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Abstract
Bone fragility has been recognized as a complication of diabetes, both type 1
diabetes (T1D) and type 2 diabetes (T2D), whereas the relationship between
prediabetes and fracture risk is less clear. Fractures can deeply impact a diabetic
patient’s quality of life. However, the mechanisms underlying bone fragility in
diabetes are complex and have not been fully elucidated. Patients with T1D
generally exhibit low bone mineral density (BMD), although the relatively small
reduction in BMD does not entirely explain the increase in fracture risk. On the
contrary, patients with T2D or prediabetes have normal or even higher BMD as
compared with healthy subjects. These observations suggest that factors other
than bone mass may influence fracture risk. Some of these factors have been
identified, including disease duration, poor glycemic control, presence of
diabetes complications, and certain antidiabetic drugs. Nevertheless, currently
available tools for the prediction of risk inadequately capture diabetic patients at
increased risk of fracture. Aim of this review is to provide a comprehensive
overview of bone health and the mechanisms responsible for increased
susceptibility to fracture across the spectrum of glycemic status, spanning from
insulin resistance to overt forms of diabetes. The management of bone fragility in
diabetic patient is also discussed.

Key words: Bone; Fractures; Type 1 diabetes; Type 2 diabetes; Prediabetes; Diabetes
complications; Bone density; Hypoglycemic agents
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Core tip: Diabetes mellitus, either type 1 or type 2, is associated with increased fracture
risk. Diabetic hyperglycemia and insulin resistance underlie functional alterations of
bone cells and bone marrow fat that affect several determinants of bone strength,
including bone matrix proteins and bone mass, geometry and microarchitecture.

WJD https://www.wjgnet.com August 15, 2019 Volume 10 Issue 8421

https://www.wjgnet.com
https://dx.doi.org/10.4239/wjd.v10.i8.421
http://orcid.org/0000-0002-3418-9150
http://orcid.org/0000-0001-7066-5292
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
mailto:conte.caterina@unisr.it


E-Editor: Xing YX Diabetes-related microvascular complications and certain antidiabetic drugs appear to
further increase fracture risk, both directly and indirectly. The prevention and
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INTRODUCTION
Diabetes  mellitus  (DM)  is  a  metabolic  disorder  characterized  by  chronic
hyperglycemia leading to serious microvascular and macrovascular complications. In
recent years, bone fragility has emerged as a further complication of DM, both Type 1
diabetes  (T1D)  and  type  2  diabetes  (T2D).  Aim  of  this  review  is  to  provide  a
comprehensive overview of  bone health  across  the  spectrum of  glycemic  status,
spanning from insulin resistance to overt forms of diabetes.

Insulin and bone
Insulin is an anabolic hormone central to the regulation of substrate metabolism in
key organs and tissues such as skeletal muscle, the liver and adipose tissue[1]. Both
osteoblasts and osteoclasts express the insulin receptor. Insulin stimulates osteoclast
formation and promotes proliferation, differentiation and survival of osteoblasts, with
an overall balance in favor of bone formation[2]. Studies on insulin receptor knockout
mice indicate that insulin signaling is necessary for normal bone acquisition[3,4], likely
due to the role of insulin in the regulation of bone energy metabolism. In fact, insulin
administration increases 18F-fluorodeoxyglucose ([18F]FDG) uptake by bone in mice,
which is  markedly reduced in mice lacking the insulin receptor  in  osteoblasts[5].
Furthermore, activation of the insulin receptor in the growth plate of mice fed with a
hypercaloric  diet  stimulates  skeletal  growth and growth plate  chondrogenesis[6].
Osteoblasts also express the Insulin-like growth factor 1 (IGF-1) receptor[7].  IGF-1
binds both to the IGF-1 receptor and,  with lower binding affinity,  to  the insulin
receptor, thus triggering the insulin signaling pathway and exerting osteoanabolic
actions.

DM
Depending on the pathogenic mechanism(s) causing chronic hyperglycemia, DM is
classified into few main general categories. T1D is distinguished by absolute insulin
deficiency due to destruction of pancreatic beta-cells on an autoimmune or idiopathic
base.  Latent  autoimmune  diabetes  in  adults  (LADA)  is  a  less  common  form  of
autoimmune diabetes that arises in the adult age and is characterized by circulating
islet autoantibodies and insulin independence at diagnosis. In T2D, insulin resistance
leading to compensatory increase of insulin secretion causes progressive worsening of
beta  cell  function  that  eventually  results  in  relative  insulin  deficiency  and
hyperglycemia. Other forms of DM include monogenic forms (e.g., maturity onset
diabetes of  the young, MODY),  gestational diabetes,  and secondary forms either
associated with conditions that affect insulin secretion (e.g., pancreatic diseases) or
certain  drugs  (e.g.,  glucocorticoids  and  immunosuppressants  after  organ
transplantation). This review will focus on the main diabetes categories, i.e. T1D and
T2D, as well as on those alterations of glucose metabolism collectively identified as
prediabetes[8].

Diabetes and prediabetes: clinical impact on bone

Fracture risk in T1D
Fracture  risk  is  increased  in  T1D,  with  a  2-  to  6-fold  higher  risk  of  fracture  as
compared with non-diabetic subjects, the risk being greatest in T1D women[9,10]. In a
recent analysis that assessed the determinants of fracture risk in T1D adult patients,
nearly half of the subjects reported at least one fracture after diabetes diagnosis[11].
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Older age, longer T1D duration, age < 20 years at diagnosis and family history of
osteoporosis or osteopenia were associated with fracture occurrence.

Fracture risk in T2D and prediabetes
Individuals with T2D have a 1.2- to 3-fold higher risk of fracture as compared with
non-diabetic subjects, particularly for hip fractures[9,12], but also for upper arm and
ankle fractures[13]. Fracture risk appears to be greater in those with a body mass index
(BMI) < 30 kg/m2  as compared with obese individuals[14],  and not to significantly
differ by gender[9,15]. Diabetes duration longer than 10 years, low levels of physical
activity,  use  of  insulin  and systemic  corticosteroids  and increasing age  are  also
associated with higher fracture risk in T2D[14]. Falls represent another risk factor for
fractures,  especially  in  diabetic  women[14,16,17].  The  association between diabetes,
especially T2D, and increased risk of falls is well recognized[18,19] and mainly attributed
to diabetes related complications such as therapy-induced hypoglycemic episodes,
impaired muscle strength due to sarcopenia, retinopathy-related impaired vision,
peripheral artery disease and neuropathy[20,21]. As in a vicious circle, fractures may
lead to imbalance, alterations in posture and decreased muscle strength, eventually
reducing physical performance and further increasing the risk of falls[22]. Predictive
factors of falls and their contribution to fracture risk in T1D patients have not been
clearly identified[23].

Despite a clear association between T2D and increased fracture risk[9,19,24], evidence
supporting an association between prediabetes  and fracture  risk  is  inconsistent.
Observations in adolescents suggest that insulin resistance may be detrimental for
bone development through puberty, independent of body composition and the level
of  physical  activity[25].  However,  no  association  between  insulin  resistance  and
fracture risk was evident after adjustment for BMI and bone mineral density (BMD) in
a large cohort of elderly subjects[26]. These findings are consistent with studies that
found no statistically significant difference in fracture risk between subjects with or
without  prediabetes[27,28],  but  are  in  contrast  with  those  reporting an association
between prediabetes, adjusted for BMI and/or BMD, and lower fracture risk[29].

Assessment of fracture risk in diabetes
Schwartz and colleagues analyzed data from nearly 17,000 older community-dwelling
men and women, and found that, for a given T-score and age or FRAX® score (the
most widely used fracture risk index), subjects with diabetes had a higher fracture
risk than those without diabetes[30]. Similarly, Giangregorio et al[31] found that FRAX
underestimates the risk of major osteoporotic and hip fractures in individuals with
diabetes. Recently, four options have been assessed to enhance the performance of
FRAX in patients with DM (using rheumatoid arthritis as a proxy for the effects of
DM, trabecular bone score [TBS]-adjustment, reducing the femoral neck T-score input
by 0.5 SD, increasing the age input by 10 years)[32]. Although each correction improved
the performance of the FRAX tool in predicting fracture risk, no single method was
optimal for all fracture outcomes and durations of diabetes.

DIABETIC BONE DISEASE-PATHOPHYSIOLOGY
Several factors might be responsible for the increased fracture risk in diabetic patients.
Diabetes-related changes affect bone strength, which in turn depends on different and
complex components, i.e. BMD, bone microarchitecture and its microenvironment and
material properties.

Bone cells
Cellular and molecular components cross-talk to maintain skeletal integrity in an
intricate balance that can be altered in DM. It is important to understand alterations in
these components, as they have also direct clinical consequences and may represent
targets for clinical interventions. Structural elements with a role in physiologic bone
formation include support cells  like osteoblasts and osteocytes,  remodeling cells
known as osteoclasts,  and non-cellular components like osteoid (hydroxyapatite,
collagen, non-collagen-structural proteins) and mineral salts deposited within the
matrix.  Mesenchymal  stem cells  (MSC),  i.e.,  the  osteoblast  precursors,  may also
differentiate into adipocytes. The fate of MSCs depends on a fine balance between the
WNT  signaling  pathway,  which  promotes  osteogenesis,  and  the  peroxisome
proliferator-activated receptor-γ (PPAR-γ) pathway, which promotes adipogenesis[33].
An imbalance between these pathways may result in one cell type predominating
over the other. Along with the bone-resorbing osteoclasts, osteoblasts are involved in
a fundamental process that lasts the whole human life, bone remodeling, wherein old
bone  is  substituted  with  new  bone  to  maintain  bone  strength  and  mineral
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homeostasis, and to repair microdamage[34].

Osteoblasts in T1D: Preclinical studies[25] documented alterations in transcription of
osteoblasts  promoting  genes,  in  particular  Runx2,  which  is  involved  in  MSC
differentiation into pre-OBs and in the regulation of bone matrix protein genes. Some
preclinical studies suggested that Runx2 is downregulated by hyperglycemia[35,36],
although other studies reported no modification[37,38]. The Wnt/beta catenin gene, which
is known to promote OB differentiation, is also downregulated[39]. In T1D, low levels
of  IGF-1,  which  promotes  differentiation  of  MSCs  into  OBs [40 ,41]  and  bone
mineralization[42], may also contribute to reduced bone formation. It is also known that
serum from T1D patients decreases collagen production in human OBs when used as
a culture medium[43]. Moreover, individuals with T1D have low levels of parathyroid
hormone (PTH)[44], which in normal conditions prevents OB apoptosis[45], improves
bone density and increases mineralization and enhances, synergistically with IGF-1,
osteoblast  differentiation  into  osteocytes[46].  An  increase  in  circulating  levels  of
proinflammatory cytokines such as TNF-a, IL1 and IL6 due to hyperglycemia[47,48],
may impair OB proliferation and differentiation in vitro[49-53], or even stimulate OB
apoptosis[54,55], while inhibiting bone healing in vivo[56]. Overall, the evidence suggests
that an impairment on OB function and survival may be responsible for reduced bone
formation in T1D.

Osteoblasts  in  T2D:  Few  studies  on  OBs  from  T2D  subjects  are  available.
Postmenopausal  women  with  T2D  were  reported  to  have  higher  levels  of  OB
precursor cells than BMI-matched non-diabetic controls. Obs were more immature
compared  with  controls,  and  Dickkopf-related  protein  1  (DKK-1),  a  regulator
produced by bone marrow stromal cells that inhibits OB maturation, was increased[57].
Thus, it appears that individuals with T2D have increased levels of immature Obs,
which may explain lower bone quality and higher BMD.

Osteocytes in T1D: In mouse models of T1D, a reduction in osteocyte density and
number, and an increase in apoptosis have been reported[58-60]. Sclerostin, an osteocyte-
derived protein that inhibits bone formation[61,62] and stimulates OB apoptosis[63], is
elevated in adults with long-standing T1D[64] prediabetes[65], or T2D[66]. Surprisingly,
however, a large Danish retrospective study of T1D patients found that T1D patients
with higher serum levels of sclerostin had a lower incidence of bone fractures[67].

Osteocytes in T2D and prediabetes: As mentioned, osteocyte-derived sclerostin is
elevated in adults with T2D and prediabetes[65,66]. In T2D, there is a direct correlation
between sclerostin levels,  disease duration and glycemic control,  and an inverse
correlation with bone turnover markers[66,68]. Anti- sclerostin antibodies increased bone
mass in diabetic rats[69].  This finding is of particular interest,  as an anti-sclerostin
monoclonal  antibody  (romosozumab)  is  now  available  for  the  treatment  of
osteoporosis in humans[70].

Osteoclasts in T1D: In physiological conditions, the OB-derived receptor activator of
nuclear factor kappa-Β ligand (RANKL), promotes the differentiation and activation
of  osteoclasts  through the  receptor  RANK on osteoclast  surface.  This  process  is
inhibited by osteoprotegerin (OPG), also produced by OBs, which binds to RANKL
thereby preventing its interaction with RANK. Patients with T1D and poor glycemic
control exhibit more active bone resorption. Consistently, the analysis of peripherally
detected osteoclasts in patients with T1D showed a lower sensitivity to inhibitory
factors  such as OPG[71].  An increased OPG  gene expression compared to healthy
controls has also been reported[72], possibly to compensate for the lower sensitivity to
OPG. Other in vitro studies, however, showed a reduction in RANKL and its cellular
actions in hyperglycemic environments[73]  ,  which could indicate a limited role of
RANKL and OPG in the pathogenesis of bone alterations in DM. Finally, a higher
concentration of markers of osteoclastic activity (cathepsin K, tartrate-resistant acid
phosphatase [TRAP], C terminal telopeptide) has been observed in insulinopenic
mice[74,75], although this increase was significant only in the case of severe or long-
lasting  diabetes.  This  variability  in  osteoclastic  activation  suggests  that  disease
severity  and  duration  may  influence  the  degree  of  diabetes-induced  bone
resorption[76,77] .

Osteoclasts  in  T2D:  High  glucose  levels  inhibit  osteoclast  differentiation  and
suppress matrix degradation by osteoclasts in animal models of T2D[78]. Accordingly,
circulating osteoclast precursors were found to be increased and more immature in
T2D postmenopausal women compared with BMI-matched healthy controls, possibly
due to lower RANKL levels[57]. It may be speculated that a lower level of maturation
compromises OC activity, leading to decreased bone resorption resulting in higher
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BMD in T2D.

BMD
BMD in T1D: Low BMD is reported in nearly all studies involving T1D patients of
any age compared to non-diabetic controls[79]. The reduction in BMD worsens with
longer disease duration[80],  poor glycemic control,  early age of onset of T1D, and
higher  insulin  dosage[81].  Furthermore,  T1D  adult  patients  with  microvascular
complications  have  lower  BMD  than  those  without  microvascular  disease[81-86],
suggesting  a  role  for  bone  vascularization  in  the  pathogenesis  of  diabetic  bone
disease. Children and adolescents withy T1D have smaller cross-sectional areas and
weaker bones despite an increase in bone formation markers, suggesting impaired
osteoblast activity during growth[87]. It is likely that an inadequate peak bone mass is
reached at  the end of  the skeletal  maturation due to low levels  of  IGF-1 and the
catabolic effects of uncontrolled hyperglycemia during critical growth period[88,89].
Consistently, patients with onset of diabetes before age 10 years reach a lower than
average  mean  near-adult  height,  adult  height  being  inversely  correlated  with
glycemic control[90].

Altered vitamin D and calcium metabolism due to hyperglycemia may further
contribute to reduced BMD in T1D[91]. Reduced BMD, however, might not be the only
factor  contributing  to  increased  fracture  risk.  Recent  observations  suggest  that,
opposite to what one would expect, BMD does not worsen over time in patients with
T1D as compared with nondiabetic individuals[92].

BMD in T2D and prediabetes:  Subjects with T2D generally have higher BMD as
compared with healthy controls, with significant differences of 0.04 (95%CI: 0.02, 0.05)
at the femoral neck, 0.06 (95%CI: 0.04, 0.08) at the hip and 0.06 (95%CI: 0.04, 0.07) at
the spine[93]. As insulin is known to exert anabolic effects on bone, high circulating
insulin levels may explain the observed increase in BMD in T2D[94]. Accordingly, some
studies indicate a positive association between circulating insulin levels and BMD,
independent of BMI[95-97]. However, in most studies the positive association between
insulin levels or indices of insulin resistance and BMD was lost after adjusting for
BMI[26,98-101], implying that the increase in BMD observed in insulin resistant states is
mediated by body mass. In fact, obesity has long been considered to be protective
towards osteoporosis and osteoporotic fractures, being associated with increased
mechanical load stimulating bone formation[102], androgens-to-estrogens conversion in
adipose  tissue,  lower  serum levels  of  sex  hormone binding globulin  (SHBG)[103],
increased circulating leptin[104] and insulin growth factor, and hyperinsulinemia[99].
Recent findings challenge this belief, suggesting that even though BMD increases with
body weight, this cannot compensate for obesity-associated greater impact forces
during falls. Data from a multiethnic cohort of nearly 2000 pre- or perimenopausal
women indicate that higher BMI is associated with higher BMD, but also with lower
composite strength indexes[105]. Conflicting data on the association between obesity
and fracture risk, with earlier studies demonstrating a protective effect[106-109] and more
recent studies indicating an increase in risk[110-114], suggest that BMI is not the only
relevant factor in this context, and that body composition and fat distribution may
also play a role[115]. Elevated waist circumference and waist-to-hip ratio have been
associated with an increased hip fracture risk in a large prospective cohort study[116].
In obese Chinese women, increased fat mass and percent body fat were positively
associated with BMD, whereas increased central fat was inversely associated with
BMD[117]. Accordingly, visceral adiposity has been associated with increased risk of
both vertebral and non-vertebral fractures[118,119]. Central adiposity reflects the amount
of visceral adipose tissue (VAT), which is more cellular, vascular, innervated and
characterized by the presence of more inflammatory and immune cells, lesser pre-
adipocyte  differentiating  capacity  and higher  proportion  of  large  adipocytes  as
compared with subcutaneous adipose tissue (SAT)[120]. VAT is tightly correlated with
insulin resistance[121], which, together with low-grade chronic inflammation, possibly
mediates the relationship between VAT and increased fracture risk.

In Korean men diagnosed with prediabetes using an oral glucose tolerance test, no
significant difference in BMD T-score was found as compared with subjects having
normal glucose metabolism[122].  Despite no difference in total body BMD between
prepubertal overweight children with prediabetes vs  non-prediabetic controls (as
assessed by OGTT)[123],  total  body bone mineral  content  (BMC) was  found to  be
significantly lower in prediabetic children. Inverse associations were found between
BMC and markers of insulin resistance and inflammation (C-reactive protein).

Bone turnover
Bone turnover may be assessed by measuring bone turnover markers (BTMs), which
reflect the bone resorption and formation processes.
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Bone turnover in T1D: In general, both T1D and T2D are considered as states of low
bone turnover. Different studies have shown that worse glycemic control is associated
with  lower  bone  turnover  markers  in  T1D[124-126],  suggesting  a  negative  effect  of
hyperglycemia on bone turnover. More specifically, patients with T1D exhibit higher
sclerostin  levels  and lower  C-terminal  telopeptide  of  type  I  collagen (CTX)  and
osteocalcin levels as compared with non-diabetic controls[127].

Bone turnover in T2D and prediabetes: Bone turnover markers are generally reduced
in patients with T2D[126,128,129], to a greater extent than patients with T1D[130]. However,
not all studies yielded consistent findings. Osteocalcin and CTX are the BTMs most
consistently found to be lower in T2D and patients with as compared with subjects
without  diabetes,  whereas  sclerostin and osteoprotegerin are  generally  elevated
(Table 1). Conflicting findings have been reported for other markers but, overall, the
evidence  seems  to  point  towards  a  suppression  of  bone  formation  and  bone
resorption,  both in prediabetes and T2D. Histomorphometric evaluation of  bone
tissue  biopsies  from  T2D  patients  confirmed  reduced  bone  turnover[131,132].  The
suppression of bone turnover reported in T2D patients is associated with higher risk
of vertebral fractures[133,134], independent of BMD. This is consistent with the concept
that the impairment in bone strength in T2D is due to impaired material properties,
which may be caused by low bone turnover, as well as by elevated concentrations of
advanced glycation endproducts (AGEs)[135].

Fewer studies have assessed bone turnover in prediabetes. Impaired fasting glucose
(IFG)  was  associated  with  lower  osteocalcin[128],  CTX  and  N-amino  terminal
propeptide of T1D procollagen (P1NP)[136,137] in women, and lower CTX and P1NP in
men[136], suggesting that, similar to T2D, prediabetes is associated with reduced bone
turnover.

Increased bone marrow adiposity
Bone marrow adipose tissue (MAT) has gained increasing attention in recent years as
a single anatomic entity, together with its relations with various clinical conditions,
including diabetes. MAT consists of MSC-derived adipocytes located within the bone
marrow niche. The distribution of MAT around the skeleton is not homogenous, and
regulation  of  marrow  adipose  depots  varies  at  different  skeletal  sites.  While
peripheral depots of MAT (also termed constitutive MAT) rarely change, MAT depots
at more central sites (e.g., spine, pelvis and sternum, proximal regions of the long
bones)  are more diffuse within the red marrow and may increase or decrease in
response to environmental or pathological factors (regulated MAT)[138]. Interestingly,
hyperglycemia  increases  the  expression  of  PPAR  genes,  which  stimulates
differentiation of MSC into bone marrow adipocytes[139]. Similarly, the antidiabetic
PPARγ agonists  thiazolidinediones  (TZDs)  are  thought  to  increase  fracture  risk
through promotion of marrow adipogenesis at the expense of osteogenesis[140](Figure
1). Until recently, MAT was thought to be just a reserve of adipose tissue, negatively
associated  with  hematopoiesis,  but  its  complete  function  has  just  begun  to  be
revealed.  In  vivo  studies  using  magnetic  resonance  imaging  (MRI),  magnetic
resonance spectroscopy (MRS) or computed tomography (CT) to assess MAT quantity
and composition  have  helped understand the  mechanisms of  increased skeletal
fragility and metabolic risk associated with several clinical conditions,  including
diabetes[141].

MAT in T1D: In animal models of T1D, hyperglycemia is associated with increased
marrow  adiposity  and  bone  loss[37,38,142],  whereas  no  differences  in  MAT  were
identified between male patients with T1D and healthy controls[143,144], and neither
duration of disease nor glycemic control were related to bone marrow adiposity. This
lack of association between MAT and T1D was confirmed in young women with T1D
compared with healthy controls[145]. Irrespective of the presence of diabetes, in young
women  MAT  was  inversely  associated  with  BMD[145].  Carvalho  and  colleagues
showed that MAT quantity and lipid composition (saturated and unsaturated lipids)
were similar  between male T1D subjects  and controls[144].  There was,  however,  a
significant inverse correlation between MAT saturated lipids and BMD.

MAT in T2D: In T2D men participating in the Osteoporotic Fractures in Men (MrOS)
Study,  a  large  epidemiological  study  of  nearly  6,000  men,  vertebral  MAT  was
increased  as  compared  with  nondiabetic  controls,  and  inversely  associate  with
BMD [146].  Although  no  differences  were  detected  in  total  MAT  content  in
postmenopausal women, those with T2D and previous fractures had the lowest MAT
lipid unsaturation and highest MAT saturation levels independent of age, race, and
BMD, highlighting the importance of MAT composition in addition to the degree of
marrow adiposity[147]. Furthermore, gender-related differences have been reported in
the  association  between  MAT and  visceral  adipose  tissue  (VAT)/subcutaneous
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Table 1  Bone turnover markers in prediabetes/insulin resistance and type 2 diabetes

BTM Meaning Pre-DM / IR Ref. T2D Ref.

CTX Bone resorption ↓ or ↔
[136,276,278-280]

↓
[129,132,134,137,281-286]

TRAP Bone resorption ↑?
[287]

↓ or ↔
[132,281]

uNTX Bone resorption ↓
[285]

Sclerostin Inhibition of bone formation ↑
[65]

↑
[284,285,288,289]

OC Bone formation ↓ or ↔
[128,276-278,280,290]

↓ or ↔
[129,132,134,281,283,285,286,291-294]

P1NP Bone formation ↓ or ↔
[136,277,280]

↓ or ↔
[88,132,134,137,282,283,285,286]

BAP Bone formation Direct association with IR
[295]

↔ or ↓ or ↑
[132,281,284,286,292,294]

ALP Bone formation ?
?

↔ or ↑
[292-294]

OPG Inhibition of bone resorption ↑
[296]

↑
[293,296]

BTM: Bone turnover marker; pre-DM: Prediabetes; IR: Insulin resistance; T2D: Type 2 diabetes; CTX: Carboxy-terminal cross-linking telopeptide of type I
collagen; OC: Osteocalcin; P1NP: Procollagen type 1 amino-terminal propeptide; TRAP: Tartrate-resistant acid phosphatase; uNTX: Urinary N-telopeptide
of type I collagen; BAP: Bone-specific alkaline phosphatase; ALP: Alkaline phosphatase; OPG: Osteoprotegerin; ↑: Increased; ↓: Decreased; ↔: Similar to
healthy controls; ?: Unknown.

adipose tissue (SAT) volumes or BMI. While in obese or diabetic women MAT is
associated with VAT and SAT[148,149], no such association was found in older men[150]. In
men, a negative association between MAT and DXA-derived BMD of femoral neck
and total hip was reported. Data on MAT in pre-diabetes is scanty, but a potential
relation between hyperglycemia and MAT has been suggested[151].

Advanced glycation end products - bone matrix in diabetes
AGEs are protein or lipid complexes formed through non-enzymatic reactions in the
presence of high sugar levels. Their accumulation is thought to play a role in aging
and some degenerative diseases[152].  In in vitro  studies,  AGEs deposits  have been
demonstrated in bone matrix, where they may exert a direct toxic effect on OBs[153].
AGEs  inhibit  bone  remodeling  and  indirectly  up-regulate  the  production  of
interleukin 6 (IL-6)[154], a catabolic factor that attenuates OBs activity[53] and vascular
endothelial growth factor A (VEGF-A) by osteocytes, inducing also their apoptosis[155].

AGEs in T1D:  In  murine models  of  T1D,  the AGE pentosidine (PEN) in bone is
significantly  increased,  this  increase  being paralleled by an impairment  in  bone
mechanical properties[156]. Similarly, PEN levels in bone biopsies from fractured T1D
patients were higher than in controls[80], and circulating PEN levels are associated with
prevalent fractures in T1D[157]. Carboxymethyllysine (CML), another type of AGE that
correlates with fracture risk[158], is increased in mouse models of T1D and inversely
associated with bone strength[159].

AGEs in T2D and prediabetes:  Bone strength in T2D postmenopausal women is
reduced as compared with non-diabetic controls, and this reduction appears to be
associated  with  increased  AGE  accumulation,  as  indirectly  estimated  by  skin
autofluorescence (SAF)[160]. Consistently, increased urinary or serum PEN levels have
been associated with greater fracture risk in T2D[161,162]. To the best of our knowledge,
no data are available on AGEs and bone health in prediabetes.

Bone geometry and microarchitecture
Bone geometry and microarchitecture contribute to bone strength. Tools such as high-
resolution  peripheral  quantitative  computed  tomography  (HR-pQCT),  micro-
magnetic  resonance  (μ-MRI)  and  TBS  acquired  through  dual-energy  X-ray
absorptiometry (DXA) are available to study bone structure in diabetes[163,164], offering
enough resolution to assess microarchitecture and providing indirect indexes of bone
quality.

Bone geometry and microarchitecture in T1D: In rodent models of T1D, deletion of
the insulin receptor from OBs at different stages of maturation leads to anomalous
trabecular architecture and higher bone fragility[3,4]. In adults with T1D, trabecular
bone quality is lower as compared with non-diabetic age-, BMI-, and sex-matched
controls  and is  negatively  associated with  insulin  resistance,  as  assessed by the
hyperinsulinemic euglycemic clamp[165]. Studies using HR-pQCT demonstrated higher
cortical porosity, thicker trabeculae and larger spacing between trabeculae in T1D
patients with microvascular complications, compared to those without, and in T1D
patients compared with matched non-diabetic  controls[166].  Similar findings were
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Figure 1

Figure 1  Schematic representation of the anatomical distribution of bone marrow adipose tissue depots.
Both hyperglycemia and the antidiabetic drugs thiazolidinediones may induce marrow adipose tissue (MAT)
expansion by increasing the expression of peroxisome proliferator-activated receptor genes, which in turn stimulates
adipogenesis. rMAT: Regulated MAT (MAT depots that increase or decrease in response to different stimuli).

reported using μ-MRI[167].  Moreover, using μ-CT in T1D subjects without vascular
complications, worse bone quality was found in those who did experience fractures as
compared with those who did not[166]. An insufficient peak bone mass at the end of
skeletal maturation may result in smaller and shorter bones, a geometry that could
favor bone fragility[130]. However, the contribute of altered geometry and defective
trabecular  and cortical  bone to  the increased risk of  fracture  in  T1D is  yet  to  be
clarified.

Bone  geometry  and  microarchitecture  in  T2D  and  prediabetes:  The  increased
fracture risk in T2D may be related to distorted bone microarchitecture, especially in
cortical bone[168-170].

Bone micro-indentation allows measuring the bone material strength index (BMSi),
which estimates the resistance to crack propagation in bone[171]. BMSi is reduced in
patients with T2D as compared to healthy controls[88,93], suggesting a lower resistance
to fractures. Increased cortical porosity has been identified as a possible causative
factor. Patients with T2D have higher porosity in trabecular bones, as assessed by
MRI[170]. Studies using HR-pQCT confirmed a similar trend in porosity. Deficits in
cortical bone of T2D patients were more marked in patients with previous fractures
compared to those without[169], or present only in T2D patients with microvascular
complications compared with patients without complications[169]. In a cross-sectional
analysis of nondiabetic postmenopausal women, higher levels of insulin resistance
were associated with lower cortical bone volume, independent of age and weight[172].
Consistently,  female  obese  late-adolescents  had  worse  trabecular  bone
microarchitecture at the radius and tibia as compared with non-obese controls, as well
as lower bone volume and estimated bone strength[173].  T2D diabetes and insulin
resistance  are  almost  invariably  associated  with  obesity  and  increased  central
adiposity,  which  reflects  increased  VAT.  Studies  that  explored  the  relationship
between VAT and bone microarchitecture suggest a possible detrimental effect of
VAT on bone microarchitecture. Studies have reported a negative impact of VAT on
bone  microarchitecture,  as  suggested  by  a  negative  association  between central
adiposity measures and TBS[174,175]. Furthermore, a negative effect of VAT on femoral
cross-sectional  area,  cortical  bone  area  and  bone  strength  indexes  has  been
reported[176].  On  the  other  hand,  higher  VAT  was  associated  with  improved
microarchitecture with the exception of higher cortical porosity at the distal radius in
the Framingham osteoporosis study[177]. However, this association lost significance
after adjustment for BMI or weight, suggesting that the effects of VAT may not have a
substantial effect on the skeleton independent of BMI or weight. In non-diabetic men
at the age of peak bone mass, insulin resistance (as assessed by HOMA-IR) was found
to be inversely associated with trabecular and cortical bone size, independent of body
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composition[178]. Overall, these data suggest a detrimental role of hyperinsulinemia on
bone microarchitecture and geometry. Central adiposity might have a negative effect
on bone microarchitecture, but this possibility needs to be further explored.

Vascular disease: microangiopathy
Diabetic  microvascular  complications  such as  retinopathy and neuropathy may
indirectly potentiate the fall risk, impairing vision or physical perception. Diabetic
microangiopathy may involve all organs, including bone, possibly contributing to
bone fragility. Histomorphometric assessments found microangiopathy in 82% of
bone biopsy specimens from diabetic patients, and a concomitant reduction of bone
marrow capillaries[179].  To date, there is no other direct evidence of bone vascular
alteration in humans. In mouse models of T1D, administration of an angiogenic factor
to  ovariectomized mice  led  to  improvements  in  bone  quality[180].  As  mentioned,
reduced trabecular BMD, cortical BMD, thinner trabeculae and cortex were reported
in T1D patients with known vascular complications,  as opposite to T1D patients
without complications and non-diabetic controls[166]. Similarly, in a cross-sectional
study that  assessed  peripheral  bone  microarchitecture,  bone  strength  and bone
remodeling in T2D patients with or without diabetic microvascular disease only T2D
patients with established microvascular disease displayed lower cortical volumetric
BMD and cortical thickness and higher cortical porosity at the radius compared to
controls without microvascular disease[181]. Impaired microvascular circulation might
lead to hypoxia, which in turn may lead to enhanced adipogenesis within the bone
marrow and downregulation of OB differentiation[182].

Pharmacological treatments for diabetes
Metformin:  Metformin  is  widely  prescribed for  the  management  of  T2D,  being
recommended as the first-line treatment by international guidelines[8,183]. It reduces
hepatic  glucose production and improves peripheral  insulin sensitivity,  thereby
enhancing peripheral glucose disposal[184]. Metformin has been shown to promote the
osteogenic  differentiation of  adipose-derived MSC,  and in  general  to  exert  pro-
osteogenic  effects  in  preclinical  studies[185-188].  Clinical  observations  indicate  that
metformin has a neutral[28,189] or even a favorable effect on fracture risk[12,190,191].

Glucagon-like peptide-1 (GLP-1) receptor agonists (RA): GLP-1 RAs (liraglutide,
exenatide, lixisenatide, dulaglutide, semaglutide) are recommended as the best choice
for a second agent when combination treatment is needed to achieve glycemic control
in patients with T2D in whom atherosclerotic cardiovascular disease, heart failure, or
chronic kidney disease predominates[8,183]. By activating the GLP-1 receptor, GLP-1
RAs slow gastric  emptying,  suppress  glucagon secretion while  also  stimulating
glucose-induced insulin secretion[192]. These effects result in the suppression of hepatic
gluconeogenesis and increased peripheral glucose disposal.  In vitro,  activation of
GLP-1 receptors promotes differentiation of MSC into osteoblasts[193]  and inhibits
osteoblast apoptosis[194], suggesting an anabolic effect on bone. Studies in rats support
these findings[195].  Of note, in animal models of T1D administration of liraglutide
significantly improved bone strength and reduced collagen degradation in the bone
matrix,  although  no  changes  in  trabecular  no  cortical  microarchitecture  were
observed[196]. Case-control studies and metanalyses of population-based studies and
randomized clinical  trials  including  patients  with  T2D treated  with  GLP-1  RAs
indicate no effect on fracture risk[197-199]. However, evidence exist that different GLP-1
RAs may exert opposite effects on fracture risk, which appears to increase or decrease
in  patients  treated  with  exenatide  or  liraglutide,  respectively[200].  Furthermore,
liraglutide was reported to prevent a reduction of BMC after weight loss in obese
nondiabetic women, although BMD was not affected[201,202].

Dipeptidylpeptidase 4 (DPP4)-inhibitors: DPP4-inhibitors (sitagliptin, linagliptin,
saxagliptin,vildagliptin, alogliptin, etc.) exert their action by inhibiting the enzyme
DPP-4,  which is  responsible  for  the  rapid degradation of  the  incretin  hormones
glucose-dependent insulinotropic polypeptide (GIP) and GLP-1, thereby enhancing
glucose-induced insulin secretion[203].  Preclinical  studies indicate a possible anti-
osteoclastogenic and anti-resorptive effect  of  DPP4-inhibitors[204,205].  Clinical  data
support a neutral[189,206,207] or even favorable[208,209] effect of DPP4-inhibitors on fracture
risk. In particular, alogliptin may be associated with a lower risk of bone fracture
compared with placebo and other drugs in the same class[210].

Sodium-glucose cotransporter 2 (SLGT2) inhibitors: By inhibiting the renal SGLT2,
these drugs (empagliflozin, dapagliflozin, canagliflozin) reduce glucose reabsorption
in  the  kidney,  thus  increasing  urinary  glucose  excretion  and  decreasing  blood
glucose[211]. Associated increases in serum phosphate may lead to changes in PTH and
fibroblast growth factor 23 (FGF23) that could affect bone metabolism[212]. Along with
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GLP-1 RAs, SGLT2 inhibitors are recommended as the best choice for a second agent
when combination treatment is needed to achieve glycemic control in patients with
T2D in whom atherosclerotic cardiovascular disease, heart failure, or chronic kidney
disease predominates[8,183].  Initial reports of increased frequency of bone fractures
associated with SGLT2 inhibitors treatment, particularly with canagliflozin, raised
concerns about the skeletal safety of these compounds[213]. Furthermore, increased
bone turnover and reduced total hip BMD have been reported in patients with T2D
treated  with  canagliflozin [214].  Nevertheless,  recent  population  studies  and
metanalyses  including  several  thousands  of  patients  consistently  failed  to
demonstrate an association between SGLT2 inhibitor treatment and increased fracture
risk in patients with T2D[215-219].

Sulfonylureas  and  glinides :  Sulfonylureas  (e.g . ,  glimepiride,  gliclazide,
glybenclamide) and glinides (e.g., repaglinide) stimulate glucose-independent insulin
secretion  by  binding  to  specific  sites  at  the  β-cell  membrane[220,221].  It  has  been
postulated that sulfonylureas do not affect bone directly, but may increase fracture
risk by inducing higher rates of hypoglycemic events[222]. Studies that assessed the
effect of sulfonylureas and glinides on fracture risk yielded conflicting results, with
most studies indicating increased risk[28,189,223-225], but also no effect[191] even decreased
risk[12].

Thiazolidinediones (TZDs): TZDs (rosiglitazone, pioglitazone) are insulin-sensitizing
agents that exert  their  action by activating the peroxisome proliferator-activated
receptor  γ  (PPARγ)[226].  Besides  enhancing  peripheral  insulin  sensitivity  and
suppressing hepatic glucose production, activation of PPARγ stimulates adipogenesis
and suppresses osteoblastogenesis, thereby reducing the osteoblast pool in the bone
marrow[227]. A detrimental effect of TZDs on bone health has been consistently shown.
In a cohort study including more than 5000 patients with T2D, current use of TZDs
was associated with increased hip fracture  risk[190].  Treatment  with pioglitazone
significantly increased fracture risk compared with placebo in a randomized double-
blind,  placebo-controlled  study[228].  The  increase  in  risk  has  been  confirmed  in
population-based studies[189] and metanalyses[229], although the impact on bone seems
to be more pronounced in women than in men[190,229].

Insulin in T1D:  Insulin  is  the  pillar  of  T1D treatment.  As previously discussed,
insulin exerts anabolic effects on bone. Intensive insulin treatment has been associated
with increased BMD in patients with T1D[82]. Consistently, no association between
insulin treatment and single nor multiple fractures was found in a recent study that
assessed risk factors for fragility fractures in T1D[230].

Insulin in T2D:  Insulin treatment in patients with T2D is initiated when disease
progression overcomes the effect of non-insulin agents[8,183]. Thus, patients with T2D
started on insulin generally have longstanding diabetes, and may have developed
serious complications such as retinopathy-related impaired vision, peripheral artery
disease and neuropathy, which in turn are risk factors for falls[20,21].  Insulin use is
associated with a 1.4- to 2-fold increase in fracture risk as compared with no insulin
use[189,231],  and  with  a  1.6-fold  increase  in  risk  as  compared  with  metformin
monotherapy[232]. However, not all studies point towards a negative effect of insulin
on fracture risk[12,191].  The association between insulin and increased fracture risk
despite the anabolic effects of insulin on bone is likely due to the increased risk of falls
and hypoglycemic episodes associated with insulin treatment[222].

Surgical treatments for diabetes
Pancreas and islet transplantation in T1D: Beta cell replacement through pancreas or
pancreatic islet transplantation is the only currently available cure for T1D in humans,
with pancreas transplantation being more often associated with insulin independence
and longer graft function. Successful pancreas transplantation provides physiological
insulin repletion, without the risk of hypoglycemia associated with exogenous insulin
administration. Evidence exists that combined pancreas-kidney transplantation leads
to improvements in BMD[233], and that fracture rates in patients with T1D are lower
after transplantation with a simultaneous pancreas–kidney compared with kidney
transplantation alone[234], suggesting that T1D remission by pancreas transplantation
favorably impacts fracture risk. However, individuals with T1D undergoing pancreas-
kidney transplantation also have end-stage renal disease, which strongly affects bone
health.  A  study  assessing  the  effect  of  diabetes  remission  following  pancreas
transplantation alone on bone health in individuals with T1D and preserved kidney
function is currently ongoing (NCT03869281).

Metabolic  surgery  for  T2D  diabetes:  Metabolic  surgery  is  now  included  as  a
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treatment  option for  appropriate  candidates  with  T2D[8,235].  Patients  undergoing
metabolic surgery experience rapid and massive weight loss, which translates into
several metabolic benefits, but may be detrimental to bone health. Most available data
relate  to  the  Roux-en-Y gastric  bypass  (RYGB),  a  restrictive  procedure  that  also
involves  a  malabsorptive  component.  Sleeve  gastrectomy  (SG),  which  has  now
overcome RYGB and has become the most common bariatric procedure worldwide[236],
is  a  restrictive procedure.  Other bariatric  procedures,  such as the malabsorptive
biliopancreatic diversion and the restrictive laparoscopic adjustable gastric banding
(LAGB), are being gradually abandoned. Available data indicate that fracture risk
after bariatric surgery varies depending on the bariatric procedure, being lowest in
patients  undergoing  LAGB[237]  and  greatest  in  those  undergoing  malabsorptive
procedures[238-241], and increases with time after surgery[237,239-242]. However, weight loss-
related reductions in BMD have even been reported 6-12 months after minimally
invasive bariatric procedures not involving resection of the stomach and/or intestine,
such as use of the intragastric balloon or an intraluminal liner implanted into the
small intestine[243,244]. Mechanisms underlying the negative effects of bariatric surgery
on bone health may involve nutritional factors,  mechanical unloading, hormonal
factors, and changes in body composition and bone marrow fat[245]. To the best of our
knowledge, no studies have specifically addressed the issue of diabetic bone disease
in patients with T2D undergoing bariatric surgery.

PERSPECTIVES: POSSIBLE PREVENTIVE AND
THERAPEUTIC APPROACHES
Modifiable risk factors for fracture, including factors that affect fall risk and glycemic
control should be tackled to reduce fracture risk, although no prospective studies are
available to show the antifracture efficacy of preventive lifestyle and/or treatment
strategies. Drugs shown to be associated with increased fracture risk in T2D, such as
insulin and TZDs[231,232,246] should be avoided, when possible. Strict monitoring should
be implemented for T2D patients undergoing bariatric surgery in order to prevent
nutritional deficiencies that could worsen weight loss-associated bone loss.

Several alterations in calcium homeostasis have been described in diabetic patients,
including  reduced  intestinal  calcium  absorption  and  renal  tubular  calcium
reabsorption,  and  impaired  vitamin  D  synthesis[247].  It  is  also  recognized  that
individuals  with  diabetes,  both  T1D  and  T2D,  have  lower  vitamin  D  levels  as
compared with non-diabetic controls[248,249]. Overall, these alterations may negatively
impact  calcium  homeostasis  and  bone  mineralization.  International  guidelines
recommend vitamin D supplementation for  the  prevention and/or treatment  of
osteoporosis and osteoporotic fractures in men and postmenopausal women[250-252],
although  recent  findings  bring  into  question  the  efficacy  of  vitamin  D
supplementation in preventing fractures or falls, or improving BMD[253]. Vitamin D
supplementation was shown to increase bone formation markers[254] and reduce bone
resorption  markers[255]  in  postmenopausal  women  with  T2D,  not  to  affect  bone
turnover markers in patients with T2D and chronic kidney disease[256], and to preserve
femoral neck BMD in men with prediabetes[257]. Few data are available about the effect
of the use of osteoporosis medications in patients with diabetes.

Stemming from some positive preclinical results[258], few recent human studies have
focused  the  attention  on  nutrients  containing  antioxidants  such  as  resveratrol,
providing  encouraging  results  in  terms  of  on  bone  density  and  on  bone  loss
prevention in obese patients[259] and patients with T2D[260,261] have been reported.

Recently, hyperbaric therapy[262,263] has been shown to promote bone regeneration in
animal models of diabetes, but further studies are needed to clarify whether this could
be an effective approach in humans.

Raloxifene, a second generation selective estrogen receptor modulator (SERM)
indicated for the prevention and treatment of postmenopausal osteoporosis[264], was
shown to improve bone material properties (femoral toughness) in diabetes-prone
rats[265].  In postmenopausal women, raloxifene may decrease the bone resorption
marker  NTX and  it  has  been  speculated  that  it  might  improve  bone  quality  by
reducing AGEs, although no information is available on the effect on reliable bone
quality indicators or relevant clinical outcomes such as fracture risk[265].  In a pilot
study that assessed the skeletal effects of a third generation SERM, bazedoxifene, in
postmenopausal  women  with  T2D,  all  bone  resorption  markers  decreased
significantly after 12 weeks of treatment. Homocysteine and pentosidine, which were
used as bone quality markers in this study, were not affected[266].

Little is known about osteoporosis therapies in T1D young patients. As T1D usually
manifests in young individuals, it is important to remember that caution must be
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taken in women during reproductive age, as bisphosphonates are stored and released
from  bones  for  long  time  and  may  affect  fetal  skeletal  ossification.  In  elderly,
postmenopausal,  osteoporotic  obese  women  with  T2D  treated  with  long-term
bisphosphonates, no difference in spine BMD but a significantly greater decline in
BMD in regions of the hip, femoral neck, and forearm were observed as compared
with non-diabetic controls[267]. However, the efficacy of these medications must be
assessed based on clinically relevant outcomes. Despite being a condition of reduced
bone turnover, epidemiological data indicate that diabetes (either T1D or T2D) was
shown not to reduce the antifracture efficacy of antiresorptive drugs, which also
reduce bone turnover[268].

In a large study on the efficacy of recombinant PTH (rhPTH 1-34, teriparatide),
similar  reduction  in  nonvertebral  fracture  incidence  and increase  in  BMD were
observed in postmenopausal osteoporotic women with or without T2D[269].

Denosumab is a RANKL-specific antibody indicated as osteoporosis treatment
known to increase particularly cortical BMD. This property might be of particular
value, as cortical compartment is the most involved in the diabetic bone. A phase 2
clinical  trial  to  assess  the  skeletal  effects  of  denosumab  in  T2D  is  ongoing
(NCT03457818).  Interestingly, denosumab was shown to improve hepatic insulin
sensitivity in humans[270,271]  and, consistently, to reduce fasting plasma glucose in
women with diabetes not on antidiabetic medications[272].  Preclinical  studies also
indicate that denosumab may stimulate human β-cell proliferation[273].

Sclerostin seems to have a central role in the pathogenesis of diabetic bone disease.
In mouse models of T1D[273] and T2D[274], administration of anti-sclerostin antibodies
seems to reverse the deficits in bone density and micro-fracture healing. No data are
currently available on romosozumab, an anti-sclerostin antibody shown to reduce the
risk  of  clinical  and  vertebral  fractures  in  postmenopausal  women  with
osteoporosis[275].

CONCLUSION
Diabetes has a strong impact on bone health, and skeletal fragility is now recognized
as a complication of both T1D and T2D. Fracture risk is greater in patients with T1D,
and increases with increasing disease duration. Individuals with T1D have decreased
BMD, possibly due to absolute insulin deficiency and the inability of  exogenous
insulin  to  mirror  endogenous  insulin  secretion.  However,  the  relatively  small
reduction in BMD does not appear to completely explain the increase in bone fragility
observed in T1D[276-296]. On the other hand, individuals with T2D have either normal or
increased BMD, which is in contrast with the increased fracture risk observed in this
population. Therefore, it is likely that factors that affect bone quality, rather than bone
mass,  impact  the  resistance  of  T2D  bones  to  fracture  (Table  2).  Increased  non-
enzymatic  glycation  of  bone  matrix  proteins,  impaired  microcirculation  and
glucotoxicity itself, i.e., the direct detrimental effect of high glucose on bone cells, may
all play a role. Reduced bone turnover and increased bone marrow adipogenesis at
the expenses of osteogenesis may also contribute. Despite a clear association between
T2D  and  increased  fracture  risk,  evidence  supporting  an  association  between
prediabetes and fracture risk is inconsistent, and further studies are needed to clarify
whether insulin excess has either a beneficial or rather detrimental effect on bone
health. The incomplete understanding of the mechanisms underlying diabetic bone
disease makes it difficult to develop reliable tools for fracture risk prediction. To date,
no single method is deemed optimal for predicting all fracture outcomes in patients
with diabetes[32]. Fracture history and risk factors should be assessed in older patients
with DM, and measurement of BMD is recommended, if appropriate for the patient’s
age  and  gender[8].  Caution  should  be  used  with  antidiabetic  drugs  known  to
negatively  affect  bone  health,  such  as  TZDs  and  insulin  in  patients  with  T2D.
Healthcare professionals involved in the management of T2D patients undergoing
bariatric surgery should be aware of the possible detrimental effects on bone health,
and implement appropriate nutritional strategies. Due to the lack of randomized
clinical  trials  to  evaluate  the  efficacy  of  antifracture  drugs  in  diabetes,  and
observational data indicating similar efficacy in those with or without diabetes, such
drugs should be used according to existing indications.

Future studies should focus on the mechanisms underlying diabetic bone disease,
and on preventative and treatment strategies to implement in order to reduce the
morbidity associated with fractures in this frail population.
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Table 2  Effects of diabetes and prediabetes on bone health

T1D T2D Prediabetes

Fracture risk ↑↑ ↑ ?

Bone mineral density ↓ ↔ or ↑ ↔ or ↑

Bone turnover ↓ ↓↓ ↓?

Bone marrow adiposity ↔ ↑ ↑?

Bone matrix - AGEs ↑ ↑ ?

Microarchitecture/geometry ↑ cortical porosity ↑ cortical porosity ↓ trabecular and cortical bone size

AGEs: Advanced glycation endproducts; T1D: Type 1 diabetes; T2D: Type 2 diabetes; ↑: Increased; ↓: Decreased; ↔: Similar to healthy controls; ?:
Unknown.
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