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Abstract
Hepatitis C virus (HCV) is a major health problem 
worldwide. Early detection of the infection will help better 
management of the infected cases. The monoclonal 
antibodies (mAb) of mice are predominantly used for 
the immunodiagnosis of several viral, bacterial, and 
parasitic antigens. Serological detection of HCV antigens 
and antibodies provide simple and rapid methods of 
detection but lack sensitivity specially in the window 
phase between the infection and antibody development. 
Human mAb are used in the immunotherapy of several 
blood malignancies, such as lymphoma and leukemia, 
as well as for autoimmune diseases. In this review 
article, we will discuss methods of mouse and human 
monoclonal antibody production. We will demonstrate 
the role of mouse mAb in the detection of HCV antigens 
as rapid and sensitive immunodiagnostic assays for 
the detection of HCV, which is a major health problem 
throughout the world, particularly in Egypt. We will 
discuss the value of HCV-neutralizing antibodies and 
their roles in the immunotherapy of HCV infections 
and in HCV vaccine development. We will also discuss 
the different mechanisms by which the virus escape 
the effect of neutralizing mAb. Finally, we will discuss 
available and new trends to produce antibodies, such 
as egg yolk-based antibodies (IgY), production in 
transgenic plants, and the synthetic antibody mimics 
approach.
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Core tip: The monoclonal antibodies (mAb) of mice 
are predominantly used for the immunodiagnosis of 
several viral, bacterial, and parasitic antigens. Human 
mAb are used in the immunotherapy of several blood 
malignancies, such as lymphoma and leukemia, as well 
as for autoimmune diseases. In this review, we discuss 
methods of mouse and human monoclonal antibody 
production. We will demonstrate the role of mouse 
mAb in the detection of hepatitis C virus (HCV) antigens 
as rapid and sensitive immunodiagnostic assays. We 
will also discuss the role of HCV-neutralizing antibodies 
in the immunotherapy of HCV infections and in HCV 
vaccine development.
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INTRODUCTION 
Monoclonal antibodies (mAb or moAb) are monospecific 
antibodies that have the ability to bind to the same 
epitope[1]. These antibodies are made by homogeneous 
hybrid cells (B cells) that are each clones of the same 
origin parent cell. Polyclonal antibodies, on the other 
hand, are made of several different immune cells (B 
cells). Hybridomas are hybrid cell lines that are genera­
ted through the fusion of an antibody-producing B cell 
with a myeloma (B cell cancer) cell. Myeloma cells are 
characterized by the ability to grow in tissue cultures and 
the absence of antibody chain synthesis. All antibodies 
produced by these hybrid cells (using hybridoma 
technology) are of a single specificity, and therefore 
mAb. The establishment of cell lines producing mAb was 
first reported by Köhler et al[2] in 1975.

The hepatitis C virus (HCV) is a major health problem 
worldwide. According to the estimates of the World 
Health Organization, this virus infects more than 180 
million people across the world (representing 2%-3% 
of the world’s total population)[3,4]. HCV (genotype 4) 
is one of the major health issues in Egypt, infecting 
22% of the country’s general population[3,5-7]. HCV is a 
small-enveloped, single-stranded RNA virus belonging 
to the family Flaviviridae. The genome encodes a 
single polyprotein that is co- and post-translationally 
processed into four structural and six non-structural 
proteins[4,8]. This is done by different cellular- and viral-
encoded proteases. The envelope glycoproteins E1 and 
E2 are two structural proteins located on the surface 
of the HCV, and hence play a crucial role in HCV entry 

into hepatocytes. Their presence on the surface of the 
virus makes these two proteins, particularly E2, a major 
target for HCV antibody neutralization and interaction 
with host cellular receptors[3,8].

PRODUCTION OF MOUSE MAB 
Mouse mAb by hybridoma technology
In 1975, Köhler et al[2] developed a hybridoma method 
for the production of mAb. The persistence of antibody-
producing cells via their fusion with tumor cells may 
be an obvious procedure today, but at the time, this 
procedure was regarded as a key innovation that would 
allow for the unlimited yield of a specific antibody 
molecule. In 1984, Köhler et al[2] were awarded the 
Nobel Prize in Physiology or Medicine “for theories 
concerning the specificity in development and control of 
the immune system and the discovery of the principle 
for production of mAb. While mAb are now long-estab­
lished as vital research products, their therapeutic use 
requires further development, particularly in terms of 
the humanization of mouse antibodies and recombi­
nant productivity protocols. Several hundreds of mAb 
are currently under evaluation for the treatment of a 
broad range of conditions and use within a variety of 
therapeutics on the market[9]. The principle production 
of mouse mAb by hybridoma is shown in Figure 1. The 
different types and applications of mAb as diagnostic 
and therapeutic applications are presented in the Figure 
2. 

Hybridoma cell production has conventionally been 
performed via cell fusion between spleen cells (B cell 
source) and myeloma cell lines by chemical fusion 
techniques using for example polyethylene glycol (PEG). 
A recent publication by Kandušer et al[10] in 2014, 
however, describes another technique for cell fusion 
based on electrofusion. This technique is superior to 
the PEG method due to its high fusion efficiency. Kato 
et al[11] have stated yet another technique that involves 
CpG oligodeoxynucleotide (CpG ODN) for cell activation 
prior to electrofusion. Kato et al[11] reported that CpG 
ODN stimulation not only increases fusion efficiency but 
also the number of antibody-producing cells, leading to 
an increased number of positive clones obtained. 

Rat and rabbit mAb can be produced by the hybri­
doma technology using rat and rabbit spleen cells, 
respectively. A recent study[12] generated rat hybridoma 
clones via the cell fusion of immunized rat spleen cells 
with mouse myeloma SP2/0 cells and screened the 
generated antibodies using recombinant mouse CXCL4 
and rhCXCL4. This study concluded that the CXCL4 
signaling pathway is a potential therapeutic target 
in numerous diseases including cancer. In addition, 
Zhang et al[13] used rabbit hybridoma to produce highly 
sensitive rabbit mAb targeting an emerging cell surface 
in mesothelioma and other solid tumors (Mesothelin). 
They concluded that the generated rabbit mAb may 
be promising candidates for monitoring and treating 
mesothelioma and other mesothelin-expressing cancers. 

2370 October 8, 2015|Volume 7|Issue 22|WJH|www.wjgnet.com

Tabll A et al . Monoclonal antibodies and hepatitis C virus



PRODUCTION OF FULLY HUMAN MAB 
There are several methods for the production of human 

mAb, such as phase display, transgenic mice, humani­
zed mouse mAb, and immortalization by Epstein-Barr 
virus (EBV). In this review, we focus on the production 

2371 October 8, 2015|Volume 7|Issue 22|WJH|www.wjgnet.com

Mouse hybridoma technology

Methods of production of monoclonal antibodies

EBV immortalization method

Used mainly for immunotherapy

Used mainly for immunodiagnosis

Fully human
monoclonal antibodies

Humanized 
monoclonal antibodies

Chimeric 
monoclonal antibodies

Mouse 
monoclonal antibodies

Figure 2  Diagrammatic presentations showing the applications of mouse and human monoclonal antibodies and their methods of production. EBV: 
Epstein-Barr virus.
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Figure 1  Diagrammatic procedure of the production of mouse monoclonal antibodies by hybridoma technology. ELISA: Enzyme-linked immunosorbent 
assay; PEG: Polyethylene glycol; DMSO: Dimethyl sulfoxide; HAT: Hypoxanthine-aminopterin-thymidine; HT: Hypoxanthine thymidine.
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EBV has the in vitro ability to immortalize nearly all 
human B lymphocytes, which allows for the isolation of 
monoclonal cell lines that secrete specific human mAb. 

The method of immortalization by EBV allows for 
the production of human mAb of different classes 
(IgM, IgG, IgA, and IgE) from any individual. Human 
mAb produced by EBV immortalization resemble 
the supplies of antibody molecules derived from the 
lymphocytes of blood donors. Therefore, Steinitz[25] 
concluded that human mAb are promising reagents 
of passive immunization for several diseases, such as 
cancer, and viral or bacterial infections. In our recently 
published paper[26], we aimed to produce human 
cell lines by manufacturing neutralizing human mAb 
for use against the envelope E1/E2 macromolecule 
of HCV. For this, we used two methods for the EBV 
immortalization of CD22+ cells taken from HCV-positive 
patients: (1) immortalization with 100% EBV only; 
and (2) immortalization by 30% EBV and CPG2006 
with IL2 (Figure 3). Our results indicated that cell 
stimulators play a role in the production of antibodies, 
with immortalization by 100% EBV only producing large 
clones compared to immortalization by 30% EBV and 
CpG2006 with IL2. The antibody levels, as measured by 
enzyme-linked immunosorbent assay (ELISA), showed 
high optical density in cells immortalized with 30% 
EBV and stimulants CpG2006 and IL2. Our results also 
indicated that the immortalization of low B cell numbers 
by 30% EBV, CPG2006, and IL2 was introduced with 
high efficiency and reproducibility leading to immediate 
generation of single clones that produced mAb. The 
specificity of the generated mAbs was confirmed by 
screening them against linear synthetic peptides (as 
epitopes) derived from HCV E1 (a.a 315-323) and two 
synthetic peptides derived from HCV E2 (a.a 412-419
and a.a 517-531) using in-house, ELISA-based opti­
mized assays, all of which were studied by several 
investigators[27-29]. Fifteen clones secreting human 
immunoglobulin G against HCV E1/E2 protein were 
isolated. The ELISA results showed that one antibody 
was binding to the E2 peptide (a.a 517-531), while 
two antibodies were binding to the HCV E2 peptide 
(a.a 412-419). The three generated antibodies (IgG3, 
one antibody, and IgG2, two antibodies) showed high 
neutralization activity against HCVpp. We therefore 
concluded that these antibodies may be useful for the 
passive immunotherapy of HCV infections, particularly 
for HCV-positive liver transplantation patients. 

USING MOUSE MAB FOR THE 
DETECTION OF HCV ANTIGEN(S) AS 
DIAGNOSTIC MARKERS 
The detection of anti-HCV antibodies involves a simple, 
inexpensive, and quick test, yet this test has a low 
sensitivity in the first six to eight weeks of infection, or 
given the presence of several clinical conditions, such 
as chronic immunosuppression or hemodialysis[30]. A 
recent study[31] has shown that the proteins of Core and 

of fully human mAb by EBV immortalization. Human 
mAb (hMAb) provide novel ways for probing the B cell 
repertoire of various health and disease issues. Several 
difficulties have been encountered in the development 
of the hMAb, including cell line instability, low levels of 
specific antibody secretion, and poor cloning potency, 
particularly when using lymphoblastoid cells[14]. Martin et 
al[15] reported that the immortalization of B lymphocytes 
by EBV is a time consuming methodology for antibody 
production. EBV infects B cells via their CD21 receptors, 
which then transforms the B cells into lymphoblastoid 
cell lines that produce antibodies, representing the 
humoral immune response in vivo. Based on the type 
of parent cell, the generated antibodies target either 
an infective agent or a tumor cell, which makes them 
suitable therapeutic candidates against these diseases. 

Compared to other antibody manufacturing tech­
niques, the immortalization of B cells stands as the 
best technique, as the generation of fully human 
antibodies from the immortalized human B lymphocyte 
repertoire does not require immunization[16,17]. The 
first B lymphocyte immortalization experiment was 
performed by culturing B cells in the presence of a 
herpes virus obtained from a marmoset lymphocyte cell 
line B95-8[18,19]. Numerous changes to this procedure 
have since been tried, yet the immortalization and B 
lymphocyte rates remain inefficient. Several successful 
mAbs have been generated with this technique for use 
against different pathogens; Schieffelin et al[20] report 
that human mAb against dengue virus envelope were 
generated by the EBV transformation of B cells from 
patients after two years of naturally-acquired dengue 
virus infection. These antibodies were found to have 
completely different cross-reactivity, and neutralizing 
patterns. Schieffelin et al[20] and others[21,22] have used 
CpG2006 as stimulators for EBV immortalization. Further­
more, antibodies neutralizing the SARS corona virus and 
cytomegalovirus have been successfully created via the 
introduction of the polyclonal B lymphocyte activator 
CpG2006 into the B lymphocyte immortalization method 
and by B lymphocyte activation before EBV infection, 
respectively[21,22]. Moreover, Fraussen et al[23] report that 
seeding low B lymphocyte numbers per well serves to 
limit bias toward the advantageous outgrowth of fast-
growing immortalized B cells including interleukin-2 (IL2) 
and CpG 2006. 

Siemoneit et al[24] used herpes virus immortalization 
for the production of human organism antibodies to 
target HCV core macromolecules. In doing this, they 
revealed the establishment of two vegetative cell lines 
secreting human mAb to the 22-kD nucleocapsid 
macromolecule (core, p22) of HCV. Siemoneit et al[24] 
isolated B lymphocytes from an anti-HCV-positive 
donor and immortalized them by EBV infection. Two of 
the cell colonies were fused with the (mouse/human) 
heteromyeloma cell line K6H6/B5. The generated fused 
hybridomas produced antibodies of the IgG1/kappa 
(U1/F10) and the IgM/kappa (Ul/F11) isotype and were 
found to specifically react with the recombinant core 
macromolecule p22. Recently, Steinitz[25] reported that 
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E2 genes within the antigenic regions of a local HCV-
3a genotype can be used to develop highly sensitive, 
specific, and economical diagnostic assays for the 
detection of HCV infection. The recombinant antigen 
showed 100% reactivity against HCV-infected sera, with 
no cross reactivity in the HCV-negative sera. The authors 
therefore concluded that a mixture of Core and E2 
antigens is potentially valuable for HCV-Ab detection[31].

The disadvantage of HCV diagnosis via the detection 
of HCV-Abs is the inability to distinguish between 
active and past infection. Given this, HCV-Ag detection 
is preferable, especially during the window phase of 
HCV infection. Recently, Florea et al[32] investigated 
the diagnosis of an HCV infection based on a HCV core 
Ag detection assay and found both a good correlation 
between the core Ag results with the HCV RNA viral load 

and very high specificity. Furthermore, Chevaliez et al[33] 
evaluated the clinical performance of the Architect HCV-
Ag assay in terms of the detection and quantification of 
HCV core antigens in patients with chronic HCV genotype 
1-6 infections. They concluded that the Architect HCV-Ag 
assay is highly specific, easy to perform, and represents 
a valuable screening, diagnostic, and monitoring tool.

Several investigators have demonstrated evidence 
of HCV antigens in liver tissue[34-37] serum samples[38,39] 
and plasma samples[40]. We reported the detection of 
HCV NS4 antigen in the sera of infected HCV patients 
using the Dot ELISA technique as a rapid assay[41]. The 
assay developed was able to detect the HCV target 
antigen in 95% of the serum samples from HCV-infected 
individuals with a specificity of 97% compared to the 
sera of uninfected individuals, using reverse transcription 

Protocol for generation of fully human monoclonal antibodies by EBV immortalization

CD22+ B cells 

Column removed
from magnetic 
field

Magnetic labelled CD22 
cells with Macs beads 

CD22- cells CD22+ cells 

CD22+ B cells

ELISA to confirm the specificity 
of the production of human antibodies

Day 14            Addition of μg/mL CPG2006 and 50 U/mL IL2
Day 21                   Further culture without stimuli

Low number of CD22+ B cells
1 μg/mL
30% v/v EBV

Day 28      Dot ELISA for human Ab production and 
examination of cell growth

(1) Separation of peripheral blood mononuclear cells

(2) Separation of CD22 positive B cells by Magnetic beads

(3) B cells immortalization

(4) Restimulation

(5) Verification of B cells immortalization 

(6) Propagation of positive human clones

Dot ELISA

Culture supernatant of 
immortalized cells 

Negative (culture media)
Positive Mab to HCV E2 
Negative (control cell supernatant) 
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Negative HCV sera
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Figure 3  Generation of fully human monoclonal antibodies by Epstein-Barr virus immortalization. EBV: Epstein-Barr virus; HCV: Hepatitis C virus; IL2: 
Interleukin-2; ELISA: Enzyme-linked immunosorbent assay.
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polymerase chain reaction results as a reference. This 
antigen-detection-based method showed high positive 
predictive values (99%) and negative predictive values 
(90%). The added advantage of the assay is that it was 
able to detect HCV target antigens in the sera of patients 
during the window phase (negative for HCV-Ab and 
positive for HCV-RNA), as well as in the sera of both low 
and high HCV-RNA viral loads. The authors showed that 
their developed assay was highly sensitive and specific 
for HCV antigen detection, and that it could be applied 
for the mass screening of HCV infection. 

In two reports[41,42], Attallah et al[41] describe their use 
of ELISA for the detection of HCV-NS4 and assessing 
the diagnostic performance of the assay in 883 chronic 
HCV patients. Taking quantitative HCV-RNA as a gold 
standard for HCV diagnosis, areas under the receiver 
operating characteristics (ROC) curves (AUC) were used 
to assess the diagnostic accuracy of ELISA for HCV-
NS4. Attallah et al[42] identified HCV-NS4 to be at 27 kDa 
using Western blot. The areas under the ROC curves 
(AUC) in HCV-NS4 detection were 0.95 among patients 
with different pathological states of liver disease, with 
0.93 for liver fibrosis, 0.95 for liver cirrhosis, and 0.98 
for hepatocellular carcinoma (HCC). The mean ± SD 
(ng/mL) of HCV-NS4 in liver fibrosis was 94.2 ± 55.6, in 
liver cirrhosis was 99.3 ± 64.8, and in HCC was 124.9 
± 70.3. The authors therefore concluded that HCV-
NS4 antigen detection using ELISA is a reliable test 
to confirm HCV infection. We established a hybrid cell 
line that produced mouse mAb targeting HCV E1 a.a 
315-323[43]. We also produced mouse mAb targeting 
HCV E1/E2 and used them in the ELISA as a diagnostic 
assay for HCV infection (unpublished data). Our results 
showed a sensitivity of 80% and a specificity 96%. 

HCV neutralizing antibodies 
HCV cellular receptors are targets for HCV neutra­
lization: Many HCV neutralizing antibodies target E1 
and E2 HCV glycoproteins. However, an alternative 
strategy to preventing HCV entry may be achieved 
by targeting host receptors, such as CD81 and SR-BI. 
These antibodies block viral-host receptor interaction. 
A large number of broad spectrum, anti-HCV, host-
targeting antivirals (HTAs) have been developed that 
trigger the innate immune system. Examples of these 
anti-HCV compounds include anti-SR-BI and toll-like 
receptor agonists[3,8]. The mechanism of action in this 
group of compounds involves the inhibition of certain 
cellular factors that are crucial to the HCV lifecycle. One 
of the main advantages of HTAs is that they act on host 
factors that are of a much lower rate of mutation[3]. 
Therefore, we are going to discuss primarily cellular 
receptors required for the attachment of HCV together 
with their involvement in the neutralization process. 

CD81 receptor: The tetraspanin CD81 (26 kDa) is an 
integral membrane unglycosylated protein. CD81 is 

reported to possess several functions, such as signal 
transduction, cell activation, and cell adhesion. Moreover, 
in prior studies uding HCVpp and HCVcc systems, it has 
been confirmed that the CD81 receptor plays a major 
role in HCV cell entry[4]. A large number of broadly anti-
HCV neutralizing antibodies block CD81 interaction with 
the HCV envelope glycoprotein E2. Indeed, it has been 
previously shown that anti-CD81 mAb inhibit the entry 
of both HCVcc and HCVpp into the Huh-7 cell line[44,45]. 
Resolving the crystal structure of CD81 complexed 
with E2 protein[44,45] has revealed that CD81 binds the 
HCV envelope glycoprotein E2 within certain specific 
amino acid residues (i.e., 412-423, 432-447, 480-493, 
528-535, and 544-551). K04, a recently generated anti-
human CD81 monoclonal antibody, was shown to have 
a broad-spectrum antiviral action in the prevention and 
treatment of HCV infection[46]. 

Lipoprotein receptor scavenger receptor BI: 
The scavenger receptor class B type Ⅰ [scavenger 
receptor BI (SR-BI)] is highly expressed in hepatocytes. 
This receptor functions as a lipoprotein receptor that 
mediates cholesteryl ester selective uptake from high 
density lipoproteins[47]. The SR-BI receptor can bind 
both high density lipoproteins (HDL) and low density 
lipoproteins[8,47]. SR-BI has been previously shown 
to mediate interactions of E2-CD81. It has been 
suggested[45,48,49] that the SR-BI receptor interacts with 
HCV glycoprotein E2 hypervariable region 1 [hyper­
variable region-1 (HVR1), the first 27 amino acids in 
E2]. In line with this hypothesis, HVR1 deletion has been 
shown to inhibit E2-SR-BI interaction and to reduce HCV 
infectivity[50-52]. Indeed, it has been shown that HVR1 
facilitates the interaction between HDL and SR-BI, which 
inhibits the neutralization of both HCVpp and HCVcc. 
HCV infection in cell cultures has also been shown to be 
inhibited with antibodies against SR-BI, confirming the 
crucial role of SR-BI in HCV cell entry[47,53,54]. Lastly, it 
was recently indicated that anti-SR-BI antibodies inhibit 
the HCV infection of different genotypes, both in cell 
cultures and humanized mice[55].

Other HCV receptors: Aside from SR-BI and CD81, 
other receptors including claudin-1 (CLDN1) and occludin 
(OCLN) compose the tight junction factors[56]. The tight 
junction multiprotein complex is comprised of four 
types of transmembrane proteins: Claudins, occludins, 
junction associated molecules, and the coxsackie virus 
B adenovirus receptors[57-59]. It is still unclear how the 
CLDN1 and OCLN inhibit HCV cell entry. Anti-claudin-1 
antibodies neutralize HCV infectivity via inhibiting the 
interaction between CD81 and claudin-1 receptors, 
which is important to the viral entry process[58,59]. Occlu­
din has been reported to co-precipitate with the HCV 
E2 glycoprotein. However, unlike CD81 and SR-BI and 
claudin-1 cellular receptors, no virus-specific neutralizing 
antibodies for occludin have been identified thus far[60]. 
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HCV-NEUTRALIZING EPITOPES AND 
ANTIBODIES 
The identification of the various mechanisms involved in 
immune protection is an important step in designing an 
HCV vaccine. The production of neutralizing antibodies 
by adaptive immune systems following vaccination 
has been prior demonstrated as a key strategy for 
protection against human viruses[61]. In the case of the 
HCV, a viral infection can persist even in the presence of 
a broadly neutralizing antibody, in many cases leading 
to chronic infection[44,62]; this can result in liver fibrosis, 
cirrhosis, and even eventually lead to hepatocellular 
carcinoma, causing death. 

Anti-HCV antibodies can be targeted against struc­
tural and nonstructural protein epitopes (classified as 
either linear or conformational)[63,64]. The envelope 
glycoproteins E1 and E2 are considered major targets 
for neutralizing antibodies, as they are present on the 
surface of the HCV virus. Consequently, the development 
of an HCVpp system using unmodified HCV E1 and 
E2 envelope glycoproteins has allowed researchers to 
achieve remarkable progress in the study of neutralizing 
antibodies. However, little is understood so far as to the 
structure of the HCV envelope glycoproteins and how 
they interact with neutralizing antibodies[65]. 

Despite the fact that the HCV E1 glycoprotein is 
more conserved than E2, it has been proposed that 
E1 is of lower immunogenicity and hence a more 
difficult target for neutralizing antibodies[47,66]. However, 
two mAb against HCV glycoprotein E1 (IGH 505 and 
IGH 526) have been identified[27]. Both antibodies 
neutralize HCVpp bearing the E1 envelope glycoprotein 
of genotypes such as 1a, 1b, 4a, 5a, and 6a. These 
antibodies work within the region of E1 amino acids 
comprised of amino acids 313 to 327[27]. In addition 
to these two antibodies, the H-111 antibody has 
been reported to neutralize expressed E1 proteins 
from genotypes 1a, 1b, 2b, and 3a via binding to the 
192YEVRNVSGVYH211 region of E1[67,68]. 

Anti-E2 human conformational-dependent HCV 
antibodies targeting E2 in HCVpp cell culture systems 
have been used to identify E2 epitopes. Due to 
such studies, three different regions of the E2 HCV 
glycoprotein E2 have been identified[50]. These regions 
include the E2 HVR1, the E2 HVR2, and the CD81 
binding region of E2 and the C-terminus of HVR1[69]. The 
HCV glycoprotein HVR1 is a major target of neutralizing 
antibodies. This region is crucial for the virus, as it 
plays an important role in the HCV virus binding and 
entry process[50,70]. The physicochemical properties of 
the residues of HVR1 and its conformation are both 
highly conserved among various species despite the 
sequence variability of HVR1. It has been suggested 
that the sequence variability of E2 HVR1 is driven by the 
antibody selection of immune-escape variants[71]. Stable 
HVR1 sequences associated with resolved infection 
have also been reported, with HVR1 sequence change 
being suggested as one of the reasons for persistent 

HCV infection. This suggests that the most important 
target of antibody response to the HCV E2 glycoprotein 
is HVR1 (Table 1 for other examples)[72]. 

EXAMPLES OF HCV-NEUTRALIZING 
ANTIBODIES
Epitopes can be classified into two main groups (linear 
or conformational epitopes). Various viral epitopes 
that are targeted by neutralizing antibodies have 
been identified and characterized. Two human mAb, 
HCV1 and 95-2, have been identified as successfully 
neutralizing HCVpp belonging to different genotypes 
(i.e., 1a, 1b, 2b, 3a, and 4a). In addition, a highly 
conserved linear epitope in E2 (amino acids 412 to 423) 
has been reported as recognized by HCV1 and 95-2 
mAb[65]. Moreover, e137, a human monoclonal Fab, has 
been shown to bind to the HCV E2 glycoproteins of all 
HCV genotypes, with the exception of HCV genotype 
5. Furthermore, it has been confirmed that this epitope 
interacts with highly conserved residues in all HCV 
genotypes, such as T416, W529, and D535[73]. CBH-5 
has also shown itself to be capable of neutralizing all 
examined genotypes (genotypes 1-6). It was revealed 
that two of the amino acids comprising the epitope 
of CBH-5 are crucial for E2-CD81 interaction, which 
suggests direct competition between CBH-5 and CD81 
to bind with the HCV E2 glycoprotein[74]. AP33 is another 
broadly neutralizing mouse monoclonal antibody that 
has been shown to neutralize all genotypes (i.e., 1a, 
1b, 2a, 2b, 3a, 4, 5, and 6). This antibody recognizes 
a highly conserved epitope in HCV glycoprotein E2 
(amino acids 412 to 423)[75]. The high conservation of 
its epitope may have resulted in the broadly neutralizing 
activity of this antibody. Finally, AR3B displays a broadly 
neutralizing human antibody activity. AR3B neutralizing 
antibodies have been shown to protect against viremia 
in an infected mouse model[76]. 

NEUTRALIZING ANTIBODIES’ 
MECHANISMS OF ACTION
The lack of cell culture-based assays to measure and 
quantify HCV activity has long hindered the study of 
the role of neutralizing antibodies in HCV infections. 
The mechanism of action in the antibody neutralization 
process still remains unclear. Several mechanisms 
through which neutralizing antibodies interfere with 
different stages of the HCV life cycle have been 
suggested[77,78], including immune aggregation and 
the blocking the attachment of the virion to the viral 
receptor which inhibits HCV infection. In addition to 
these mechanisms, neutralizing antibodies have been 
reported to interfere with other stages of the HCV 
life cycle following the binding process, such as the 
penetration of the virus through the cell membrane 
via host entry factors. Neutralizing antibodies may 
also prevent conformational changes important for the 
fusion of the virus to a host cell[77,78].
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VIRAL MECHANISMS FOR EVADING 
NEUTRALIZING ANTIBODIES
HCV has developed the following different mechanisms 
to evade neutralizing antibody responses[79]: (1) the 
association of HCV with low density lipoproteins[47]; (2) 
the association of HCV with certain glycans can play a 
role in shielding important neutralizing epitopes of E1 
and E2 envelope glycoproteins[80]; (3) the production 
of interfering antibodies, which may interfere with anti-

HCV neutralizing antibodies[81]; and (4) direct cell-to-cell 
transmission of the HCV virus[82]. HCV typically employs 
a combination of these mechanisms together at the 
same time.

Lipoproteins
It is reported that poorly infectious HCV particles linked 
to immunoglobulins have been separated from the 
higher density fractions of chronic HCV plasma samples, 
with highly infectious particles found in lower density 

Table 1  Hepatitis C virus neutralizing antibodies

Neutralizing antibody Epitope Specificity Escape mutants Ref.

IGH505 E1 (313-326) linear Cross-reactive NA [27]
IGH526 E1 (313-326) linear Cross-reactive NA [27]
H-111 E1 (192-202) linear Cross-reactive NA [68]
95-2 E2 (412-423) linear Cross-reactive NA [65]
HCV-1 E2 (412-423) linear Cross-reactive NA [65]
HC-1 E2 (523-540) conformational Cross-reactive No escape [69,125]
3/11 E2 (412-423) linear Cross-reactive N415Y, N415D, N417S, G418D [75]
3C7 E2  (396-407) H strain NA [126]
AP33 E2 (412-423) linear Cross-reactive N415Y, N415D, N417S, G418D [75]
CBH7 E2 conformational Cross-reactive NA [74]
CBH5 E2 (523-540) conformational Cross-reactive NA [68,127]
CBH2 E2 (425-447), E2 (523-540) conformational Cross-reactive D431G, A439E [68,125,128]
CBH-8C E2 conformational Cross-reactive NA [129]
CBH-8E E2 conformational Cross-reactive NA [129]
CBH-11 E2 conformational Cross-reactive NA [129]
CBH-17 E2 conformational Cross-reactive NA [129]
CBH4B E2 conformational Cross-reactive NA [129]
CBH4D E2 conformational Cross-reactive NA [129]
CBH4G E2 conformational Cross-reactive NA [129]
9/27 E2 conformational H strain NA [130]
A8 E2 (523-540) conformational Cross-reactive NA [127]
J6.36 E2 Partially conformational J6 strain NA [131]
HC-11 E2 (425-447) NA L438F [69,125]

E2 (523-540) conformational
Fab e20 E2 (523-540) conformational Cross-reactive NA [132]
Fab e137 E2 (412-423) Cross-reactive NA [73]

E2 (523-540) conformational
1:7 E2 (523-540) conformational Cross-reactive NA [127]
AR3A E2 (394-424), E2 (437-447) Cross-reactive NA [76]

E2 (523-540) conformational
AR3B E2 (394-424) Cross-reactive NA [76]

E2 (437-447)
E2(523-540) conformational

AR3C E2 (394-424), E2(437-447) Cross-reactive NA [76]
E2 (523-540) conformational

AR3D E2 (394-424), E2 (437-447) Cross-reactive NA [76]
E2 (523-540) conformational

AP213 E2 (396-407) partially conformational Gla strain NA [133]
H77.39 E2 (384-520) linear Cross-reactive NA [131]
H35 E2-conformational Poorly cross-reactive NA [134]
H48 E2-conformational Poorly cross-reactive NA [134]
2/69a E2 (436-443) linear NA NA [135]
9/86a E2 conformational NA NA [130]
6/1a E2 (464-471) linear NA NA [130]
9/75 E2 (524-531) linear NA NA [130]
6/53 E2 (544-551) linear NA NA [130]
6/16 E2 (384-391) linear NA NA [130]
1/39 E2 (432-443) linear NA NA [130]
6/41a E2 (480-493) linear NA NA [130]
11/20c E2 (436-447) linear NA NA [130]
ALP98 E2 (644-651) linear Cross-reactive NA [136]
ALP1 E2 (647-658) linear NA NA [136]

NA: Not available.
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fractions, indicating the effect of lipoproteins on the 
infectivity of HCV[83]. The binding of HCV to lipoproteins 
may facilitate HCV uptake by liver cells[47,84]. This 
facilitated viral entry is mediated through interaction 
between the ApoB and SR-BI receptors, which enable 
HCV to escape recognition via different HCV neutralizing 
antibodies. This suggests that lipoproteins could 
possibly play a role in protection against antibody-
mediated neutralization by masking the epitopes of the 
viral surface glycoproteins[85,86].

HCV genetic diversity 
The high variability of the HCV genome provides the 
virus with an effective escape strategy from antibody 
neutralization[87,88]. HCV is classified into seven different 
genotypes, with each genotype including a number 
of subtypes that are roughly 25% different at the 
nucleotide level. The loss of the proofreading ability of 
HCV NS5B polymerase increases the mutation rate of 
the virus to one nucleotide per replication cycle[89]. This 
results in the evolution of HCV into many quasispecies 
with different though closely related nucleotide sequen­
ces even within the same patient, which may help the 
virus to escape from the human immune response[54,90]. 
HCV likely escapes the effects of the immune system 
because immune responses develop over weeks and 
HCV replicates on a timespan of days[91]. Interestingly, 
the sequence variation occurs mainly in the HCV E2 
HVR1. HVR1 can remain with no change in its genome 
sequence for roughly two years given the absence of 
neutralizing antibodies. Given the virus’s exposure to 
neutralizing antibodies, the HCV genomic RNA sequence 
undergoes several adaptive mutations[89].

Glycans
Glycans associated with HCV envelope proteins protect 
the virus from neutralization by various antibodies 
via shielding crucial epitopes, especially in the E2 
glycoprotein. With eleven N-glycosylation sites, E2 is 
the most glycosylated protein of the E1-E2 heterodimer, 
whereas the E1 protein contains only four sites. These 
fifteen glycans in total were reported to play a role in 
the entry of HCV into host cells. Several glycans (E2N1, 
E2N2, E2N3, E2N4, E2N6, E2N8, E2N9, E2N10, an 
E2N11) on E2 were found to limit the accessibility of 
neutralizing epitopes on E2[92]. These nine glycosylation 
sites were found to be conserved across all genotypes[80], 
which may indicate their importance as an HCV escape 
mechanism[92].

Direct viral transmission from cell to cell
Direct transmission between cells helps HCV to evade 
both innate and adaptive immune systems. Cell-to-
cell spread has been found to occur in other viral 
families, such as the herpes virus, retroviruses, and 
rhabdoviruses[93]. Direct cell-to-cell transmission is more 
efficient in spreading the virus in host, as it allows the 
virus to escape neutralizing antibodies. Furthermore, 

direct cell-to-cell transmission has been shown to be 
CD81 independent. Lastly, both CLDN1 and OCLDN 
cell receptors were reported to play a role in cell-to-cell 
transmission[94,95].

AVAILABLE AND NEW TRENDS IN 
ANTIBODY PRODUCTION 
The high cost of production of antibodies by hybridoma 
or the humanization of mouse antibodies, page displays, 
or transgenic mice has led to the emergence of new 
trends to produce antibodies, such as egg-yolk-based 
antibody (IgY) production within transgenic plants and 
synthetic antibody mimics.

Egg yolk antibodies (IgY)
Providing passive immunity to chicks, IgY is passively 
transmitted to egg yolks to help safeguard a chick 
against infection until its own immune response can 
be developed. IgYs are functionally similar to IgG in 
mammals, and intensive research has been conducted 
on the utilization of IgY for passive immunization[96]. 
The transient activity of passive antibodies increases the 
need for large-scale production due to their frequent 
administration. Hen eggs are an excellent source of 
antibodies for passive immunization due to their being 
a non-invasive means of production and the large 
production capability of a chicken[97]. The IgY collected 
from egg yolks can yield eighteen times more antibodies 
than the serum obtained from rabbits without sacrificing 
the animal[98]. An average hen can lay roughly 325 
eggs a year. Given that an egg can produce 60-150 mg 
of IgY[99], one hen can produce 20-40 g of antibodies 
a year, with 2%-10% of the antibodies being antigen 
specific[100]. 

Additional advantages of using IgYs to combat infec­
tions in the human body include the ease of isolating egg 
yolk antibodies and the absence of interaction accruing 
between IgYs and the Fc receptors of mammals, which 
can initiate an inflammatory reaction and fail to induce 
complement activation in mammals[101]. In addition, 
chicken antibodies produce a different antibody repertoire 
and identify different epitopes than the antibodies 
produced by mammals[102]. Furthermore, the large-
scale industrial production of eggs makes the process of 
IgY production technically efficient. IgY has been used 
effectively against several human and veterinary viruses, 
such as the bovine rotavirus[103], infectious bursal disease 
virus[104], human influenza virus H1N1[105,106], rabies 
virus[107], bovine leukemia Virus[108], rabbit hemorrhagic 
disease virus[109], bovine respiratory syncytial virus[110], 
avian reovirus[111], norovirus[112], hepatitis A virus[113], and 
the white spot syndrome virus[114].

The use of genetic engineering technologies to 
produce chicken mAb (mIgYs) will enhance the utility of 
IgY antibodies[115]. The combination of the high specificity 
and homogeneity of the mAbs and the unique features of 
chicken antibodies provide additional features to mIgYs. 
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Very few studies have investigated the generation and 
utility of mIgYs with respect to prion immunogen[116]. The 
use of antibody engineering technologies facilitates the 
production of mIgY, while the phage display technique 
provides the features of a large, diverse library, as well as 
an efficient selection procedure[117].

Antibody expression in plants
The first trial of the production of antibodies in plants 
was carried out in 1989 in transgenic plants. Plant 
expression systems have several advantages in terms 
of the production of antibodies: First, these systems 
cost less compared to other conventional expression 
systems. Second, with regard to safety, they do not 
contain mammalian viruses or pathogens and do not 
produce endotoxins. Furthermore, as reported by Xu 
et al[118], the antibodies can be applied parenterally, 
topically, or orally. Castilho et al[119] and Olinger et al[120] 
report that, with antibody plant expression systems, 
it is possible to produce antibodies with desired 
glycoforms, and that glyco-engineered plants have a 
much higher degree of glycan homogeneity. In a recent 
review article by Virdi et al[121], they report that the 
production of antibodies in edible tissues would allow 
for oral passive immunization of the mucosal surface 
of the stomach. The use of technology together with 
the natural capacity of plant tissues to collect complex 
antibodies will enable in the enrichment of the antibody 
market. A review by Virdi et al[121] also showed the role 
of plants as an adaptable expression system for passive 
immunotherapy. Nianiou et al[122] showed the production 
of antibodies against HCV core gene in transgenic 
tobacco plants. The resultant HCV core antigen was 
found to be immunoreactive not only with polyclonal 
and mAb, but also with human sera positive for HCV-
infected patients. Therefore, the authors prospected that 
the use of a plant-based HCV vaccine could be possible. 
Recently, Iranian scientists Mohammadzadeh et al[123] 
designed a highly codon-optimized HCV core protein 
gene for the construction of an effective plant expression 
system for the production of HCV core proteins with 
antigenic properties in an Iranian Jafarabadi-cultivar 
tobacco plant. The authors concluded that, through the 
use of a gene optimization strategy that uses vectors 
based on HCV and the suppression of plant-derived, 
gene-silencing effects, an effective expression system 
including the HCV core proteins of tobacco plants with 
antigenic immunogenic characteristics may be possible.

Synthetic antibody mimics
Recently, McEnaney et al[124] of the Yale University lab 
have crafted the first synthetic molecules (synthetic 
antibody mimics) that possess both the targeting abilities 
and functions of natural antibodies. The synthetic 
antibody mimics (SyAMs) attach themselves simul­
taneously to disease cells and immune fighting cells, 
performing a similar action to natural human antibodies. 
McEnaney et al[124] showed these molecules to be 
synthetic organic compounds that are approximately 

one-twentieth the size of natural antibodies. The authors 
report that their new SyAMs are thermally stable and 
can be administered orally. Furthermore, the authors 
report that the SyAMs have the potential to be used 
in treatments for cancer and other diseases, such as 
human immunodeficiency virus and various bacterial 
diseases[124]. We believe that these synthetic antibody 
mimics will open new areas of research and practice in 
the field of immunotherapy.
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