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Abstract

The liver is a key organ involved in a wide range of functions, whose damage can lead
to chronic liver disease (CLD). CLD accounts for more than two million deaths
worldwide, becoming a social and economic burden for most countries. Among the
different factors that can cause CLD, alcohol abuse, viruses, drug treatments, and
unhealthy dietary patterns top the list. These conditions prompt to perpetuate an
inflammatory environment and oxidative stress imbalance that favor the development
of hepatic fibrogenesis. High stages of fibrosis can eventually lead to cirrhosis or
hepatocellular carcinoma (HCC). Despite the advances achieved in this field, new
approaches are needed for the prevention, diagnosis, treatment and prognosis of CLD.
In this context, the scientific community is using machine learning (ML) algorithms to
integrate and process vast amounts of data with unprecedented performance. ML
techniques allow the integration of anthropometric, genetic, clinical, biochemical,
dietary, lifestyle and omics data, giving new insights to tackle CLD and bringing
personalized medicine a step closer. This review summarises the investigations where
ML techniques have been applied to study new approaches that could be used in
inflammatory-related, hepatitis viruses-induced, and coronavirus disease 2019-induced

liver damage and enlighten the factors involved in CLD development.
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Core Tip: Chronic liver disease has become a global burden and new approaches need
to be explored to tackle this disease. In this context, machine learning (ML) techniques

bring a whole new set of opportunities to study novel approaches and biomarkers for

2/21




prevention, diagnosis, treatment, and prognosis of inflammatory and virus-related liver
diseases. The application of ML algorithms constitutes a pivotal piece of personalized
medicine, allowing the integration of different phenotypical and genotypical data for a
precision outcome concerning inflammatory liver comorbidities in non-communicable

and viral diseases.

INTRODUCTION

Liver is a key organ involved in relevant homeostatic metabolic and detoxifying human
functionsl'l. Thus, the liver is the epicentre of an organ-organ network weaving a series
of complex interactions in the organism, which makes liver damage an underlying
adverse condition in a whole set of diseases. Chronic liver disease (CLD) can be caused
mainly by alcoholic liver-related dysfunctions, hepatitis B virus (HBV), hepatitis C virus
(HCV), drug treatments, or non-alcoholic fatty liver disease (NAFLD), as recently
updated to the term metabolic-associated FLD or NAFLD (Figure 1)23l. Patients with
liver-related diseases need frequent follow-ups and careful monitoring, since CLD can
eventually lead to cirrhosis or hepatocellular carcinoma (HCC) if not diagnosed on time
for treatment or surgery. These CLD-related conditions have become a global burden,
whose mortality associated rates have increased over the years reaching more than 2
million deaths worldwidel4l.

CLD is usually accompanied by an unhealthy inflammatory environment!5.. The
immune response is a fundamental process to n&intain homeostasis within the
organism defence machinery and is characterized by the secretion of pro-inflammatory
cytokines, like interleukin (IL)-1, tumor necrosis factor-a (TNF-a), and prostaglandin
E2, in an acute manner in order to resolve a sudden damagel®. However, if sustained
over time, these abnormal levels of inflammatory cytokines cause low-grade
inflammation (LGI). LGI is a silent condition that predisposes to the development of
metabolic and infectious diseases that has become a worldwide health issuel®l. Patients
with CLD, such as non-alcoholic steatohepatitis (NASH), present impaired immune

function, dysbiosis, insulin resistance (IR), and LGI, all of which can aggravate
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infectious diseases’ progression and perpetuate excess of adipose tissue, over
stimulating the production of adipose-derived inflammatory molecules 5791,

The liver also secretes important hepatokines that act as signaling proteins
modulating functions in other organs and being involved in a wide range of conditions,
such as IR and adipogenesis!!l. For instance, fibroblast growth factor-21 (FGF-21) is a
mediator participating in glucose metabolism mainly secreted by the liver that
modulates adipogenesis, while fetuins, liver-derived plasma proteins, are participating
in metabolic impairment and inflammationl’l. A dysregulation in systemic cytokines
prompts fat accumulation in hepatocytes, which in turn promotes local secretion of pro-
inflammatory hepatokines, leading to liver steatosis and IR. In addition, immune cells
also find difficulty in this inflammatory environment to exert its role appropriately.
Persistent inflammatory signals over time also abnormally activate immune cells,
impairing the body’s ability to fight infection, repair tissue damageaor recover from
possible poisoning. Inflammation comes hand in hand with increase oxidative stress, a
state characterized by an imbalance in favoring the accumulation of higher reactive
oxygen (ROS) and nitrogen species. These molecules in unusual concentrations damage
the cell and environmental milieu by promoting the expression of pro-inflammatory
genes, resulting in a vicious cycle. Thus, CLD presents an oxidative atmosphere,
probably linked to the pro-inflammatory statel'®l, This environment is the perfect
setting for the fibrogenic process to unfold, an underlying condition of CLD that is
characterized by progressive accumulation of fibrillar extracellular matrix in the
liver[12l. The stage of hepatic fibrosis has been associated with the risk of mortality and
liver-related morbidity in patients with NAFLD["3, virus-induced hepatitis/'*'l and
alcoholic-derived liver diseasel'®l, eventually leading to HCC.

In this context, infection by human hepatitis viruses (HHVs) are the most common
cause of hepatitis, leading to the activation of the immune system and the subsequent
inflammatory responsell’l. HBV and HCV acute infections can be now often resolved
with antiviral and immune therapy, however, in a significant percentage they can

progress to chronic hepatitis. This persistent infection can lead to comorbidities outside

4/21




the liver, like arthritis, vasculitis, myalgia, and peripheral neuropathies(!8. Moreover,
besides I—ng, another new infectious disease appeared in late 2019 that can cause liver
damage: Coronavirus disease 2019 (COVID-19). COVID-19 is caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and it has become a global
health issue since its outbreak in 2020 was declared a pandemic. Beyond lung function,
COVID-19 can affect a wide variety of tissues, like gastrointestinal track, kidneys, and
liver, with an underlying adverse inflammatory environment!’l. This inflammatory-
related condition has been strongly associated to metabolic status, worsening diseases
like obesity, diabetes, and hypertension”20-22. For instance, COVID-19 can increase
hepatic lipid accumulation by mitochondrial and endoplasmic reticulum (ER)
dysfunction, or worsen NAFLD if it was already present. A recent systematic review
depicted that the parameters normally used for liver impairment screening were
significantly increased in COVID-19 patients!®], placing CLD as a risk factor for
progressive and severe COVID-1912425],

CLD is a global health problem and new methods are needed to tackle this life-
threatening condition. In this line, this review aims to explore machine learning (ML)-
based approaches to manage CLD and develop biomarkers for diagnosis and prognosis.
Its goal is to shed light on the factors involved in CLD to help health professionals in
clinical management with the support of ML and identify new targets that can define
therapeutic care lines in viral infections and non-communicable diseases (NCD), with

an impact on liver functions with an inflammatory component. This includes the new

disease COVID-19.

MECHANISMS BY WHICH NCD AND INFLAMMATORY/IR PHENOMENA CAN
AFFECT LIVER FUNCTION

The incidence of NCD, such as cardiovascular diseases and diabetes, has skyrocketed in
the last decades, pressing authorities to establish developmental goals to achieve in the
near future in terms of decreasing NCD-caused mortality[?¢l. Some of the risk factors

that contribute to the development of NCD are excess of adipose tissue and high levels
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of glycaemia. In this context, adipose tissue plays a key role in the development of FLD
by secreting adipokines and other molecules, like free fatty acids (FFA)I8l.

An energy excess prompts fat accumulation in the organism and the subsequent
dysregulation of this tissue. This is of relevance since an inflamed adipose tissue results
in increased levels of FFA and pro-inflammatory cytokines, IR, and infiltration of
macrophages in the liver by the activation of Th1 and Th17 cells(®l. FFA enter the liver
through the portal vein and trigger a series of reactions. For instance, they serve as
ligands to toll-like receptor-4 complex, stimulating the production of TNF-a through the
activation of nuclear factor-kappa B, favoring an inflammatory environment. Moreover,
the excess of fat drives the polarization state of this increased number of macrophages
from anti-inflammatory M2 to pro-inflammatory M1 macrophages and prompts fat
accumulation in the liver and IRISl. This adipose-derived macrophages also secrete
inflammatory molecules, like TNF-a and IL-6, and adipokines, such as visfatin [also
named nicotinamide phosphoribosyl transferase (NAMPT)]. NAMPT has gained
relevance as a pivotal molecule linking adipose tissue and FLD. NAMPT is a pleiotropic
molecule that can be found in an extracellular (eNAMPT) or an intracellular (iNAMP)
form. Studies indicate that eNAMPT has enzyme and cytokine-like activity, stimulating
the release of pro-inflammatory cytokines. Meanwhile, iNAMPT catalyses the rate-
limiting step in nicotinamide adenine dinucleotide (NAD+) formation. Because of this
NAD+ boosting property, levels of iNAMPT have been proposed as beneficial for the
homeostasis of the cell due to influencing the activity of NAD-dependent enzymes,
such as sirtuins (SIRT). Remarkably, SIRT1 plays a key role in the liver by modulating
the acetylation status of target molecules in lipid metabolism!?7],

Furthermore, IR is characterized by hyperglycaemia and the subsequent
hyperinsulinemia to counteract high glucose levels, being a risk factor for NCDs,
particularly type 2 diabetes, where it has been closely linked to oxidative stress(28l. A
normal insulin signaling pathway starts with the activation of insulin receptor so that it
can bind to phosphoinositide 3-kinase to ultimately activate protein kinase B (Akt).

Activated Akt drives glucose entry into the cell by promoting GLUT4 expression and
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glycogen synthesis(?’l. Oxidative stress impairs this signal transduction through a lot of
different mechanisms, like inhibiting the transcription factors insulin promoter factor 1
and peroxisome proliferator-activated receptor gamma, which mediate insulin and
GLUT4 expressions, respectively. Moreover, under hyperglycaemic conditions, fetuin
A hepatokine inhibits the insulin receptor and promotes inflammation, while FGF-21
inhibits lipid accumulation and increases insulin sensitivity. Dysregulation of this
hormones, together with oxidative stress imbalance, lead to impaired insulin
signaling[30l.

The metabolic conditions underlying the development of NCD are complex and they
often reinforce each other, perpetuating an inflammatory environment and oxidative
stress imbalance. As the orchestrating organ, these processes converge in the liver,
affecting metabolic functions and setting the bases for the onset of fibrogenic process

characteristic of CLD.

MECHANISMS BY WHICH VIRAL INFECTIONS AND INFLAMMATORY/IR
PHENOMENA CAN AFFECT LIVER FUNCTION

Persistent virus-associated liver damage can progress to CLD, which pressures health
systems with a big social and economic burden. Although lots of resources have been
invested to study the molecular mechanisms that mediate this process, results are
diverse and still being under investigation by the scientific community. HHVs directly
infect hepatocytes and the internalization into the cell is believed to happen by
endocytosis, requiring the interaction with several host cell factors!'”l. However, viral
entry of HBV and HCV within hepatocytes is unclear and further research is needed to
elucidate this question. It has recently been identified sodium taurocholate co-
transporting polypeptide as an HBV receptor that would mediate HBV cell entryl®'l. In
the case of HCV, specific intercellular adhesion molecules appear key to cell adhesion
and subsequent internalization!®2,

Regarding HBV and HCV replication, it has been found that liver X receptor-a (LXR-

a) plays a key role. LXR-a is a transcription factor whose activation triggers the
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expression of different genes that directly or indirectly modulate these viruses’
replication, as well as the lipid and inflammatory alterations associated to CLD[33l. This
inflammation is also mediated by the nucleotide-binding oligomerization domain-like
receptor protein 3, which is activated by the abnormal production of R ter a viral
infection occurs in the liver. This ROS increase is associated to a decreased expression of
nuclear factor-e2-related factor-2, a transcription factor that regulates ROS/recepteur
d’origine nantais balance by maintaining redox homeostasis. These alterations
compromise the normal state of the cell, laying the foundations on which the fibrotic
process of CLD begins!!1l,

In the case of COVID-19, the mechanisms by which liver damage can occur are more
unclear, but it is widely accepted that inflammation plays a huge role. This infection can
trigger an exaggerated immune response leading to an uncontrolled cytokine release,
also known as “cytokine storm”. It is characterized by abnormal levels of IL-6, IL-1, C-C
motif chemokine ligand (CCL)-5, chemokine (C-X-C motif) ligand (CXCL)-8, CX&-L
and TNF-a among others[!?]. This inflammatory cascade affects bile duct function, since
cytokines like TNF-a, IL-1 and IL-6, can induce hepatocellular cholestasis by down-
regulating hepatobiliary uptake and excretory systems/34!.

Furthermore, the presence of this inflammatory environment can upregulate e
expression of angiotensin converting enzyme 2 (ACE2) receptor in different tissues, like
the adipose tissue and the liverl3>-39l. This is of relevance since ACE2 receptors are the
main cell entrance of the SARS-CoV-2 virus and they are present in different tissues.
Particularly in the liver, the cholangiocytes (characteristic cells of bile duct)4], as well as
liver wvascular endothelial cellsl®!l, express ACE2 receptors. Hepatocytes and
cholangiocytes are permissive to SARS-CoV-2 virus, mediating subsequent entrance
into the liverl42l Several studies have found that ACE2 expression in hepatocytes is
increased under hypoxial®l, a frequenbcondition in COVID patients, and fibrotic
conditions#4l. Besides ACE2 receptors, transmembrane serine protease 2 (TMPRSS2)
and paired basic amino acid cleaving enzyme (FURIN) have been noted as significant

for infection in the liver[#>4¢l, In this context, ACE2 expression is increased in patients in
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HCV-related cirrhosisl*l, whereas TMPRSS2 and FURIN expressions are upregulated in
patients with obesity and NAFLDU7l. Moreover, infection by SARS-CoV-2 increases
glucose-regulated protein 78 and 94, two biomarkers of ER stressl#4l, and impairs
mitochondrial function(5l. This process is of interest since this state has been associated
to de novo lipogenesis in hepatocytes!5!l, which could eventually lead to steatosis in these
patients.

The use of therapeutic drugs can be another underlying cause of liver damagel3l.
Because of detoxifying functions, the liver is subject to drug-induced damage coming
from a wide range of approved drugs. Oncology drugs account for most of
hepatotoxicity reported cases, followed by those used for infectious diseases!?l. Since the
beginning of the COVID-19 pandemic, a wide range of different treatments (antivirals,
antibiotics, antimalaria, or corticosteroids) have been used in the absence of an efficient
drug to treat severe infections. This pharmacological administration could explain that
drug-induced liver injury appears in nearly 25% of COVID-19 patientslZ], a

consequence to consider when addressing liver damage in this disease.

ML APPROACHES IN INFLAMMATORY AND LIVER-RELATED
COMORBIDITIES IN NON-COMMUNICABLE AND VIRAL DISEASES

Despite all the advances in the mechanisms driving the onset of these diseases, new
techniques to detect innovative biomarkers for diagnosis, and prognosis, as well as to
discover novel drugs are needed, like for example artificial intelligence (AI). Al seeks to
mimic human behavior, and within this science, ML is the most common approach/52,
The advances in computational science in the last decades have permitted the
development of powerful algorithms based on this science. ML algorithms are
particularly relevant for biological research, because they allow the processing and
integration of the huge amount of data that the latest advances in this field have
brought by applying statistical methods to enable machines to improve with
experiences. This methodological approach can be categorized into two big groups:

Supervised and unsupervised learning. In supervised algorithms, data is tagged in
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order to train the algorithm and fit it appropriately, whereas if it is unsupervised, the
algorithm learns patterns from unlabeled datal53l. ML algorithms are generalléassessed
by simple methodologies like sensitivity, specificity, and accuracy. While sensitivity
evaluates the proportion of true positives correctly identified, specificity evaluates the
proportion of true negatives. Meanwhile, the accuracy value indicates the number of
times the model is correct!l.

Supervised algorithms can be divided into two categories depending on the purpose:
Prediction, in which the algorithm is fed and trained predictive models to data, or
classification, that consists in clustering data within explanatory groupsl>%l. Predictive
algorithms are based on regression models and the most used are linear and logistic
regression (LR), support vector machine (SVM), support vector regression (SVR), extra
tree regression (ETR), artificial neural networks (ANN), and decision trees (DT).
Regression models analyse the influence of one or multiple variables on a nominal or
ordinal categorical outcome. ANN are more complex mathematical models (deep
learning algorithms), that mimic the brain neural network, like the convolutional neural
network (CNN), in which an input is fed through a hidden layer of lots of different well
connected and structured nodes to produce a final output. In deep neuronal network
(DNN) models, a great number of hidden successive layers use the output from the
previous layer as input in a more complex algorithm. DT can also classify data, like
random forest (RF) or gradient boosting (GB) models. Instead of minimizing error, these
models determine thresholds derived from input data, assigning weight values to
variables. Other models of classification are the Ada-Boost, Bayesian network (BN),
Naive Bayes (NB), K-Nearest Neighbours (KNN), and Linear Discriminant Analysis
(LDA) that group data into clusters/®>%l. All these models can shed light into biological
questions and are normally used indistinctively to obtain the best performance with the
same dataset. For instance, Mijwil and Aggarwall®] analysed and compared 7 ML
algorithms to predict appendix illness in the same dataset, revealing that certain models

performed better than others, allowing for higher accuracy and results.
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In FLD, the common techniques used in diagnostics are based on techniques like
ultrasonography and magnetic resonance imagining (MRI). These methods are
subjective, and the informed outcome mainly relies on the interpretation of the
professional carrying out the procedure. Several investigations have studied the
implementation of ML in order to classify FLD and other liver diseases by using images
from ultrasounds, computed tomography (CT), and MRI®5%. However, the downside
of this approach is that the quality of the images differs from one another because of
several factors, such as equipment precision and interpersonal differences, for instance.
Therefore, there is a need for ML approaches to help in image segmentation and some
authors have already implemented this technique to improve clinical practicel6061l.
Moreover, ML can help with the integration of more complex information beyond
imaging to study and diagnose liver diseases, since patients with CLD in the
developmental phase require frequent follow-ups to check the progress of the disease
and early detect changes in the diagnosisi®l. For example, patients with HHV-induced
CLD are normally on antivirals, however there is no consensus or guidelines about
when to stop antiviral therapy or even if quitting these drugs will increase HCC risk.
Therefore, new approaches need to be established to classify and prevent the
development of more severe illnesses, like cirrhosis or cancer. In this line, ML
approaches can be used to measure liver fibrosis, optimize diagnosis, and predict
disease progression of CLDI®2]. Table 1 summarizes selected studies that have used ML
for these purposes, which have been collected for this review, and Table 2 summarizes
the most repeated inputs from all compiled ML models along with the most repeated

predictive results for the main four inflammation-related liver conditions.

ML in inflammation-related liver disease

In the last years, promising results have been found when applying ML approaches in
CLD. Regarding prevention, Fialoke et all®3 screened 108139 patients to identify those
diagnosed with benign steatosis and NASH, a type of NAFLD, train ML classifiers for
NASH and healthy (non-NASH) populations and predict NASH disease status on
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patients diagnosed with NAFLD according to aspartate transaminase (AST), alanine
transaminase (ALT), and platelet levels. In this line, another study detected body mass
index (BMI), triglycerides (TG), gamma-glutamyl transpeptidase (GGT), ALT, and uric
acid as the top 5 features contributing to NAFLD, being the BN the model that
performed bestl®]. Accordingly, Yip et all®5] selected TG, ALT, white blood cell count,
HDL-c, hemoglobin Alc (HbAlc), and the presence of hypertension, as the six variables
to build ML models, of which Ada-Boost outperformed the others individually and
described the NAFLD status in 922 subjects. More recently, Pei et all%®l designed a ML
model which integrated medical records as a clinical variable to classify FLD.
Concretely, they selected the variables of age, height, BMI, hemoglobin, AST, glucose,
uric acid, low-density lipoprotein protein, alpha-fetoprotein, TG, HLD protein, and
carcinoembryonic antigen. They tested six different ML models in 3419 participants, of
which 845 were diagnosed with FLD: LR, RF, ANN, KNN, extreme gradient boosting
(XGBoost) (a type of GB model), and LDA. Results from these authors showed that the
XGBoost model had the highest performance, followed by LR and ANN, to predict the
risk of FLD. BMI, uric acid, and TG levels were the top three variables associated to FLD
risk across the six analysed models.

When it comes to diagnosis and treatment, several ML models have been tested for
different purposes obtaining good specificity, sensitivity, and accuracy valuesl®?. For
example, to determine the stage of liver fibrosis, some authors have used CT images
processed by segmentation algorithms. Choi et all®’l used CNN upon CT images,
whereas Chen et all®8] employed RF, KNN, SVM and the NB classifiers with real-time
tissue elastography imaging, age, and sex as feeding variables. In both cases ML
approach outperformed the classical methods. Regarding treatment, different ML
models have been used to define the best therapy for liver diseases such as carcinomas
and virus-induced hepatitis. Jeong et all®) used DNN to classify intrahepatic
cholangiocarcinoma susceptible to adjuvant therapy following resection according to
laboratory and clinicopathological markers and found it more accurate than the

commonly used staging system. Wiibbolding et all”l studied the prediction of early
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virological relapse analyzing soluble immune markers using supervised ML approaches
like KNN, RF and LR. This study showed that IL-2, monokine induced by interferon
y/CCL9, RANTES/CCL5, stem cell factor, and TNF-related apoptosis-inducing ligand
in combination were more reliable in predicting virological relapse than viral antigens.
In the same way, researchers have used ML classifiers to explore new methods able to
better predict prognosis of liver diseases”'74. The weighted variables are usually CT
images and/or biochemical parameters that involved invasive and costly methods.
However, researchers have recently proposed volatile organic compounds as new
biomarkers for progression and prognosis of liver disease. These researchers monitored
isoprene, limonene, and dimethyl sulphide concentrations from a breath sample in liver
patients compared to healthy subjects. They used regression ML models (LR, ETR, SVR,
and RF) to demonstrate that these approaches together with breath profile data can
predict clinical scores of liver diseasel”l. These findings are promising and open the
way for new safe and non-invasive approaches to study liver function and for diagnosis
purposes.

ML methods have been also employed when studying the comorbidities of liver-
related diseases, like obesity, diabetes, and cardiovascular diseases!532%76l. For example,
ML algorithms have been built to study the risk factors associated to overweight and
obesity development, showing that BMI, age, dietary pattern, blood test results,
socioeconomic status, and sedentarism were key factors when studying excess of
adipose tissuel’7l. In this line, further research has revealed by ML techniques that the
minutes devoted to physical activity in one week!?, as well as specific species of gut
microbiotal”™], are also crucial for obesity prediction. ML algorithms have also
elucidated the risk factors of childhood obesity, of which parental BMI and the
upbringing environment play a huge rolel80-82l, Furthermore, researchers have observed
by training a multivariate LR model with a dataset of 3634 children and adolescents
vitamins” intake, that vitamins A, D, Bl, B2, and B12 were associated in a negative
manner with obesity in this cohort[®3. These results are of interest, since new insights

are needed to discover novel targets to tackle comorbidities that affect liver function.
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ML in hepatitis virus-induced liver damage

HBV and HCV infections can dangerously become chronic if not treated early and with
the right treatment!®l. While scientists are still relentlessly working on an effective
vaccine against HCV, a good and efficient diagnosis is key to prevent chronic HCV
infection (CHC), and ML algorithms have been elucidated for this purpose. Thus, Butt
et all®5l designed an ANN model and trained it with a dataset of 19 variables, among
which age, gender, BMI, transaminase, and platelet (PLT) count levels were included.
The algorithm was able to better identify the stage of hepatitis C compared to other
XGBoost, RF, and SVM models tested by other researchers with a higher precision rate
and a decreased missing rate.

ML algorithms have been also applied and compared to traditional methods used to
follow HHV-induced advanced liver diseasel8-8] For instance, Wei et all?7] used a GB
model trained with the same variables that the formula fibrosis-4 (FIB-4) uses, which are
age, AST, ALT and PLT levels in a cohort of 490 HVB patients, and two cohorts of HCV
patients (n = 240 each). The GB model outperformed FIB-4 score in classifying hepatic
fibrosis and the existence of cirrhosis. Barakat et all®! designed a RF model that also
outperformed FIB-4 score, as well as the AST/platelet ratio index (APRI), for prediction
and staging of fibrosis in children with hepatitis C. In this line, data of 72683 veterans
with CHC were used to predict the progression of the disease. GB models were used
and compared with cross-sectional or linear models fed with variables like
transaminases levels, alkaline phosphatase (ALP), PLT, AST, APRI, albumin, bilirubin,
glucose, white blood cells, and BMI were included in the dataset. Results showed that
APRI, PLT, AST, albumin, and AST/ALT ratio were the best predictors for featuring
CHC progressionls8l.

Regarding therapy, CHC can be effectively treated with direct-acting antiviral (DAA)
therapy, a novel treatment that targets viral non-structural proteins. Although it has
null side effects compared to standard treatment, it has some downsides: Treatment

failure in a low percentage of the cases, a very high cost, and no treatment duration
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established®l. New methods to define this therapy duration are needed to optimize
adherence and success. Precisely, Feldman et all%l studied the prediction of DAA
treatment duration in hepatitis C patients using XGBoost, RF, and SVM models. They
used the dataset of 240 patients with prolonged first course of DAA against another one
of 3478 patients on standard duration. Age, gender, comorbidities, and previous
hepatitis C treatment record were considered. The predictive model constructed with
XGBoost obtained the best performance in predicting prolonged DAA treatment, in
which the presence of cirrhosis, type 2 diabetes, age, HCC and previous standard
treatment were the most determining variables. Meanwhile, Kamboj et all%2l used ML
approaches in the search of repurposed drugs that could target non-structural proteins,
developing regression-based algorithms able to identify inhibitors of these proteins, and
proposing new drugs to test in CHC.

A huge milestone when treating chronic HBV infection (CHB) is seroclearance of
HBV surface antigen (HBsAg)[84l. It has been demonstrated that seroclearance of HBsAg
is associated to a better prognosis in CHB. Some authors used ML models to predict
HBsAg seroclearance in a cohort of 2235 patients, of which 106 achieved it. They used
XGBoost, RF, and LR, among other models, and tested a total of 30 categorical and
continuous variables, including gender, drinking history, initial diagnosis and
treatment, age, BMI, and serum and radiological indicators. Results revealed that
XGBoost model showed the best predictive performance, indicating that HBsAg levels
were the best predictor for HBsAg seroclearance, followed by age and the level HBV's
DNA3I.

Interestingly, ML has also contributed to personalized medicine in this field. HHVs
evolve and adapt to different cellular environments in order to scape immune responses
and drugs to survive. These adaptations rely on high mutagenetic activity, especially
within the target genes of antivirals. Regarding HBV, Chen et all®l used ML to identify
patients with HCC or CHB based solely on genetic differences and found that the RF
model impressively discriminated both cases based on the rt gene sequence of HBV.

Moreover, Mueller-Breckenridge ef all®®l ultra-deep sequenced 400 HBV samples and
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used a RF model to classify the status of a particular HBsAg according to the novel viral
variants encountered. Results showed 5 genotypes that could benefit personalized
healthcare. In the case of HCV, Kayvanjoo ef all%l built several ML algorithms and
trained them with two datasets of responders vs non-responders of antiviral therapy in
HCV-infection caused by two different strains. These investigations reported novel
genetic markers that could predict therapy response with high accuracy. These results
are very promising since they contribute to bringing personalized medicine to the

public system.

ML in COVID-19-induced liver damage

A recent systematic review depicted that the parameters normally used for liver
impairment screening were significantly increased in COVID-19 patientsl23].
Particularly, several studies show that levels of AST or/and ALT can increase in these
patients up to 20%, bilirubin up to 14%, ALP up to 6%, and GGT levels up to 21%.
Prothrombin is a protein synthesized in the liver that results in thrombin, a protein with
a critical role in coagulation function. Prolonged prothrombin is a symptom of
decreased production of coagulation factors, characteristic of liver disease. For this
reason, the prolonged prothrombin time (PT) is another parameter usually checked
when screening for liver injury, and it has been described that COVID-19 patients
present nearly a 10% increase in PT[?l. Besides biochemical alterations, COVID-19
illness can lead to hypoxemia, impaired cardiac function, and secondary damage due to
multiple organ dysfunction, what can result in liver injury in patients with or without a
prior liver disease. Therefore, new insights in the relationship between this recent
infectious illness and liver disease are expected.

The use of ML approaches has been encouraged by the National COVID Cohort
Collaborative Consortium in order to early detect, predict and follow up severe COVID-
19 cases since the pandemic started®7]. For instance, some researchers used the XGBoost
approach and found that age, CT scan result, body temperature, lymphocyte levels,

fever, and coughing, can classify influenza patients from COVID-19 patients!®l.
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Bhargava et all®l tried different ML approaches to detect novel COVID-19 and
discriminate between pneumonia using CT and X-ray scans as inputs. These authors
pre-processed by normalization the images and then segmented them by fuzzy c-means
clustering. Results showed that SVM model was the one that better classified patients in
COVID-19 positive, pneumonia, and healthy groups, obtaining a very high accuracy. In
this same line, obesity and liver disease were identified as risk factors for higher clinical
severity in a cohort of 174568 adults with severe acute respiratory syndrome associated
with SARS-CoV-2 infection by a multivariable LR model””l. Interestingly, a German
study of 8679 patients used a LR model and come to again identify liver disease and
BMI as determinant risk factors for 180-d all-cause mortality in hospitalized COVID-19
patients/'%l. A case-control study with COVID-19 patients compared to patients with
community-acquired pneumonia showed how, by applying a GB model, the category of
liver function appeared as one of the top systematic predictors for COVID-19 risk
factors, being albumin, total bilirubin, and ALT among the most important input
variables[10ll. Furthermore, a study with 710 enrolled patients diagnosed with COVID-
19 identified AST levels as the top predictor for COVID-19 related hospitalization based
on a RF algorithm, followed by age and diabetes mellitus(!®l. A stepwise linear
regression model identified IL-6 and granzyme B as potential predictors of liver
dysfunction, characterized by an elevation in the levels of ALT and/or AST['®l Other
authors designed a model for detecting liver damage testing different ML approaches
with laboratory parameters as the input variables. SVM was the model with best
accuracy, and AST and ALT levels the variables with best predictive scoresl'®l. In this
context, the newest version of the CURIAL model was developed to identify COVID-19
patients by using vital signs, blood gas, and laboratory blood tests. It showed greater
sensitivity, making this model a potential emergency workflowl105106] All these ML-
based methods would dramatically improve time of diagnosis, free hospitals’
laboratories and rooms of potential positive subjects, and reduce costs if implemented

in the public health system.
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AT has also been employed to discover new drugs potentially efficient to tackle SARS-
CoV-2 infection!107]. Baricitinib is a drug initially approved for rheumatoid arthritis that
was selected by ML as a potential drug to treat COVID-19. Researchers proved the anti-
inflammatory and antiviral properties of this drug in human liver spheroids infected
with live SARS-CoV-2 for, among others, check any potential drug-induced liver
injury'”l. Due to the good results, researchers moved on to a clinical trial where they
tested baricitinib in a few COVID-19 patients. Levels of liver enzymes were not altered,
except for a transient increase in liver aminotransferases in all patients that remitted in
the following 72 h without interrupting treatment. Authors state that this might be
reflective of disease severity rather than a drug-induced injury, showing overall well
tolerance and results in this pilot study'®l. In summary, ML approaches support liver

biochemistry as a prognostic tool in COVID-19 disease.

PERSONALISED MEDICINE IN LIVER-RELATED DISEASES SUPPORTED BY ML

In the early 21st century, the Human Genome Project started the genomic era in which
new disciplines like precision medicine appeared. Precision medicine aims to deliver
targeted treatments based on a group of individual factors that greatly influence the
onset and progression of a disease, like omics sciences. This approach covers a great
number of patients, overcoming potential drug adverse effects and ensuring
effectiveness of the treatment. In this context, computational advances have greatly
contributed to the escalation of this science by lowering the costs of omics analysis and
allowing the processing and integration of enormous amount of data based on ML
algorithms (Figure 2).

ML have permitted the development of diagnostics and therapeutics based on the
integration of omics data (genomics, epigenomic, transcriptomics, proteomics,
metabolomics, and metagenomics) with clinical data. The ultimate goal is to bridge
these omics data with the phenotype to bring molecular accuracy to the diagnosis,
treatment, prognosis, and recurrence process of a pathological condition. This

methodology has been used in a wide range of diseases in the search of more efficient
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and effective approaches, like heart and liver diseases['%!10. For example, ML
algorithms fed with omics data have been able to predict mortality in patients with
alcoholic hepatitis. In this study, routine clinical variables of 210 patients with this
disease were used to build 6 different datasets to assess mortality at 30 and 90 d. Five
different ML models were tested, obtaining the best performance in predicting 30-d
mortality with a GB model using bacteria, MetaCyc pathways and clinical data, as well
as LR using viral and clinical datal11l

In hepatitis B, it has been found that ML algorithms can be very useful in assessing
HBV associated-HCC progression. Ye et all'12l analyzed 67 HBV-positive HCC samples
without or with intrahepatic metastases and discovered key genes for metastatic
progression and survival training ML models. The majority of them were inflammatory
or related with inflammation process, like IL-2 receptor and osteopontin, which encodes
an extracellular cytokine ligand whose overexpression favors metastasis. These authors
were able for the first time to draw a molecular signature useful to classify metastatic
HBV-HCC patients, opening the way for early detection and new treatments to increase
patient survival. In hepatitis C, the CC and CT genotypes of rs12979860 polymorphism
in the IL28B gene have been associated to liver fibrosis progression, being able to
predict antiviral treatment effectiveness!''*l. Moreover, ML algorithms have allowed to
diagnose advanced liver fibrosis according to rs12979860 genotype with higher
performance compared to APRI and FIB-4 scores[!'4. In this study, patients were
divided in two groups according to HCV-related liver fibrosis stage: None to moderate
fibrosis (n = 204) or with advanced fibrosis (1 = 223). ML algorithms revealed IL28B
genotype as first predictor, while the second one depended on the mentioned genotype.
For instance, in CT patients, PLT, albumin, and age were the determining variables,
while for TT patients, white blood cell count was the decisive feature to assess
advanced fibrosis probability.

ML approaches have also helped to categorize obesity in different subtypes based on
metabolic statusl!>17]. For example, Masi ef alll13l studied a cohort of 2567 subjects

suffering from obesity and made clusters of metabolically healthy, or metabolically
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unhealthy patients based on clinical and biochemicals variables using two ML models.
The first model showed that IR, body fat, HbAlc, red blood cells, age, ALT, uric acid,
white blood cells, insulin growth factor-1, and yGT were the top predictors of a
metabolically healthy obesity, revealing the importance of liver function. Other authors
have also used ML models to classify 882 obese patients in subtypes of obesity
according to glucose, insulin, and uric acid levels!'®l, Results showed four stable
metabolic clusters in this cohort, which were characterized by a healthy metabolic
status, or by hyperuricemia, hyperinsulinemia, and hyperglycemia, respectively.
Furthermore, Lee ef alll'7] explored three-way interactions between genome, epigenome,
and dietary/lifestyle factors using GB and RF models in a subset (1 = 394) of the exam 8
of the Framingham Offspring Study cohort. Interestingly, GB obtained the best
performance, revealing 21 single nucleotide polymorphisms, 230 methylation sites in
relevant genes (like CPT1A, ABCGI, and SREBFI1), and 26 dietary factors as top
predictors for obesity. Intake of processed meat, artificially sweetened beverages,
French fries, and alcohol intake, among other dietary factors, was highly associated
with overweight/obesity.

Personalized and precision medicine aims to harmonize the greatest number of
factors so that diagnosis, prognosis, and treatment are based on the greatest number of
decision elements. Much remains to be investigated to establish guidelines in the
context of personalized medicine. However, it is safe to say that precision medicine will
drive modern medicine, combining the most classic variables with the newest digital
ones. Health professionals must be prepared to understand and implement these new

technologies in the near future.

CONCLUSION

In summary, ML science can process and integrate a vast amount of different data with
unprecedented outstanding performance. The objective of this article was to collect the
information derived from ML techniques in liver damage induced by inflammatory

conditions, including the new disease COVID-19. The main role of ML in liver
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pathologies is to help identify high risk patients for referral to specialized centres.
Results show that the use of ML models have brought new insights into biology and
medicine questions that can be very useful in determining the next directions towards
research in diagnosis, prognosis, and treatment of inflammatory and virus-related liver
diseases, leading the way to personalized medicine. Also biomarkers concerning
inflammation/IR related to liver disease can be boosted by ML strategies. This review
clarifies and compiles the importance of the different factors involved in CLD and
analysed by ML algorithms, which can be useful information for clinicians, like
endocrinologists and gastroenterologists, and other healthcare professionals with a

focus on hepatology and bioinformatics.
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