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Abstract
During infections, nucleic acids of pathogens are also engaged in recognition via 
several exogenous and cytosolic pattern recognition receptors, such as the toll-like 
receptors, retinoic acid inducible gene-I-like receptors, and nucleotide-binding 
and oligomerization domain-like receptors. The binding of the pathogen-derived 
nucleic acids to their corresponding sensors initiates certain downstream 
signaling cascades culminating in the release of type-I interferons (IFNs), 
especially IFN-α and other cytokines to induce proinflammatory responses 
towards invading pathogens leading to their clearance from the host. Although 
these sensors are hardwired to recognize pathogen associated molecular patterns, 
like viral and bacterial nucleic acids, under unusual physiological conditions, such 
as excessive cellular stress and increased apoptosis, endogenous self-nucleic acids 
like DNA, RNA, and mitochondrial DNA are also released. The presence of these 
self-nucleic acids in extranuclear compartments or extracellular spaces or their 
association with certain proteins sometimes leads to the failure of discriminating 
mechanisms of nucleic acid sensors leading to proinflammatory responses as seen 
in autoimmune disorders, like systemic lupus erythematosus, psoriasis and to 
some extent in type 1 diabetes (T1D). This review discusses the involvement of 
various nucleic acid sensors in autoimmunity and discusses how aberrant 
recognition of self-nucleic acids by their sensors activates the innate immune 
responses during the pathogenesis of T1D.

Key Words: Nucleic acid sensing; Type 1 diabetes; Pattern recognition receptors; Nucleic 
acid receptors; Type 1 interferon; Beta cells
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Core Tip: Under abnormal physiological conditions, such as excessive cellular stress or 
apoptosis, endogenous self-nucleic acids like DNA, RNA or mitochondrial DNA 
accumulate in extranuclear compartments or extracellular spaces or form complexes 
with host proteins. Such situations sometimes lead to the failure of discriminating 
mechanisms of nucleic acid sensors leading to proinflammatory responses as seen in 
autoimmune diseases like systemic lupus erythematosus, psoriasis and to some extent 
in type 1 diabetes (T1D). The understanding of the role of nucleic acid-sensing and 
their downstream signaling pathways is gradually evolving and provides another 
avenue in exploring therapeutic options for treating autoimmune diseases like T1D.

Citation: Badal D, Sachdeva N, Maheshwari D, Basak P. Role of nucleic acid sensing in the 
pathogenesis of type 1 diabetes. World J Diabetes 2021; 12(10): 1655-1673
URL: https://www.wjgnet.com/1948-9358/full/v12/i10/1655.htm
DOI: https://dx.doi.org/10.4239/wjd.v12.i10.1655

INTRODUCTION
Type 1 diabetes (T1D) is a complex autoimmune disorder that involves infiltration of 
innate and adaptive immune cells culminating in the killing of insulin producing beta (
β)-cells, mainly through T-cell dependent mechanisms. Pathogenesis of T1D involves 
an initial infiltration of mononuclear cells consisting of neutrophils, dendritic cells 
(DCs) and macrophages[1] in the pancreatic islets[2] followed by lymphocytic infilt-
ration[3]. Beta-cell death is mainly mediated by autoreactive CD8+ T cells that release 
cytolytic granules, perforins facilitating the entry of granzymes in target β-cells[4,5]. 
The innate immune cells carry a variety of specialized receptors known as pattern-
recognition receptors (PRRs) whose main function is to detect well-conserved 
structural motifs that are indispensable to pathogen survival and are known as 
pathogen-associated molecular patterns (PAMPs)[6]. In addition to recognizing 
PAMPs, these receptors under certain circumstances can also recognize damage 
associated molecular patterns (DAMPs) released by dying autologous cells, including 
β-cells, and can activate signaling cascade in a fashion similar to PAMPs recognition
[7]. This recognition initiates a canonical immune signaling cascade driven by type 1 
interferons (IFNs), mainly IFN-α to induce IFN-stimulated genes (ISGs) which activate 
inflammatory mediators, release cytokines responsible for instituting an inflammatory 
state in the pancreatic islets, and overexpression of HLA class-1 molecules on β-cells 
that enhances uptake of autoantigens by antigen-presenting cells (APCs)[8-10]. Nucleic 
acids, like other PAMPs, are vital for the survival and propagation of pathogens,  and 
hence, the PRRs of the human innate immune system were evolved to recognize and 
mount an appropriate response against the pathogens bearing them. In various 
autoimmune conditions, like systemic lupus erythematosus (SLE), psoriasis, etc. and to 
some extent in T1D, the nucleic acids released by self-cells under certain physiological 
conditions, such as inflammation, stress, apoptosis, necrosis, pyroptosis, necroptosis, 
and NETosis act as ligands of PRRs, leading to either initiation of these autoimmune 
conditions or worsening of their pathogenesis[1,11,12]. In this review, we have 
summarized the recent advances in understanding the role of self-nucleic acids, their 
sensors, and downstream signaling pathways involved in the pathogenesis of T1D and 
discussed the novel therapeutic approaches targeting autoimmune diseases, including 
T1D.

NUCLEIC ACID SENSING 
As a part of the innate immune system, PRRs are the primary sentinels against the 
microbes, and initiation of immune responses through PRR recognition is crucial for 
the host defenses. PAMPs, such as viral or bacterial nucleic acids, in addition to other 
bacterial or fungal cellular components, are commonly recognized by the host PRRs. 
Recognition of PAMPs by PRRs initiates a downstream signaling cascade resulting in 
the innate immune responses by promoting the expression of pro-inflammatory 
cytokines, IFNs, etc.[13]. These cytokines signal the adjacent cells to promote the 
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expression of various ISG to impair replication of pathogens. Besides microbial 
infection, PRRs activation by nucleic acids can also be initiated by the host cells. Stress 
or cell-death induced release of self-nucleic acids, such as genomic DNA, mRNA, 
tRNA and mitochondrial DNA (mtDNA) can also be recognized by PRRs to trigger 
inflammatory cytokines and type-I IFN, leading to chronic inflammation. Inappro-
priate or prolonged detection of these nucleic acids has been shown to be associated 
with many autoimmune diseases[11]. Presently, PRRs are classified into 4 main 
categories as follows: Toll-like receptors (TLRs), retinoic acid inducible gene-I (RIG-I)-
like receptors (RLRs), absent-in-melanoma (AIM)-Like Receptors (ALRs), nucleotide-
binding and oligomerization domain (NOD)-like receptors (NLRs), and C-type lectins 
(CTLs). CTLs and most TLRs are located in the plasma membrane, while the NLRs, 
RLRs, ALRs and a few TLRs are located intracellularly[13].

TLRs
TLRs are a conserved class of PRRs belonging to the family of type-I transmembrane 
receptor proteins consisting of an extracellular Leucine-Rich Repeat (LRR) domain and 
an intracellular C-terminal toll/IL-1 receptor (TIR) domain[14]. This domain is 
required for the interaction and recruitment of various adaptor molecules to activate 
downstream signaling pathways involving the transcription factors Activator Protein-
1 (AP-1), Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells (NF-κB), 
and Interferon Regulatory Factor (IRF)[15]. To date, 13 different types of TLRs (TLR 1-
13) have been identified. TLRs 1-9 are expressed by both humans and mice; whereas 
only humans, express TLR10, while mice are known to express TLR11-13[16]. TLRs are 
broadly expressed in both immune and non-immune cells in two distinct cellular 
compartments, extracellular and intracellular (mainly in endosomes)[17]. In T1D, upon 
recognition of pathogenic and/or foreign material, TLRs influence many immunologic 
mechanisms, including activation and maturation of APCs, antibody production, 
down regulating regulatory T cell (Treg) responses, and facilitating a pro-inflam-
matory environment through the secretion of a plethora of cytokines and chemokines
[18].

TLR-TLR ligation and interaction transduces signals through MyD88 (Myeloid 
differentiation primary response 88)-dependent or independent pathways. Upon 
activation, MyD88 recruits Interleukin 1 Receptor Associated Kinase (IRAK-1), IRAK-
4, and Tumor Necrosis Factor receptor (TNFR)-Associated Factor 6 (TRAF-6), which 
then activate c-Jun N-terminal Kinase (JNK), Ikβ Kinase (IKK), AP-1, and NF-κB. The 
MyD88-independent pathway is mediated by TIR-domain-containing adapter-
inducing IFN-β (TRIF) and TRIF Related Adaptor Molecule (TRAM), leading to the 
activation of NF-κB, AP-1, or IRFs[19], while the TLR3 signaling is mediated through 
TRIF, TLR7, TLR8, and TLR9 signals through MyD88. It has also been demonstrated 
that TLR signaling can efficiently promote the uptake of autoantigens by APCs[8-10]. 
Under normal physiological conditions apoptotic cell derived antigens are not 
presented efficiently by MHC class II molecules. However, TLR ligand co-adminis-
tration not only enhances antigen presentation but also promotes antigen specific 
responses by CD4+ T cells[8]. Thus, it means that TLRs not only acts as danger signal 
sensors but also regulators of self-and non-self-antigen discrimination[20,21]. In 
support of this fact, it has been demonstrated that stimulation of TLRs enhances 
antigen processing by up-regulating scavenger receptors via the MyD88-dependent 
pathway[22].

The role of TLRs especially those involved in the recognition of nucleic acids is also 
being recognized in autoimmune diabetes. TLRs can recognize various forms of 
endogenous DNA or RNA produced during virus infection induced cell death[23]. 
However, TLR3, TLR7, TLR8, and TLR9 specifically recognize viral-associated nucleic 
acids with comparatively higher affinity and have been implicated in the pathogenesis 
of T1D. TLR3-/- NOD mice have shown high mortality from Coxsackie B4 virus (CVB4) 
infections and the few that survived develop T1D[24]. Certain polymorphisms in the 
TLR3 gene (rs3775291 and rs13126816) have also been shown to be related with a 
higher risk of T1D and a more aggressive pathology[25]. A double stranded RNA 
(dsRNA) mimetic polyinosinic: polycytidylic (poly I: C) has been reported to be 
recognized by TLR3, leading to induction and increase in the severity of T1D in mice, 
depending on dose and administration[25].

Stimulation of TLR7 (in addition to CD40 activation of DCs) can induce 
diabetogenic cytotoxic CD8+ T cells in the pancreatic lymph nodes of NOD mice to 
promote the onset of autoimmunity[26]. Repeated topical administration of a TLR7 
agonist, imiquimod, is sufficient to promote T1D development while inhibition using 
IRS661 can significantly lower disease onset[26]. Similarly, TLR7 signaling in 
plasmacytoid DCs (pDCs) triggers B and T cell activation via IFN-I secretion in 
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rotavirus infections, on the other hand, inhibition of TLR7 can block this process and 
prevent the acceleration of T1D following infection[27]. Zhang et al[28] have shown 
that TLR9 blockade can impede the activation of diabetogenic CD8+ T cells and, delay 
autoimmune diabetes in NOD mice. Liu et al[29] generated TLR9 knockout NOD mice 
and observed improvements in insulin secretion, glucose tolerance, and β-cell 
function. These improvements were partially mediated by the upregulation of CD140a 
on β-cells. Similar results have been observed by the use of TLR9 antagonists or by 
genetic targeting on ontogenesis and function of β-cells to protect NOD mice from 
T1D.

Hence, these and other reports further necessitate more research to understand and 
improve defects associated with self-nucleic acid recognition by TLRs associated with 
T1D pathology.

RLRs
RLRs are a group of intracellular receptors that recognize viral dsRNA and are 
comprised of 3 proteins: (1) RIG-1; (2) Melanoma differentiation-associated gene 5 
(MDA5); and (3) Laboratory of genetics and physiology 2 (LGP2), which is composed 
of a DExD/H box RNA helicase domain and a C-terminal domain[30]. Both RIG-1 and 
MDA5 contain additional N-terminal caspase activation and recruitment domains 
(CARDs) that transmit downstream signaling. RIG-I and MDA5 have similar functions 
and they initiate antiviral signals to induce IFN gene activation, while LGP2 acts as a 
regulator of MDA5 and RIG-1[31]. Upon recognition of RNA, an ATP-dependent 
conformational change occurs in RLR[32] resulting in the activation of CARD and 
further activation of an adaptor molecule, mitochondrial antiviral signaling (MAVS) 
protein[33]. Activation of MAVS, in turn, triggers signaling cascades involving 
TRAF3/6, caspase 8/10, RIP-1, fas-associated death domain, and TNF receptor-
associated death domain ultimately activating TANK binding kinase 1 (TBK1)/IKK-ε 
and IKKα/IKKβ to induce transcription of type-I IFNs and proinflammatory cytokines 
by activating IRF-3 and NF-κB.

When challenged with pathogenic stress, various single nucleotide polymorphism 
(SNP) in the interferon induced with helicase C domain 1 (IFIH1) gene have been found to 
cause greater or reduced susceptibility in the pathogenesis of T1D via altering MDA5 
activation and expression[34]. The IFIH1 mutation A946T (rs1990760) has been 
involved in the pathogenesis and development of various autoimmune diseases like 
T1D, SLE, and multiple sclerosis (MS)[35,36]. Two independent studies conducted on 
subjects with diabetes showed that subjects with heterozygous A946T SNP have a 
more prominent immune response and ISG expression to Coxsackie virus challenge in 
comparison to healthy controls, suggesting greater IFNs and ISGs expression during 
infection[37,38]. In another study, Cinek et al[39] demonstrated a positive correlation 
between IFIH1 polymorphism (rs1990760), which is known to be strongly associated 
with T1D, and enteroviral RNA frequency in the blood of T1D subjects. The authors 
further suggested that rs1990760 can modify enteroviral frequency in the blood of 
healthy children harboring IFIH1 polymorphism, predisposing them towards T1D
[39]. Gain-of-function mutations in IFIH1 have been also found to be associated with 
overexpression of type 1 and type 3 IFN[40]. A study by Gorman et al[41] observed 
mice that were homozygous for IFIH1 SNP (946T) or exhibiting IFIH1 risk alleles (843R 
and 946T) simultaneously, had enhanced expression of IFIH1-related genes, increased 
rate of autoimmunity development, and ability to recognize self-RNA. Such mutations 
may alter the expression of inflammatory molecules and the dynamics of target 
binding, and activation may also be altered, resulting in more potent/enhanced IFN 
response leading to the risk of T1D. For example, MDA5 mutation E627 causes loss of 
a portion of C-terminal region, resulting in loss of dsRNA ligand and binding[42]. 
Overall, these reports provide us with enough knowledge about the role of RLRs in 
the pathogenesis of T1D.

ALRs
A few PRRs also include some members of the family of proteins containing pyrin and 
hematopoietic interferon-inducible nuclear (HIN) domain[43]. The Pyrin and HIN 
domain (PHYIN) family of proteins comprises of ALR, which contains an N-terminal 
Pyrin domain and one or two C-terminal hematopoietic IFN-inducible nuclear 
proteins with 200 amino acids (HIN-200) domains, containing an oligonucleo-
tide/oligosaccharide-Binding fold (OB fold), which is a common DNA-binding motif
[44]. Of all ALRs, absent in melanoma 2 (AIM2) protein is the only one conserved in 
both humans and mice. AIM2 possesses the ability to sense DNA in the cytoplasm and 
as well as in the nucleus[44].
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AIM2 is a cytosolic dsDNA receptor that oligomerizes on recognizing cytosolic 
foreign dsDNA and promotes the polymerization of the adaptor protein, Apoptosis-
associated Speck-like (ASC) protein and eventually forming a caspase-1 activating 
inflammasome[44]. AIM2 binds to small DNA fragments up to 20bp; however, in 
order to initiate immune responses against longer DNA fragments, oligomerization of 
AIM2 is required. ALRs can sense self-DNA through leakage from nuclear envelope 
and exosomes engulfed by phagocytes; however, the ability of ALRs to elicit type 1 
IFN responses is questionable, as mice deficient in ALRs can mount effective type 1 
IFN responses to DNA viruses and lentiviruses[45].

NLRs
NLRs are comprised of various cytosolic PRRs, which are characterized by the 
presence of a conserved NOD[46]. NLRs consist of an N-terminal effector binding 
region, which is further comprised of: (1) Protein-protein interaction domain such as 
the: (a) CARD; (b) Pyrin domain (PYD); and (c) Baculovirus inhibitor repeat domain; 
(2) NOD domain, which is needed for self-oligomerization and nucleotide binding; 
and (3) Array of C-terminal LRR motifs to recognize the pathogenic pattern and 
regulate NLR activity.

Upon recognition of nucleic acids by the C-terminal LRR motifs, the downstream 
signaling gets initiated, involving conformational changes that result in oligomer-
ization of NLR via the NOD domain. NLR exposes the effector domains to initiate 
CARD and PYD recruitment and activation by enhancing their oligomerization[47]. 
NLRs interact with receptor interacting serine/threonine protein kinase 2 to trigger 
mitogen-activated protein kinase (MAPK) and NF-κB[48]. The NLRs have a proven 
role in antiviral immunity; however, their role in sensing self-nucleic acids is gradually 
emerging[49]. NLRs also recognize oxidized forms of mitochondrial DNA, which 
could have important implications in inflammation and cancers[50].

Role of ALRs and NLRs in the formation of inflammasomes 
Inflammasomes are a diverse class of cytosolic multiprotein complexes consisting of an 
adaptor protein containing CARD, a sensor protein and caspase-1 which is highly 
proinflammatory. Their assembly can be triggered by a variety of stimuli, ultimately 
leading to caspase-1 activation and synthesis of proinflammatory cytokines. Inflam-
masomes play a crucial role in the mobilization and activation of various immune cells 
in maintaining tissue homeostasis by initiating acute immune responses. Inflam-
masomes can also initiate chronic immune response leading to uncontrolled inflam-
mation which eventually causes cell death via pyroptosis[51]. Among them, NLRP3 
and NLRP1 inflammasomes are the most common subtypes[52]. ALRs and NLRs 
initiate the immune response by forming inflammasomes, thereby alleviating IL-1β 
and IL-18 maturation and release[53,54]. Activated caspase-1 then cleaves pro-IL-1β or 
pro-IL-18 ,enabling the release of the mature active cytokines IL-1β and IL-18[53,55].

NLRP3 inflammasomes have been reported to play crucial roles in the pathogenesis 
of various autoimmune disorders, including T1D[56,57]. In 2019, Sun et al[58], showed 
the association of SNPs with T1D pathogenesis and diabetes onset in the NLRP1 gene 
of T1D patients of Chinese Han origin. Increased susceptibility to T1D and celiac 
disease have been reported to be associated with SNPs within the NLRP3 gene. A 
study by Hu et al[59] showed an important role of NLRP3 in the pathogenesis of T1D 
in NOD mice. Elimination of NLRP3 altered T cell maturation via regulation of CCR5 
and CXCR3 expression, as well as pathogenic T cell mobilization to the pancreatic 
islets, which is a crucial process leading to β-cell death and disease progression. Also, 
knockout of NLRP3 downregulated C-C motif chemokine ligand 5 (CCL-5) and C-X-C 
motif chemokine ligand 10 (CXCL10) expression in the pancreatic islets via IRF-1 
signaling[59]. Furthermore, in STZ induced diabetic mice model, NLRP3 activation via 
mtDNA initiated IL-1β production in caspase-1 dependent manner, suggesting a direct 
role of NLRP3-caspase1 signaling in T1D[60]. Pereira et al[61] recently highlighted the 
role of mtDNA in the involvement of vascular endothelial dysfunction in human 
subjects with T1D and asserted on the connection between NLRP3 inflammasomes 
and T1D complications. In this study, mtDNA isolated from diabetic mice promoted 
NLRP3 inflammasome activation via mechanisms involving mitochondrial ROS and 
Ca2+ influx, which was abrogated in NLRP3 knockout mice.

Cyclic GMP-AMP synthase-stimulator of IFN 
The cyclic GMP-AMP synthase-stimulator of IFN genes (cGAS-STING) is a DNA 
sensing receptor present in the cytoplasm that recognizes host/pathogenic DNA[62]. 
When DNA binds on the active site of cGAS, its C-terminal containing the catalytic 
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unit undergoes a variety of conformational changes, resulting in cyclic guanosine 
monophosphate–adenosine monophosphate (cGAMP) formation from ATP and GTP
[63,64]. cGAMP formation results in STING activation by inducing conformational 
changes upon binding to its active site and also facilitates STING transportation from 
the endoplasmic reticulum to the Golgi apparatus[65,66]. Upon activation, STING 
further forms a complex with TBK1, which further phosphorylates IRF3 in endoly-
sosomes[67,68]. Phosphorylated IRF3 translocates into the nucleus undergoing 
dimerization, and thus inducing the expression of ISG[69,70]. However, STING is also 
involved in the stimulation of IFN-β by interacting with the Translocon-Associated 
Protein (TRAP)[65,71].

The role of cGAS-STING in various autoimmune disorders is being widely 
explored, while its role in T1D has not been reported earlier. Lemos et al[72] reported 
that the activation of STING resulted in suppression of T1D onset and progression 
when NOD mice were administered with DNA nanoparticles, which promoted 
indoleamine 2,3 dioxygenase (IDO) activity, thus modulating T cell immunity in 
pancreatic lymph nodes and pancreas.

Overall, many studies have yielded important information on how the nucleic acid 
sensors lead to the activation of downstream signaling pathways (Figure 1). These 
sensors and their signaling mediators have been implicated in different autoimmune 
diseases including T1D (Table 1)[73-84].

TYPE 1 IFN SIGNALING: AN IMPORTANT CONVERGING POINT
Most of the nucleic acid recognition pathways culminate in the release of type 1 IFN, 
especially IFN-α, via mediators like IRFs, which makes them one of the most crucial 
part of the nucleic acid sensing pathway. IFN-α has multiple roles, including upregu-
lation of human leukocyte antigen (HLA) class I and HLA class II to enhance antigenic 
presentation, increase in immunoproteasome activity, induce ER stress and cellular 
inflammation through TYK2 activation, induction of transcription factors, and signal 
transducer and activator of transcription 2 and IRF9. It also acts synergistically with 
IL-1β and induces β-cell apoptosis[85]. Heightened IFN-α secretion in peripheral blood 
mononuclear cells of T1D subjects by stimulation with influenza viruses has been 
attributed to the recognition of viral nucleic acids by endosomal TLRs of pDCs. 
Additionally, in vitro studies have demonstrated that pDCs secreted IFN-α enhances 
Th1 responses[86]. Another study observed higher levels of secreted IFN-α by pDCs 
obtained from the relatives of T1D subjects following their stimulation with CpG 2216
[87]. The transition of prediabetic stage to full-blown diabetes is also found to be 
controlled by IFN-α signaling. The study demonstrated that the infiltration of autore-
active T cells and β-cell killing can be prevented by blocking IFN-α signaling by 
sphingosine-1 receptor agonist prior to the clinical onset of disease[88]. Rodrigues et al
[89] in a recent study revealed IFN-1 hyper-responsiveness in T1D after innate 
immune stimulation of whole blood cells with CpG DNA. They observed higher 
induced IFN-1-associated gene expression in monocytes from NOD mice. Similarly, in 
human participants, ex vivo whole blood stimulation showed higher induced IFN-1 
responses in participants with T1D compared with healthy controls. In our recent 
study, we, too, observed increased secretion of IFN-α by the peripheral pDCs from 
T1D subjects compared to non-diabetic controls. Enhanced IFN-α secretion was also 
observed after stimulation with DNA-LL37 complexes indicating the inflammatory 
nature of pDCs derived from T1D subjects. Collectively, these data support the notion 
that IFN-α mediated effects play an important role in the early pathogenic events 
during initiation of autoimmune diabetes, and the presence of early type 1 IFN 
signature in susceptible individuals and animal models suggests the role of viral 
nucleic acids, and to some extent, the self-nucleic acids in T1D pathogenesis.

SELF-NUCLEIC ACIDS: ROLE IN PATHOGENESIS OF TYPE 1 DIABETES
During the initial phase of T1D, innate immune cells, like DCs, neutrophils and 
macrophages, infiltrate the islets much before the infiltration of T and B cells[2,90-92]. 
This buildup of innate immune cells is persistent during the later β-cell destructive 
insulitis as well[93]. Therefore, the entry of DCs and macrophages/monocytes can be 
considered an initial sign of the autoimmune process during the pathogenesis of T1D
[1,20,94].
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Table 1 Nucleic acid sensors involved in various autoimmune diseases including type 1 diabetes

No. Nucleic acid sensor Downstream signaling molecule Autoimmune disease Ref.

1 TLR9 Myd88/ IRF3/7 SLE [73,74]

2 TLR7 Myd88 T1D [27]

3 TLR3 TRIF T1D [25,75]

Singleton-Merton Syndrome, [76,77]4 RLR IRF3

AGS and T1D [34,78]

5 cGAS-STING cGMP SLE and AGS [79,80]

6 NLR T1D and SLE [58,81]

7 AIM

Inflammasome activation

SLE [81]

Inflammasome Primary Sjogren’s Syndrome [82]8 IFI16

Activation Rheumatoid Arthritis [83]

9 CTL Bcl10/CARD9 Multiple Sclerosis [84]

AIM: Absent-in-melanoma; cGAS-STING: Cyclic GMP-AMP synthase-stimulator of interferon genes; CTL: C-type lectin; NLR: Nucleotide-binding and 
oligomerization domain-like receptor; RLR: Retinoic acid inducible gene-I-like receptors; TLR: Toll-like receptor; TRIF: TIR-domain-containing adapter-
inducing IFN-β.

Although there is ambiguity regarding the exact role of innate immune cells and 
other initial triggers involved in the loss of β-cell tolerance, certain factors, like viral 
infection and ER stress are known to provoke an immune response in β-cells leading to 
the activation of pro-inflammatory pathways. Additionally, β-cells themselves might 
also participate in their demise by invoking apoptosis rather than being an innocent 
victim of autoimmune attack as previously thought [95]. One of the outcomes of β-cell 
destruction is the release of self-nucleic acids along with other cellular debris. Among 
the nucleic acids, the role of self-DNA in the development of T1D is highlighted by 
few studies, Diana et al[1] demonstrated that neutrophils, B-1a cells, and plasmacytoid 
dendritic cells are recruited to islets during physiological periods of β-cell death. 
Activated B-1a cells secrete dsDNA specific IgGs, which activate neutrophils to release 
DNA-binding cathelicidin-related antimicrobial peptide (CRAMP), which binds self-
DNA, and along with DNA-specific IgG, activating pDCs through the TLR9–MyD88 
pathway, leading to IFN-α production in pancreatic islets and initiation autoimmune 
diabetes in NOD mice. Mollah et al[96] observed increased incidence of diabetes 
associated with increased accumulation of ssDNA in the immune cells of granzyme A 
(protease degrading intracellular DNA) deficient NOD mouse due to induction of IFN 
response in pancreatic islets. The study identified DNA as a novel endogenous trigger 
of autoimmune diabetes and an in vivo role for granzyme A in maintaining immune 
tolerance. Earlier, Zentsova et al[97] had also observed that monocytes contribute to 
DNA sensing in patients with T1D via the TBK1 and STING pathways by recognizing 
CpG-DNA leading to the release of IFN-α and proinflammatory cytokines. These 
studies highlight the importance of investigating the interaction of DNA sensors of 
innate immune cells during the early pathogenesis of T1D. However, limitations in 
obtaining pancreatic tissues pose a big challenge in assessing such interactions.

Besides DNA, the role of self-RNA in the progression of T1D is also being 
speculated. A study by Kocic et al[98] demonstrated that accumulation of circulating 
self-RNA can lead to the progression of autoimmune or inflammatory conditions in 
subjects with juvenile T1D. Recently, studies from several groups suggested that 
adenosine deaminase acting on RNA (Adar1)  deficiency leads to the accumulation of 
retroelements, such as Alu:Alu hybrids, in the cytoplasm, which are then recognized 
by MDA5, resulting in excessive proinflammatory response[99,100]. Furthermore, 
mouse models deficient in Adar1 established that dysregulated RNA editing caused 
MDA5-driven autoimmunity[101,102]. The role of mtDNA acting as a ligand for 
nucleic acid sensors is also being observed by various research groups. When mtDNA 
is released into extracellular space and cytoplasm, it activates a variety of innate 
immune responses. West et al[103] showed that the mitochondrial transcription factor 
A (TFAM) deficiency leads to mis-packaged mtDNA, resulting into its cytoplasmic 
release where it bound and activated cGAS initiating a type-I IFN response. mtDNA 
has also been involved in the activation of inflammasome[104]. Carlos et al[105] shown 
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Figure 1 Nucleic acid sensors and their signaling pathways involved in autoimmune diseases including type 1 diabetes. A: Toll-like receptor 
(TLR) signaling: Priming of nucleic acid sensing is mediated by the activation of several TLRs, which are located in endosomes. For e.g., TLR3 recognizes double 
stranded RNA initiating downstream TIR-domain-containing adapter-inducing interferon (IFN)-β dependent signaling cascade via activation of IRF3 and IRF7, 
resulting in the induction of IFN-stimulated genes (ISGs). On the other hand, TLR7, TLR8 and TLR9 recognize ssRNA and dsDNA to trigger downstream signaling via 
Myd88, resulting in higher expression of either type1 IFNs or NF-κB via IRF7 and IκB phosphorylation, respectively. NF-κB activation further stimulates the production 
of pro interleukin (IL)-1β and pro IL-18, which get cleaved by caspase 1 into mature IL-1β and IL-18, respectively; B: Inflammasome complexes: Following recognition 
of nucleic acids, recruitment of various adaptor proteins occurs to form mature inflammasome complexes, which further cleave pro-caspase 1 and gasdermin D 
(GSDMD) into active caspase 1 and GSDMDn (GSDMD n-terminal), respectively. GSDMD gets inserted into the plasma membrane and helps in the release of 
inflammatory cytokines; C: Cytosolic Receptors: cGAS is another DNA sensor localized close to the plasma membrane. It recognizes and forms complexes with 
dsDNA. cGAS-dsDNA binding induces the catalytic synthesis of cGAMP from ATP and GTP, which further culminates in the stimulation of STING. Other DNA binding 
proteins (or sensors) like IFI16 and DDX41 also recognize DNA and activate STING, which further facilitates NLRP inflammasome activation. STING also activates 
the battery of IFN genes via IRF phosphorylation. Different forms of RNA originating from wide sources, like viral RNA, degraded self-RNA, etc. are recognized by 
RLRs, including RIG-1 and MDA5, following which they are imported to mitochondrial antiviral signaling (MAVS). MAVS further activates ISGs via IRF3-IRF7 
activation. IFNs also work in an autocrine fashion and stimulate more production of different nucleic acid sensors and other ISGs. AIM2: Absent in melanoma; ASC: 
Apoptosis-associated speck-like protein containing a CARD (Caspase activation and recruitment domain) Domain; BAX: Bcl-2-associated X protein; cGAS: Cyclic 
GMP-AMP synthase; DDX41: DEAD-Box helicase 41; DHX: DEXH-box helicase; GBP: Guanylate-binding proteins; GSDMD: Gasdermin D; GSDMDn: Gasdermin D 
(N-Terminal); HIN: Hematopoietic IFN-inducible nuclear protein; IFI16: Interferon gamma inducible 16; IFIT1: Interferon induced protein with tetratricopeptide repeats 
1; IFN: Interferon; IFNR: IFN receptor; IGRB10: Immunity-related GTPase family member B10; IKK: Iκb (Inhibitor of Nuclear Factor Kappa B) Kinase; IL: Interleukin; 
IL-1R1: IL-1 receptor 1; IRAK: Interleukin-1 receptor associated kinase; IRF: Interferon-regulatory factors; ISG: Interferon stimulated genes; JAK: Janus kinase; 
MAVS: Mitochondrial antiviral-signaling protein; MDA5: Melanoma differentiation-associated protein 5; Myd88: Myeloid differentiation primary response 88; NLRP: 
NLR (NOD-like receptor) family pyrin domain; NOD: Nucleotide binding and oligomerization domain; PKR: Protein kinase R; PYD: PYRIN Domain; RIG1: Retinoic 
acid-inducible gene I; STAT: Signal transducer and activator of transcription; STING: Stimulator of interferon genes; TBK1: TANK (TRAF family member-associated 
NF-kappa-B activator)-binding kinase 1, TLR: Toll-like receptor; TRAF: TNF (Tumor necrosis factor) receptor associated factors; TRIF: TIR [toll/interleukin-1 (IL-1) 
receptor] domain containing adapter inducing interferon-β.

that mtDNA activates NLRP3 to trigger IL-1β secretion via caspase-1-dependent 
pathway to precipitate the onset of streptozotocin (STZ) induced T1D in C57BL/6 
mice. In 2020, Pereira et al[61] observed that mtDNA promoted NLRP3 inflammasome 
activation that contributed to inflammation and endothelial dysfunction in patients 
with T1D.
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NUCLEIC ACID SENSING: WHAT LEADS TO THE DYSREGULATION?
The role of nucleic acids and their signaling has been explored by several studies in 
many autoimmune diseases, yet there is very little data on the aberrations in nucleic 
acid sensing mechanisms in autoimmune vs non-autoimmune conditions. Parallels are 
drawn from those autoimmune diseases, like psoriasis and SLE, where nucleic acids 
are targeted by the immune cells. During the pathogenesis of SLE, the pDCs get 
activated due to facilitated recognition of autoantibodies against nucleic acids by TLR7 
and TLR9 leading to increased secretion of type 1 IFNs[106,107]. A similar role of self-
DNA complexes and specific antibodies was also suggested by Diana et al[1] during 
the initial stages of T1D in the activation of TLR9 in pancreatic pDCs, which release 
IFN-α in NOD mice, as explained earlier.

An important study by Revelo et al[108], explored the possible role of different types 
of nucleic acids contributing to glucose intolerance during diet induced obesity (DIO). 
The study concluded that oxidized mtDNA derived from abnormal formation of 
extracellular traps (ETs) can promote inflammation of metabolic tissues via TLR7 and 
TLR9 in pDCs. The same study has also explored the possible role of exogenous 
sources of nucleic acids like CpG-ODN, which worsened glucose tolerance in lean 
mice, possibly by the recognition of CpG DNA by TLR9. A similar study has also 
shown that increased levels of circulating cell free DNA are involved in the activation 
of macrophages via TLR9 during DIO[109]. A recent study by Zentsova et al[97] 
demonstrated altered DNA sensing in subjects with T1D in response to microbial 
DNA. Prominent proinflammatory responses were observed in pDCs and monocytes 
of T1D patients compared to healthy controls. Furthermore, monocytes isolated from 
T1D subjects were shown to bind and internalize DNA and responded by releasing 
higher levels of proinflammatory cytokines as compared to control subjects. 
Surprisingly, this cytokine production was independent of the TLR9 signaling 
pathway but dependent on other intracellular receptors like, TBK1 and STING for 
recognition of CpG-DNA and NETs, which were used to mimic self-DNA in the study. 
During our study on the role of self-DNA in T1D, we have also observed that the 
pDCs and monocytes of T1D subjects behave differently from those of healthy 
subjects. We observed that the pDCs and monocytes of T1D subjects were more 
prompt on acquiring an inflammatory phenotype upon stimulation with molecules 
like DNA-LL37 complexes by initiating inflammation through IFN-α and augmenting 
autoimmunity by activating CD4+ T cells[110]. Therefore, it appears that either altered 
forms of nucleic acids or alterations in their sensors underlie the dysregulations in 
nucleic acid sensing in autoimmunity.

Formation of nucleic acid-protein complexes 
In normal circumstances, the self-nucleic acids are considered non-immunogenic in 
nature and in the extracellular environment, they undergo rapid degradation by 
various extracellular nucleases[111]. However, their binding to peptides like, LL37 and 
HMGB1 (released by neutrophils and monocytes, respectively)[112,113] can lead to the 
formation of complexes that are resistant to nuclease degradation. These complexes 
are transported to endosomal compartments of pDCs and monocytes, which are 
recognized by TLR9[114]. In the case of NOD mice, CRAMP (mouse equivalent of 
LL37) is known to form complexes with self-DNA and DNA-specific IgG to induce 
IFN-α production via the TLR9 and MyD88 pathways. In T1D, we have also observed 
that LL37 forms stable complexes with self-DNA to protect it from DNase degradation 
and, at the same time, it increases the efficiency by which pDCs and monocytes engulf 
DNA complexes in their cytosol[110]. Moreover, delayed clearance of apoptotic cells 
and other cellular debris by the macrophages also causes their accumulation, which in 
turn results in increased uptake of nucleic acids by innate immune cells, like pDCs and 
DCs that express abundant nucleic acid sensors. Apart from self-DNA, self-RNA is 
also capable of forming stable immune complexes with LL37, which was first observed 
by some researchers where they observed stable formation of complexes that readily 
enter endosomes of both pDCs and mDCs to induce TLR7 activation that finally 
triggers IFN-α secretion. Taking cue from these aforementioned studies it can be 
concluded that self-nucleic acids, like RNA, DNA and mtDNA, that are released from 
the dying β cells can form complexes with certain peptides and activate innate 
immune cells like pDCs, DCs and macrophages, and tilting the local immune 
homeostasis towards proinflammation.

However, the main unanswered question that remains is how does the uptake of 
self-nucleic acids or their complexes with proteins confer a proinflammatory 
phenotype to innate immune cells like the uptake of nucleic acids of viral and bacterial 
origin. Comparative studies done in past have shed some light and indicated that self-
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nucleic acids can induce similar if not heightened immune responses during the 
progression of autoimmune diseases, including T1D, although this hypothesis is still in 
its nascent stages and require some solid comparative studies, especially in T1D 
pathogenesis. The role of molecular mimicry by self-nucleic acids cannot be denied as 
they share similar motifs to pathogenic genomes like that of viruses and bacteria, a 
very good example of which is the presence of CpG islands in mtDNA. The role of 
nucleic acid induced innate immune inflammation also becomes particularly 
important, especially when viral infections alone cannot explain the initial infiltration 
and activation of innate immune cells, like pDCs, DCs, and monocytes, during the 
initial stages of T1D.

TARGETING NUCLEIC ACID SENSING PATHWAYS: THERAPEUTIC 
STRATEGIES 
With the increasing understanding of their roles and the signaling cascades in 
initiating inflammatory responses, novel therapies involving PRRs, have been 
attempted to target autoimmune diseases (Table 2).

Historically, targeting of downstream TLR signaling pathways using antimalarial 
drugs like chloroquine, quinacrine, and hydroxyl-chloroquine (HCQ) have been used 
in the treatment of autoimmune diseases since the 1940s, suggesting the effectiveness 
and importance of blocking endosomal TLR signaling rather than blocking TLR ligand 
themselves[115]. Compared to HCQ, CpG-52364, a quinacrine derivative and small-
molecule antagonist of TLR7/8/9 is therapeutically more effective and has fewer side 
effects in animal studies. A phase I clinical trial for treatment of SLE (NCT00547014) 
showed inhibition of disease development without causing general immunosup-
pression[116]. Next, the idea of reducing exogenous DNA and RNA associated 
DAMPs has also been tried as an alternative and broader approach to suppress non-
TLR dependent pathways of IFN production for the treatment of autoimmune 
diseases. Pulmozyme, a recombinant human DNase, has been in use since 1994 for the 
treatment of cystic fibrosis[117]. Additionally, Macanovic et al[118] showed that 
murine DNase can improve renal histology in NZB/NZW F1 Lupus-prone mice. A 
bovine DNase preparation also had initial success in improving clinical outcomes in a 
patient trial of SLE, but further studies were precluded due to the development of 
antibodies to the bovine DNase[119].

Oligodeoxynucleotides (ODNs) were first designed for direct binding and for 
antagonizing endosomal TLRs as an alternate strategy to treat SLE, which despite 
showing initial success the therapy, failed to garner support due to several reports of 
adverse effects like thrombocytopenia and neutropenia. Although greater promise was 
shown by ODNs, like immunomodulatory oligonucleotides (IMO)-8400 in psoriasis 
that target TLR7, TLR8, and TLR9 to reduce the expression of IL-17 signaling 
associated genes[120,121]. A phase 2a clinical trial, sponsored by Idera Pharma-
ceuticals, involving use of IMO-8400 for the treatment of plaque psoriasis exhibited 
reduced psoriasis severity with good tolerance in the recruited subjects (NCT01899729)
[122]. A preclinical study on INH-ODN-24888, a guanine modified oligonucleotide 
was initiated for the treatment of lupus patients based on its activity as a TLR7 and 
TLR9 antagonist, and it was observed to be more efficient than the unmodified 
oligonucleotide (INH-ODN-2088)[123,124].

Other peptide compounds designed to inhibit TLR signaling pathways in 
autoimmune diseases include SM934 (b-aminoarteether maleate). It targets TLR7 and 
TLR9 signaling cascades, thereby promoting their downregulation along with 
regulation of MyD88 expression and NF-kB activation through an unknown 
mechanism. Finally, it inhibits TLR-induced activation of B cells leading to a decrease 
in proliferation and antibody secretion in MRL/Lpr mice (animal model of SLE)[125]. 
Another peptide ST-2825 that blocks the dimerization of MyD88[126] by interfering 
with the recruitment of IRAK1 and IRAK4 to TLR7- and TLR9-MyD88 complexes was 
found to be of therapeutic importance in  inhibiting TLR-mediated inflammatory 
responses. Recently, PF-06650833, a small molecule inhibitor of IRAK4 has been 
reported to be effective in ameliorating some symptoms in patients with moderate to 
severe rheumatoid disease[127]. Another molecule, reported as “Compound II” in the 
study by Hasan et al[128], was shown to inhibit TBK1 and consequently douse the 
hyper-inflammatory responses in Trex-/- mice. Another novel inhibitor, TJ-M2010-6, 
has also shown the ability to suppress homo-dimerization of MyD88 by interacting 
with amino acid residues of its TIR domain, thereby preventing and treating T1D in 
NOD mice. Upon deducing the mechanistic pathways, it was observed that TJ-M2010-
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Table 2 Studies and trials with antagonists/inhibitors of nucleic acid sensors and their signaling mediators in various autoimmune 
diseases

No. Inhibitor Disease Target Phase (Preclinical/Clinical-trial ID) Ref.

1 Hydroxychloroquine Rheumatoid arthritis and SLE TLR7, TLR9, cGAS-STING NCT0380218 (Ongoing Trial) [139]

2 SM934 SLE TLR7 and TLR9 NCT03951259 (Phase II) [125]

3 Amlexanox T2D TBK1 and IKKε NCT01975935 (Phase II) [140]

4 TJ-M2010-6 T1D Myd88 Preclinical [129]

5 ST-2825 SLE IRAK1 and IRAK4 Preclinical [126]

6 Aspirin AGS cGAS Preclinical [141]

7 ODN-1411 Rheumatoid Arthritis TLR8 Preclinical [142]

8 INH-ODNs SLE TLR3 and TLR9 Preclinical [143]

9 X6 Autoimmune myocarditis cGAS Preclinical [144]

10 PF-06650833 Rheumatoid Arthritis IRAK4 NCT02996500 (Phase II) [127]

11 Compound II SLE and AGS TBK1 Preclinical [128]

12 Sifalimumab (MEDI-545) SLE IFN-α NCT00979654 (Phase II) [145]

13 AGS-009 SLE and Rheumatoid Arthritis IFN-α NCT00960362 (Phase I) [132]

14 IMO-8400 Plaque Psoriasis TLR-7, 8, and 9 NCT01899729 (Phase IIa) [122]

15 CpG-52364 SLE TLR-7, 8, and 9 NCT00547014 (Phase I) [116]

SLE: Systemic lupus erythematosus; T2D: Type 2 diabetes; TID: Type 1 diabetes.

6 treatment prevents insulitis in vivo, whereas in vitro experiments showed inhibition 
of DCs maturation, leading to suppression of T cell activation and production of 
inflammatory cytokines[129]. To directly target the interaction of TLRs with their 
corresponding ligands, several antibodies have been designed, including Sifalimumab 
(NCT00979654, NCT01283139) and AGS-009 (NCT00960362). Both of the antibodies 
showed significant reduction of the IFN-α signature in the clinical trials aimed at SLE 
treatment[130-132]. However, despite the indispensable role of endosomal TLRs in the 
pathology of several type 1 IFN-driven autoimmune diseases, the therapeutic 
strategies against TLR7, TLR8, and TLR9 have yet to see appreciable success in various 
clinical trials.

Recent data on the involvement of molecular pathways leading to NETosis, and the 
components of NETs, like myeloperoxidase MPO, neutrophil elastase NE, and nucleic 
acids, have made them an attractive target for therapeutic strategies in autoimmune 
diseases, including T1D[133]. The best studied and the viable target is PAD4, which is 
a nuclear enzyme mediating NET formation by chromatin de-condensation[134], 
several inhibitors against NETs have been tried, of which GSK484 has shown 
persistent activity in animal models of inflammatory disease[135]. Additionally, an 
enzyme, staphylococcal nuclease, has shown some promise by degrading intestinal 
NETs and ameliorating both intestine and pancreatic islet inflammation to effectively 
regulate the blood glucose homeostasis in NOD mice[136]. Keeping in view the 
important roles played by nucleic acid sensing in shaping immune responses, 
specifically via modulation of innate immunity, researchers are actively exploring the 
nucleic acid-based nanoparticles that can be designed and functionalized with known 
therapeutic immunomodulatory domains and motifs, for the treatment of various 
nucleic acid centered autoimmune diseases[137,138]. Collectively, these studies 
emphasize the scope of further exploration of novel approaches to targeting key 
checkpoints in nucleic acid recognition and their downstream signaling pathways.

CONCLUSION
There are ample studies on T1D pathogenesis in both humans and animal models, and 
significant progress has been made in understanding the role of various cellular 
mechanisms involved in the initiation of the disease. Emerging data on the contri-
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bution of nucleic acids and their receptors on innate immune cells is challenging the 
current dogmatic and historical view of T1D as being a T cell driven disease.

The evolving view, that we have tried to support in this review, is that the initiation 
of autoimmune diabetes and its etiopathogenesis is much more complex and might 
involve aberrant recognition of self-nucleic acids at a very early stage. Recent findings 
from several groups have suggested the role of self-nucleic acids in elevating IFN 
induced responses by involving several PRRs in various autoimmune disorders 
including T1D. We would further like to propose that recognition of these self-nucleic 
acids by various innate immune cell subsets may have a similar outcome as in other 
autoimmune diseases, like SLE and psoriasis, where DAMPs like self-nucleic acids 
play a crucial role in the precipitation of the disease. However, despite this growing 
knowledge, further insights are required on the role of various nucleic acids and their 
sensors particularly in the context of the regulation of their downstream signaling 
mediators during the pathogenesis of T1D. Thus, it becomes necessary to search for 
novel inhibitors or receptor antagonists as a way of modulating dysregulated nucleic 
acid sensing, which might be useful in preventing or delaying the progression of T1D 
and similar autoimmune diseases.
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