
We thank the Editor and all the Reviewers for the thorough review of our manuscript entitled 

“Prediction of genetic alterations from gastric cancer histopathology images using a fully 

automated deep learning approach”. All the detailed comments from the reviewers were 

reflected in the revised manuscript. Below is our point-by-point response. 
 

 

Reviewer #1: 

- Although the problem and significance of this study are clearly exposed the manuscript requires 

significant language editing which would enable the reader to understand better the study. 

 

The revised manuscript was re-examined and edited by an expert English editing service provider. We 

added ‘Certificate of editing’ file. 

 

- The number of patient samples assessed are limited which as the authors suggest affected the 

generalizability of their developed classifiers. Although I agree that heterogeneity exists within cancer 

tissues from different countries, hospitals etc. and hence a mixed classifier which has trained on both 

the TCGS and the SSMH datasets would be more appropriate, the authors should have kept a small 

number of cases as their testing or validation cohort. I recommend either increasing the number of 

cases included in the study by specifically assessing their developed classifiers in an unseen dataset or 

that they divide their current dataset into a training and test/validation set. 

 

We used different combinations of training and testing datasets.  

First, the classifiers were trained for only TCGA dataset and separately tested on both TCGA and 

SSMH datasets. For these classifiers, 90% of TCGA data were used for training and 10% of TCGA 

data were used for testing. All SSMH data were used for testing as an external validation set. 

Therefore, it was typical setting for external validation (SSMH dataset) of deep learning model trained 

with another dataset (TCGA dataset).  

Second, SSMH datasets were split into train and test sets and the train sets were combined with the 

TCGA train sets to investigate the effect of extended dataset. Therefore, new classifiers trained with 

both datasets could be obtained. The test sets were completely separate sets of patients compared to 

train sets in both TCGA and SSMH datasets.  

We think the training and test/validation set splits were valid for both settings for the purpose of the 

study. We kept a small number of cases as their testing or validation cohort (~10%).  

 



- Page 11 "Deep learning model": "For the tumor or mutation classifiers described below, only proper 

tissue patches were analyzed" what do the authors mean by proper? This sentence should be edited to 

make sure others can reproduce the work if they wanted to. 

 

As the reviewer noted, our explanation was not clear. We changed the original manuscript and added 

some details for clarity. (Related manuscripts are as follows) 

(Page 11 Line: 10-17) 

A simple convolutional neural network (CNN), termed as tissue/non-tissue classifier, was 

trained to discriminate these various artifacts all at once. The structure of the tissue/non-

tissue classifier was described in our previous study[11]. The tissue/non-tissue classifier 

could filter out almost 99.9% of the improper tissue patches. Then, tissue patches classified 

as “improper” by the tissue/non-tissue classifier were removed, and the remaining “proper” 

tissue patches were collected. For the tumor or mutation classifiers described below, only 

proper tissue patches were analyzed (Figure 1). 

 

- Page 10 "After reviewing the quality of WSIs from the GC dataset of TCGA (TCGA-STAD), we 

selected slides from 25, 19, 34, 64, and 160 patients, which were confirmed to have mutations in 

CDH1, ERBB2, KRAS, PIK3CA, and TP53 genes, respectively. "Do these numbers represent patient 

numbers as well? Or are there slides which are from the same patients, just different blocks? Details 

regarding the selection criteria of their images should be provided and the logic behind their selections 

should be discussed. 

 

The numbers (25, 19, 34, 64, and 160) indicated the number of patients because we adopted the 

patient-level cross validation. There were more than two slides for many patients in the TCGA 

datasets, maximum of 4 slides for some patients. For frozen tissue slides, one or two of these slides 

contained only normal tissues. We excluded normal slides and selected maximum of two tumor-

containing slides per patient. The final numbers of slides were 34, 26, 50, 94, and 221 for frozen 

tissue slides and 27, 19, 34, 66, and 174 for FFPE tissue slides for CDH1, ERBB2, KRAS, PIK3CA, 

and TP53 genes, respectively. We added more details in the Methods section for clarity. (Related 

manuscripts are as follows) 

(Page 9 Line: 16- Page 10 Line: 6) 

After a carefully review of all the WSIs in the TCGA GC dataset (TCGA-STAD), we 

eliminated WSIs with poor scan quality and very small tumor contents. We selected slides 

from 25, 19, 34, 64, and 160 patients, which were confirmed to have mutations in CDH1, 

ERBB2, KRAS, PIK3CA, and TP53 genes, respectively. There were more than two slides for 



many patients in the TCGA dataset, with a maximum of four slides for some patients. 

However, in many cases, one or two slides contained only normal tissues. We excluded 

normal slides and selected a maximum of two tumor-containing slides per patient. The final 

number of frozen tissue slides was 34, 26, 50, 94, and 221 and that of formalin-fixed paraffin-

embedded (FFPE) tissue slides was 27, 19, 34, 66, and 174 for CDH1, ERBB2, KRAS, PIK3CA, 

and TP53 genes, respectively. 

 

- Page 12 "Mutation classifiers were trained separately for the selected tumor patches for frozen and 

FFPE tissues", details regarding the two classifiers (frozen and FFPE) should be discussed (ie. number 

of patients, slides, training regions etc). How many patches per image were they assessed on average? 

This information would be good to be added. How long were the classifiers trained for? Further 

details regarding their training process is crucial for reproduction. 

 

The numbers of patients and slides were clarified as in the answer to the previous question. Because 

we adopted 10 fold cross-validation, the number of slides included in the training and testing were 90% 

and 10% of the slides for each fold. As described in the Methods section, training regions were 

automatically selected by the normal/tumor classifier to include only the tumor regions. We appended 

a new table for the number of average patches used for the training of each classifier (Supplementary 

Table S2). Also, average training epochs were provided in Supplementary Table S3. Furthermore, for 

a more clear assessment of the classifiers, we appended tables for the accuracy, sensitivity, specificity, 

and F1 score of the classification results of mutation prediction models (Table 1 and Supplementary 

Table S4). (Related manuscripts are as follows) 

(Page 13 Line: 18-21) 

The number of tissue patches used for the training of all mutation prediction models is 

summarized in Supplementary Table S2. The average number of training epochs for each 

classifier is summarized in Supplementary Table S3.  

(Page 15 Line: 7-9) 

In addition, the accuracy, sensitivity, specificity, and F1 score of the classification results of 

mutation prediction models with cutoff values for maximal Youden index (sensitivity + 

specificity - 1) were presented.  

(Page 17 Line: 14-16) 

For a clearer assessment of the performance of each model, the accuracy, sensitivity, 

specificity, and F1 score of the classification results are presented in Table 1.  

(Page 19 Line: 8-10) 



The accuracy, sensitivity, specificity, and F1 score of the classification results of mutation 

prediction models trained with both SSMH and TCGA datasets are presented in 

Supplementary Table S4. 

 

 

Reviewer #2: 

a. Author's has to highlights the major contributions of the manuscript in introduction section. Also 

briefly describe the flow of manuscript for the improvement in readability of the article. 

 

As the reviewer suggested, both the major contribution and the flow of the manuscript were added to 

the final part of the Introduction section. (Related manuscripts are as follows) 

(Page 8 Line: 20- Page 9 Line: 9) 

This study investigated the feasibility of classifiers for mutations in the CDH1, ERBB2, 

KRAS, PIK3CA, and TP53 genes in GC tissues. First, the classifiers were trained and tested 

for GC tissue slides from The Cancer Genome Atlas (TCGA). The generalizability of the 

classifiers was tested using an external dataset. Then, new classifiers were trained for 

combined datasets from TCGA and external datasets to investigate the effect of the extended 

datasets. The results suggest that it is feasible to predict mutational status directly from 

tissue slides with deep learning-based classifiers. Finally, as the classifiers for KRAS, 

PIK3CA, and TP53 mutations for both colorectal and GC were available, we also analyzed 

the generalizability of the DL-based mutation classifiers trained for different cancer types. 

 

b. Why you guys are selecting Deep learning model rather than Machine learning model. You have to 

also explain the reason to choose Inception model in place of other pre-trained model. 

 

The current study belongs to our series of efforts to test the feasibility of a deep learning-based 

prediction system for the identification of molecular biomarkers directly from the H&E-stained tissue 

slides. It is well perceived that deep learning performs much better for the complex visual tasks such 

as the identification of molecular biomarkers directly from the H&E-stained tissue slides. We selected 

the Inception v3 model because it performs well on the tissue classification tests compared to other 

famous CNN models [20]. Furthermore, because we used the Inception v3 in the previous study to 

predict mutations in the colorectal cancer [11], the direct comparison could be possible. We clarified 

this as follows. (Related manuscripts are as follows) 

(Page 12 Line: 15-18) 



Thereafter, the Inception-v3 model, a widely used CNN architecture, was trained to classify 

the tumor patches into ‘wild-type’ or ‘mutated’ tissues, as in our previous study on mutation 

prediction in colorectal cancer[11]. 

 

c. In this work Authors are simply importing the pre-trained CNN model. It shows that the novelty of 

the work is missing in case of model development. 

 

We did not adopt the transfer learning scheme. We fully trained the network from the beginning. We 

clarified that in the Methods section as follows. (Related manuscripts are as follows) 

(Page 12 Line: 17-18) 

We fully trained the network from the beginning and did not adopt a transfer-learning 

scheme.  

The focus of this study was not the development of a new model but the testing of the feasibility of 

prediction of mutation in the gastric cancer tissue slides. 

 

d. As we know that the deep learning model perform better for large dataset. In this case you are using 

very less amount of data. In this case model suffers from under fitting. So author's has requested to 

justify that your model is not suffering from under fitting. 

 

Although the numbers of patients were small, the data were not. We provided a new table to clarify 

the numbers of tissue patches used for the training of each classifier (Supplementary Table S2). The 

numbers of tissue patches ranged from 168,035 for the ERBB2 gene of the TCGA FFPE Tissue Slides 

to 1,132,510 for the TP53 gene of the TCGA FFPE Tissue Slides. Although the numbers of tissue 

patches were considerable, the performance could be improved when we combined the TCGA and 

SSMH datasets. Therefore, the classifiers were still under fitted, and much more data should be 

collected. We discussed the issue. (Related manuscripts are as follows) 

(Page 13 Line: 18-19) 

The number of tissue patches used for the training of all mutation prediction models is 

summarized in Supplementary Table S2.  

(Page 24 Line: 2-8) 

In our opinion, the datasets are still immature for building a prominent classifier for 

mutation prediction. Therefore, efforts to establish a larger tissue dataset with a mutation 

profile will help to understand the potential of DL-based mutation prediction systems. 

Recently, many countries have started to build nationwide datasets of pathologic tissue 



WSIs with genomic information. Therefore, we expect that the performance of DL-based 

mutation prediction can be greatly improved. 

 

e. For the performance measuring, ROC is not only the sufficient approach. Specially for medical 

science research, you have to also perform statistical so that the significance of the designed model 

can be verified properly. 

 

As the reviewer suggested the ROC curves are not sufficient for the full evaluation of the performance 

of the classifiers. For a more clear assessment of the classifiers, we appended tables for the accuracy, 

sensitivity, specificity, and F1 score of the classification results of mutation prediction models (Table 

1 and Supplementary Table S4). (Related manuscripts are as follows) 

(Page 15 Line: 7-9) 

In addition, the accuracy, sensitivity, specificity, and F1 score of the classification results of 

mutation prediction models with cutoff values for maximal Youden index (sensitivity + 

specificity - 1) were presented.  

(Page 17 Line: 14-16) 

For a clearer assessment of the performance of each model, the accuracy, sensitivity, 

specificity, and F1 score of the classification results are presented in Table 1.  

(Page 19 Line: 8-10) 

The accuracy, sensitivity, specificity, and F1 score of the classification results of mutation 

prediction models trained with both SSMH and TCGA datasets are presented in 

Supplementary Table S4. 

 

f. Authors have not listed the social impact of the study. You have to also mention it. 

 

In the discussion and conclusion sections, we discussed the many impacts of the deep learning-based 

mutation prediction. (Related manuscripts are as follows) 

(Page 20 Line: 14-21) 

However, molecular tests to detect gene mutations are still not affordable for cancer patients. 

If cost- and time-effective alternative methods for mutation detection can be introduced, it 

will promote prospective clinical trials and retrospective studies to correlate the treatment 

response with the mutational profiles of cancer patients, which can be retrospectively 

obtained from clinical data and stored tissue samples. Therefore, the new cost- and time-

effective methods will help to establish molecular stratification of cancer patients that can be 

used to determine effective treatment and improve clinical outcomes[34].  



(Page 21 Line: 20- Page 22 Line: 2) 

further studies for the fine molecular stratification of patients based on mutational status are 

ongoing[6]. DL-based mutation prediction from the tissue slides could provide valuable tools 

to support these efforts because the mutational status can be promptly obtained with 

minimal cost from the existing H&E-stained tissue slides.  

We added a sentence to the final part of the conclusion section. (Related manuscripts are as follows) 

(Page 25 Line: 11-12) 

Furthermore, its cost- and time-effective nature could help save the medical cost and 

decision time for patient care. 

 

g. How this work can be extended further? 

 

As we discussed, the performance of deep learning-based mutation prediction still needs to be 

improved. We think that the first thing to do is to improve the performance of the prediction models. 

We recently started to participate in a Korean government-led 5-year project to build a huge dataset of 

cancer tissue slides with genomic data. We hope the data from the project will lead to establishing 

much better classifiers for the mutation prediction in cancer tissue slides including gastric cancer. We 

would try to improve the accuracy of the prediction models with ever-growing data from the project. 

We discussed the importance of larger datasets and the possibility of improved performance. (Related 

manuscripts are as follows) 

(Page 24 Line: 2-8) 

In our opinion, the datasets are still immature for building a prominent classifier for 

mutation prediction. Therefore, efforts to establish a larger tissue dataset with a mutation 

profile will help to understand the potential of DL-based mutation prediction systems. 

Recently, many countries have started to build nationwide datasets of pathologic tissue 

WSIs with genomic information. Therefore, we expect that the performance of DL-based 

mutation prediction can be greatly improved. 

 

 

h. Authors can improve the literature work by adding some quality work like • Echle, Amelie, Niklas 

Timon Rindtorff, Titus Josef Brinker, Tom Luedde, Alexander Thomas Pearson, and Jakob Nikolas 

Kather. "Deep learning in cancer pathology: a new generation of clinical biomarkers." British journal 

of cancer 124, no. 4 (2021): 686-696. • Calderaro, Julien, and Jakob Nikolas Kather. "Artificial 

intelligence-based pathology for gastrointestinal and hepatobiliary cancers." Gut 70, no. 6 (2021): 

1183-1193. • Coudray, Nicolas, and Aristotelis Tsirigos. "Deep learning links histology, molecular 



signatures and prognosis in cancer." Nature Cancer 1, no. 8 (2020): 755-757. • Bhatt, Chandradeep, 

Indrajeet Kumar, V. Vijayakumar, Kamred Udham Singh, and Abhishek Kumar. "The state of the art 

of deep learning models in medical science and their challenges." Multimedia Systems (2020): 1-15 

 

We appended all the references to the appropriate sentences. 

 

Reviewer #3: 

1) Dataset composition: the dataset is highly unbalanced, so the authors randomly selected patients 

without mutations in order to balance the dataset. Personally, I would have selected all patients 

without mutations (perhaps using fewer patches from each patient) so as to train CNN on a more 

heterogeneous dataset.  

 

As the reviewer noted, the tumor patches from all wild-type patients other than the test sets were 

randomly sampled for the training of the classifiers. The python code 

(https://github.com/jajman/StomachMutation/blob/main/WSI_preparation/trainvalFileSplitMutation.p

y) shows how the split was done. However, the current description of the methods did not clearly 

explain the procedures. Therefore, we revised the Methods section to describe the procedures more 

clearly. (Related manuscripts are as follows) 

(Page 10 Line: 18- Page 11 Line: 2) 

Our previous studies recognized that a DL model cannot perform optimally for both 

training and testing unless the dataset is forced to have similar amounts of data between 

classes[23]. Therefore, we limited the difference in patient numbers between the mutation and 

wild-type groups to less than 1.4 fold by random sampling. For example, only 35 of the 183 

wild-type patients were randomly selected as the CDH1 wild-type group because there were 

only 25 CDH1 mutated patients. Ten-fold cross-validation was performed based on these 

randomly sampled wild-type patients. However, the classifiers yielded better results when 

the tumor patches from all wild-type patients other than the test sets were randomly 

sampled to match the 1.4 fold data ratio of wild-type/mutation groups for training, as this 

strategy could include a greater variety of tissue images. Therefore, we included all wild-

type patients other than the test sets during training and randomly selected patients during 

testing. 

 

2) Network training - Page 12, Line 7: ". The same label for all tumor tissue patches in a WSI as 

either 'wild-type' or 'mutated' were assigned based on the mutational status of the patient." Slide-level 

classification is very different from patch-level classification. Even if a WSI is labeled as "mutated," it 

https://github.com/jajman/StomachMutation/blob/main/WSI_preparation/trainvalFileSplitMutation.py
https://github.com/jajman/StomachMutation/blob/main/WSI_preparation/trainvalFileSplitMutation.py


is not certain that all its tumor patches contain features related to the gene mutation. This means that 

the network may accept patches that are labeled as "mutated" (because they come from a "mutated" 

WSI) but do not actually contain any alterations. This may represent a bias during network training. 

 

As the reviewer suggested, it is impossible to clearly discriminate the tissue image patched into 'wild-

type' or 'mutated' patches considering the heterogeneity of tumor tissues. We clearly recognized the 

limitation and considered it as an innate limitation of this kind of task. Therefore, our goal of the 

current study was to understand the feasibility of mutation prediction from the H&E-stained tissue 

slides even though it is inherently impossible to collect perfectly labeled data. Many researchers dealt 

with these multiple instance learning situations and the deep learning models performed well even 

though the labeling was imperfect. Deep learning could learn the most discriminative features for the 

classification tasks from the imperfectly labeled data and successfully classified the slide into 'wild-

type' or 'mutated' slides even though there were mixed patches with features of 'wild-type' or 'mutated' 

tissues. We think it’s the strength of deep learning to build the most apt models for the given tasks. 

However, more sophisticated strategies should be further developed to integrate the information from 

the heterogenous tissue patches to yield more precise prediction. 
 

- Page 11, Line 3: "We divided a WSI into non-overlapping patches of 360×360 pixel tissue images at 

20× magnification to detect mutational status. " How were these parameters chosen? 

 

Because many of the WSIs in the TCGA datasets were scanned at 20× and not 40×, we decided to 

adopt 20× to include all possible WSIs. 360×360 pixel tissue images were determined to make the 

batch size for the training could be more than 100. We experimented with different tissue sizes and 

batch sizes during our previous studies and concluded that 360×360 pixel tissue images and the batch 

size of 128 are good for tissue classification tasks. Then, we used the parameters for many studies. 

We consider the parameters are reasonable for current GPU performance.  

 

- Page 11,Line 13: "Morphologic features reflecting mutations in specific genes might be expressed 

mainly in tumor tissues rather than normal tissues." Please add at least one or two references for this 

sentence. - more details about the training should be provided (optimiser, transfer learning yes/no, 

number of epochs, early stopping criteria, etc.) 

 

We appended two new references to the sentence (Driver and passenger mutations in cancer (PMID: 

25340638, DOI: 10.1146/annurev-pathol-012414-040312), Comprehensive Characterization of 

Cancer Driver Genes and Mutations (PMID: 29625053, DOI: 10.1016/j.cell.2018.02.060)).  



More details about the training were provided in the Methods section. (Related manuscripts are as 

follows) 

(Page 12 Line: 17-18) 

We fully trained the network from the beginning and did not adopt a transfer-learning 

scheme.  

(Page 12 Line: 20- Page 13 Line: 4) 

The Inception-v3 model was implemented using the TensorFlow DL library 

(http://tensorflow.org), and the network was trained with a mini-batch size of 128 and 

cross-entropy loss function as a loss function. For training, we used the RMSProp optimizer, 

with an initial learning rate of 0.1, weight decay of 0.9, momentum of 0.9, and epsilon of 1.0. 

Ten percent of the training slides were used as the validation dataset, and training was 

stopped when the loss for the validation data started to increase. 

 

- Page 12, Line 19: "Color normalization was applied to the tissue patches to avoid the effect of stain 

differences.". Recent studies have shown that stain normalization is an effective preprocessing step to 

build reliable deep learning frameworks in digital pathology (doi: 

10.1016/j.compbiomed.2020.104129, doi:10.1038/s41598-020-71420-0). At least the one reference is 

needed for this sentence. 

 

We appended the two references to the sentence (The impact of pre- and post-image processing 

techniques on deep learning frameworks: A comprehensive review for digital pathology image 

analysis (PMID: 33254082, DOI: 10.1016/j.compbiomed.2020.104129), Impact of rescanning and 

normalization on convolutional neural network performance in multi-center, whole-slide classification 

of prostate cancer (PMID: 32873856, DOI: 10.1038/s41598-020-71420-0)).  

 

- What is the overall accuracy of the cancer detection system? 

 

For a more clear assessment of the classifiers, we appended tables for the accuracy, sensitivity, 

specificity, and F1 score of the classification results of mutation prediction models (Table 1 and 

Supplementary Table S4). (Related manuscripts are as follows) 

(Page 15 Line: 7-9) 

In addition, the accuracy, sensitivity, specificity, and F1 score of the classification results of 

mutation prediction models with cutoff values for maximal Youden index (sensitivity + 

specificity - 1) were presented.  

(Page 17 Line: 14-16) 

http://tensorflow.org/


For a clearer assessment of the performance of each model, the accuracy, sensitivity, 

specificity, and F1 score of the classification results are presented in Table 1.  

(Page 19 Line: 8-10) 

The accuracy, sensitivity, specificity, and F1 score of the classification results of mutation 

prediction models trained with both SSMH and TCGA datasets are presented in 

Supplementary Table S4. 

 

- Were the same images from this study used to train the classifier? (normal/tumor classifier) 

 

Yes, the normal/tumor classifiers were separately trained with the frozen and FFPE tissue slides of the 

TCGA-STAD datasets. 

 


