction[53]. The role of 
the remaining muscarinic receptors in the heart is unclear due to the lack of identified 
corresponding ligands.

S1P receptor
S1P is the most effective substrate for sphingolipids and is produced by phospho-
rylation of sphingolipids catalyzed by sphingolipid kinase. SIP determines cell fate 
through pro-apoptotic or survival signals. There are five subtypes of S1P receptor, 
which are S1P1, S1P2, S1P3, S1P4, and S1P5. Highly expressed S1P1 and S1P2 are 
detected in hepatocytes and activate extracellular signal-regulated kinase 1/2 and 
protein kinase B (PKB). S1P1, S1P2, and S1P3 receptors are primarily located in the 
heart, whereas S1P4 and S1P5 are limited to the nervous and immune systems[54]. 
Taurocholic acid induces S1P2 receptor expression and promotes cholangiocarcinoma 
growth[55]. In cardiomyocytes, the S1P1 receptor is the foremost expressed subtype, and 
its activation inhibits the formation of cAMP and antagonizes adrenergic receptor-
mediated contractile force. Low levels of the S1P3 receptor mediate the bradycardia 
effect of S1P agonists. Studies have shown that S1P2 and S1P3 receptors play essential 
roles in heart protection from in vivo-mediated ischemia/reperfusion injury in mice 
using knockout mice. S1P receptors are also involved in proliferation, remodeling, and 
cardiac fibroblasts’ differentiation. Furthermore, S1P receptors are found in smooth 
muscle cells and endothelial cells, which could mediate peripheral vascular tension 
and responses of the endothelium. Despite these findings, the role of the regulatory 
system in the cardiovascular system remains unclear[56].

TGR5
TGR5 expression is detected in different cell types, such as fat cells, endocrine glands, 
muscle, immune cells, and the enteric nervous system. TGR5 has been reported to 
inhibit the response of rabbit alveolar macrophages to BAs (DCA, CDCA, and LCA), 
subsequently inhibiting the secretion of TNFα induced by lipopolysaccharide (LPS)[57]. 
TGR5 also protects the liver by inhibiting expression of cytokines induced by LPS in 
Kupffer cells[58]. LPS-induced inhibition of mitophagy increases oxidative stress and 
promotes inflammation in hepatic stellate cells during the process of acute liver 
failure[59]. In recent years, TGR5 mRNA has been identified in human, rabbit, cow, and 
mouse heart tissues[60]. The effects of mouse cardiac-specific TGR5 activated by 
taurodeoxycholic acid include LCA down-regulation of glycogen synthase kinase-3 
and up-regulation of PKB, which are known to be associated with cardiac 
hypertrophy[61]. TGR5 is also expressed in aortic endothelial cells that play an anti-
atherosclerotic role through producing nitric oxide (NO) in a dose-dependent manner, 
inhibiting NF-κB activity, and regulating monocyte adhesion and the inflammatory 
response[62]. BA activation of TGR5 is also involved in the metabolic transformation of 
energy in cardiomyocytes. However, the mechanism of TGR5’s action on 
cardiomyocytes remains to be clarified.

Large conductance voltage-and Ca2+-activated potassium (K+) (BK) channels
Studies have shown that in addition to known BA receptors (FXR, LXR, VDR, PXR, 
TGR5, M, and S1P), BAs can also activate nonclassical receptor reactions, such as large-
conductance voltage-and Ca2+-activated potassium (K+) (BK) channels[63]. It has been 
speculated that systemic vasodilation in hepatobiliary disease partly causes vascular 
smooth muscle cells’ relaxation through the activation of BKCa. LCA induced a 30% 
increase in cerebral artery vasodilation in an endothelium-independent manner. This 
effect was eliminated in a BK β-1 subunit knockout mouse model, demonstrating that 
the role of this potassium channel subunit in diabetes is essential[64]. In another study, 
BAs were shown to activate the BK pathway in cirrhosis patients and to increase the 
risk of developing cirrhotic cardiomyopathy. Meanwhile, taurine conjugated 
hydrophobic BAs activate BK channels, which can expand outward potassium 
currents, reduce the duration of action potentials, and exert negative inotropic 
effects[65]. Since this receptor primarily mediates ion changes, it is speculated to play a 
primary role in the cardiac conduction related functions.
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BAs AND CARDIOVASCULAR FUNCTION
BAs and vascular function
Studies have shown that BAs can regulate vascular tension. Increased BAs in the liver 
portal vein of rats with BDL were observed to decrease norepinephrine-induced 
vasoconstriction. These findings show that BAs are vasodilators. According to 
previous studies, the primary driver of cardiovascular disease is endothelial 
dysfunction, which leads to an imbalance in the synthesis and release of harmful and 
protective mediators, among which NO is the most important[66,67]. FXR is identified in 
vascular smooth muscle cells and endothelium, and, as a transcription factor, it can 
regulate vascular relaxation and contraction by altering the term of vasoactive 
molecules or other receptors. Studies have shown that activated FXR induces 
vasodilation in endothelial cells by down-regulating endothelin-1 (IL-1), up-regulating 
endothelial NO synthase (eNOS), modulating angiotensin II receptor expression, and 
inhibiting inflammation and migration in vascular smooth muscle cells[68]. It was found 
that CDCA activation leads to decreased IL-1 mRNA expression in a concentration-
dependent manner. As is known, IL-1 is the most effective vasoconstrictor, and its BA-
inhibited expression may be an essential factor in systemic vasodilation in cirrhotic 
patients[69]. The same team proposed the presence of FXR response elements in the 
promoter region of eNOS. Their activation led to up-regulation of eNOS and 
subsequent increases in the production of vasodilated NO[70]. S1P receptor 2 (S1PR2) is 
another BA-sensitive receptor found in vascular smooth muscle cells that is involved 
in NO signaling. Nevertheless, it works through inhibiting the synthase of inducible 
NO, thus reducing a part of NO levels in vascular injury[71-73].

In contrast, long-term stimulation of FXR weakens NO-dependent vasodilation due 
to increased cGMP passivation in smooth muscle cells. These observations suggest that 
short-term and long-term FXR stimulation has differential effects on NO production 
and sensitivity[74]. Thus, time should be taken into account in the study of BA receptor-
related effects. Pak et al[75] found that BA increases can cause vasodilation, and 
speculated that this might occur by inhibiting calcium from passing through 
membrane channels. This effect has no relationship with blockers or endothelial 
stripping. However, it is strongly affected by the type of BAs, and hydrophobic and 
lipophilic BAs are more likely to induce vasodilation. The authors speculate on the 
mechanism by which BAs achieve this effect and conclude that they must directly 
interact with cell membrane components, emphasizing the role of BA components 
rather than merely the concept that increasing concentration is essential in the 
cardiovascular function.

BAs and coronary atherosclerotic heart disease
Recent clinical studies have found that fasting total bile acid (TBA) serum levels are 
closely related to the severity of coronary heart disease (CHD), serving as an indicator 
of the seriousness of the severity CHD[76]. According to research, the fasting levels of 
BA concentration inhibit atherosclerosis[77]. Animal models are resistant to developing 
atherosclerosis because they can excrete excess cholesterol by secreting large amounts 
of BAs into the intestines[78]. We hypothesize that patients with coronary atherosc-
lerotic disease might have impaired BA secretion and excretion, resulting in high 
serum cholesterol levels that promote progression of atherosclerotic lesions. Clinical 
studies have shown that fecal BA content in CHD patients is indeed significantly lower 
than that of non-CHD control groups[79]. BAs and their synthetic derivatives exert anti-
atherogenic effects by activating the FXR receptor in some animal models. Oral 
administration of CDCA derivatives to apolipoprotein E-deficient mice reduced aortic 
plaque formation by 95% and reduced aortic expression of inflammatory factors, 
including IL-6, IL-1, etc.[80]. In mammalian models, oral administration of BAs or their 
synthetic derivatives reduce serum triglycerides and total cholesterol levels, and 
inhibit the formation of atherosclerosis in a dose-dependent manner. These findings 
suggest that oral administration of BAs or their synthetic derivatives may represent a 
method for treating atherosclerotic lesions[81].

Interestingly, Fxr-/- mice showed pro-atherogenic lipid characteristics even when fed 
a high-fat/high-cholesterol diet but did not show enhanced atherosclerosis. Studies 
have demonstrated that CDCA or FXR ligand activated by FXR can reduce the activity 
of cardiomyocytes by triggering apoptosis of cardiomyocytes, promoting myocardial 
ischemia/reperfusion injury. These conflicting observations suggest that further in vivo 
studies are needed to determine the effect of the BA-FXR interaction on atheros-
clerosis.
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BAs and cardiac cell arrhythmia
Through previous studies, we know that the influence of BAs on cardiac function can 
be divided into indirect and direct effects. Direct effects require interaction between 
BAs and cardiomyocytes to affect the conduction and contraction of the myocardium. 
These effects may be receptor-dependent or independent. The cardiotoxicity of BAs 
was observed when high doses of BAs intravenously injected into animal specimens 
caused severe bradycardia. Further studies confirmed the dose-dependent negative 
time-varying effect of BAs on cardiomyocytes[82]. Binash et al[65] reported that in vitro 
sodium taurocholate slightly increased the outward potassium current, reduced the 
calcium current, and slowed the inward sodium current, ultimately reducing the 
duration of the action potential. Voltage clamp experiments in mice demonstrated that 
BAs decrease slow inward Na+ and Ca2+ currents and increase outward K+ currents. Of 
note, BAs can alter the function of heart muscle cells as pacemakers. In a partial in vivo 
study, investigators found the plasma nonursodeoxycholic BA ratio was significantly 
increased in the atrial fibrillation group. Data analysis showed that the serum 
ursodeoxycholic BA concentration and nonursodeoxycholic BA ratio were 
independent predictors of atrial fibrillation[83]. BAs can affect the exchange of sodium 
and calcium on the myocardial cell membrane as polar amphiphilic molecules, leading 
to depolarization of the resting potential and inducing posterior depolarization of 
cells. Subsequent depolarization and triggering are one of the initiating mechanisms of 
HF.

BAs and HF
As the relationship between BAs and the heart continues to evolve, BAs have been 
shown to also play a role in HF[84]. Vascular endothelial dysfunction is one of the 
critical manifestations of chronic HF. Injury to endothelial function will activate 
endothelium-dependent injury pathways, eventually leading to decreased exercise 
tolerance and affecting the quality of life in HF patients. One of the most important 
factors is TNF-α[85]. LPS, which exists in the cell walls of Gram-negative bacteria in the 
gut, can enter the circulation through swollen intestinal mucosa due to decreased 
intestinal mucosal barrier function during the development of chronic HF[86]. 
Secondary BAs are produced from primary BAs under the action of intestinal 
microorganisms, indicating that the intestinal flora is related to the severity of HF[87]. In 
a recently published cross-sectional study, serum primary BA levels in patients with 
chronic HF decrease revealed specific secondary BA level increases and an increased 
ratio of secondary BAs to primary BAs. Therefore, the relationship between BAs and 
cardiomyocytes involves a complex regulatory system of multiple factors and multiple 
systems (organ, tissue, cellular, molecular, and endocrine) that interact with each other 
(as shown in Figure 1).

DISEASE THAT CAUSES BA ABNORMALITIES IS ASSOCIATED WITH 
THE HEART
Cirrhosis is often accompanied by cardiac dysfunction, which has aroused interest in 
the study of the relationship between abnormal BA metabolism and cardiac pathology. 
The relative risk of cardiovascular disease after primary sclerosing cholangitis onset 
was 3.34 and after primary biliary cholangitis (PBC) was 2.2[88,89]. Significant 
prolongation of the corrected QT (QTc) interval was found in PBC patients, which may 
lead to ventricular arrhythmia and increase the risk of sudden death[90,91]. Furthermore, 
studies have shown that patients with PBC have significantly reduced heart rate 
variability and stress-response sensitivity[92].

Intrahepatic cholestasis of pregnancy (ICP) is a condition in which the mother’s TBA 
concentration is higher than the normal range. ICP can cause accumulation of BAs in 
fetal serum, inducing fetal heart problems[93]. Studies in patients with mild and severe 
ICP have shown that TBA concentration is associated with ventricular arrhythmia[94].

Relationship between BAs, liver disease, and cardiomyopathy due to cirrhosis
Various causes of cholestatic disease eventually lead to cirrhosis[95]. It is estimated that 
about half of all cirrhosis cases result in cirrhotic cardiomyopathy (CC), which is 
characterized by systolic or diastolic dysfunction and can lead to morphological 
changes in the heart[96]. A prolonged QT interval is the most common feature of CC. 
The mechanism is unclear, but most studies have shown that it is determined by a 
combination of factors[97]. Studies also found that the severity of cirrhosis is positively 
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Figure 1 Bile acids affect heart function in a number of ways and affect each other. BAs: Bile acids; eNOS: Endothelial nitric oxide synthase; IL-1: 
Interleukin-1; IL-6: Interleukin-6; LPS: Lipopolysaccharide; TNF-α: Tumor necrosis factor-alpha.

correlated with prolonged QTc septum, and it is more common in alcoholic 
cirrhosis[98]. The mouse BDL model revealed that elevated BAs increase the production 
of NO by mediating intracellular Ca2+ signaling and induce apoptosis of 
cardiomyocytes, leading to CC. It showed that NO can also promote apoptosis and 
inhibit autophagy in hepatocellular carcinoma. Ma et al[99] showed that reduced flow of 
the myocardial membrane in BDL rats, resulting in adrenergic dysfunction and the 
inability to produce cAMP, ultimately resulted in decreased contractility of the 
myocardium. However, most of the data obtained from the modeling of BDL has 
involved rodents, so the mechanism of application in the human body remains to be 
further confirmed.

UDCA has a protective effect on heart disease
UDCA is a highly hydrophilic BA that was initially used to treat chronic liver disease 
because it can dissolve cholesterol and reduce cholesterol absorption[100]. In animal 
experiments, increased BA concentrations often lead to arrhythmia and decreased 
cardiac function, while UDCA does not. UDCA has both apoptotic and anti-apoptotic 
effects, suggesting that it plays distinct roles depending on the cell type[101]. It protects 
the myocardium by counteracting more hydrophobic BAs, which is thought to be 
mediated by protein kinase C and intracellular calcium (Ca2+)[102]. Lee et al[103] found that 
UDCA protects myocardial damage by enhancing the recovery of systolic cardiac 
function during ischemia-reperfusion and reducing the release of lactate 
dehydrogenase during ischemia-reperfusion. In addition, the protective effect of 
UDCA on myocardial reperfusion injury in rats is thought to occur by inhibiting the 
mitochondrial permeability transition pore, which is dependent on the 
phosphoinositide 3 kinase/PKB pathway[104]. In patients with HF, UDCA therapy has 
been shown to improve endothelial-dependent and nondependent vasodilation, 
thereby maintaining impaired NO production of arterial blood flow[105]. In another 
clinical study, patients with chronic HF received 4 wk UDCA 500 mg twice daily, 
resulting in improved ischemic blood flow. Furthermore, levels of gamma-
glutamyltransferase, aspartate transaminase, and tumor necrosis factor receptor 1 
(TNFR1) were reduced and liver function improved after treatment compared to 
before treatment[106]. UDCA also protects fetal arrhythmia through BA-induced 
function[107]. Although numerous studies on UDCA have shown that its use can 
improve myocardial injury, the mechanisms are not well understood. To further 
confirm the importance of UDCA in humans, more patients are needed for more 
comprehensive studies.
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CONCLUSION
Based on the above discussion, we know that BA signaling plays a vital role through 
receptor-dependent (FXR, VDR, TGR5, S1P, M) and channel-mediated (BK channel) 
mechanisms in different cell types. Particularly, for the cardiac system, most studies 
have shown that BA signaling affects heart function, and cardiac dysfunction in liver 
diseases, such as cirrhosis and ICP, is common. Interestingly, UDCA was found to 
play a protective role in dysrhythmia. Future work should be devoted to deciphering 
the complex interactions between BAs and their receptors to provide a pharmaco-
logical basis for the clinical treatment of related diseases.
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