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Abstract

Much of the published literature in Radiology-related Artificial Intelligence (AI) focuses
on single tasks, such as identifying the presence or absence or severity of specific
lesions. Progress comparable to that achieved for general-purpose computer vision has
been hampered by the unavailability of large and diverse radiology datasets containing
different types of lesions with possibly multiple kinds of abnormalities in the same
image. Also, since a diagnosis is rarely achieved through an image alone, radiology Al
must be able to employ diverse strategies that consider all available evidence, not just
imaging information.

Using key imaging and clinical signs will help improve their accuracy and utility
tremendously. Employing strategies that consider all available evidence will be a
formidable task; we believe that the combination of human and computer intelligence
will be superior to either one alone. Further, unless an Al application is explainable,
radiologists will not trust it to be either reliable or bias-free; we discuss some
approaches aimed at providing better explanations, as well as regulatory concerns
regarding explainability (“transparency”). Finally, we look at federated learning, which
allows pooling data from multiple locales while maintaining data privacy to create
more generalizable and reliable models; and quantum computing, still prototypical but

potentially revolutionary in its computing impact.




INTRODUCTION

Introduction

As medical knowledge’s volume and complexity advances, electronic clinical decision
support (CDS) will become increasingly important in healthcare delivery, and
increasingly likely to use Artificial Intelligence (AI). Historically, Al approaches have
been diverse. However, even senior radiologists, e.g., 1, have inaccurately considered Al,
machine learning, and deep learning as synonymous. We therefore summarize these
approaches, considering their strengths and weaknesses.

Symbolic approaches: These, the focus of “classical” Al (1950s-1990s), embody the use of
high-level abstractions (“symbols”) that represent the concepts that humans (often
experts) use in solving non-numerical problems. They are most closely related to
traditional computer science/software development. In fact, they are mainstream
enough that specific terms (instead of “Al”) are preferred to describe a given approach.
Among the successes:

Business-rule systems (BRS or “Expert Systems”) 2: these allow human experts, working

either with software developers or with graphical user interfaces, to embody their
knowledge of a particular area to offer domain-specific advice/diagnosis. Robust open-
source tools such as Drools ? are available for building BRS.

Constraint Programming Systems 4: Constraint satisfaction involves finding a solution to a

multivariate problem given a set of constraints on those variables. When the constraints
are numeric, techniques such as linear programming 3 (which preceded symbolic Al
and is applied in numerous business-operations problems) work better. Some software,
such as Frontline Solver(TM) ¢ (of which Microsoft Excel’s “Solver” add-in is a
lightweight version) handles both numerical and symbolic constraints.

Data-driven approaches (Also called “machine learning” or ML): These are used to make
predictions, or decisions based on those predictions, by manipulating numbers, or

entities transformed into numbers, rather than symbols. They are most useful in




domains where human experts have not formulated problem-solving strategies, but
data is available that, if analyzed to discover patterns, can guide such formulation.
Understandably, ML approaches have received a major boost in today’s “big data” era.
Approaches that employ probabilities, such as Bayesian inferencing 7, have become
viable: prior probabilities that could only be guessed at previously (using highly
subjective “expert judgment”) can now be computed directly from data (e.g.
EHRs/public-health registries), with the caveat that these reflect local conditions - e.g.,
incidence of specific infectious diseases - and will vary with the data source.

All data-driven approaches use iterative mathematical optimization techniques
(originally pioneered by Isaac Newton and his contemporaries) to converge onto
solutions. In ML parlance, the optimization process is called “training”.

ML approaches are subdivided into:

Statistical learning (SL): The use of statistical methods to discover patterns or fit predictive
models to data. These techniques originated in the late 19% century (linear
regression/correlation), though they have advanced to tackling vast numbers of input
variables (also called “features” in ML) and vastly more diverse problems. Human
expertise is involved in identifying the features (numeric or categorical) relevant to the
problem, and in transforming them to a form suitable for analysis. (For example, a
variable comprising of N categories - e.g., gender/race - can be transformed into (N-1)
one-or-zero variables using a simple technique called “one-hot encoding”s.)
Almost all SL methods have been developed by researchers with an applied
math/statistics background. Individual methods might make specific assumptions
about the nature of the variables (e.g., that they have a Gaussian distribution, or that
their effects are additive).

Artificial Neural Networks (ANN): (The term “artificial” is typically implied and therefore
usually dropped in both the full phrase and the abbreviation.) This family of
approaches, which began in the 1950s, also results in the creation of predictive models.
It is now prominent enough to deserve its own subsection, below.

Neural Networks (NNs): Deep Learning




NNs are inspired by the microstructural anatomy and functioning of animals’ central
nervous systems: software that simulates two or more layers of “neuron”-like
computational units (“cells”). Each layer’s cells send their output to cells in the next -
and in approaches called “recurrent NNs”, provide “feedback” to earlier layers as well.
However, NNs employ mathematical techniques under the hood, notably mathematical
“activation functions” for individual cells. The activation function for a neuron typically
transforms inputs of large positive or negative numbers into outputs with a smaller
range (e.g., zero to one, or *+ 1). An activation function may also incorporate a threshold,
i.e., the output is zero unless the input exceeds a particular value.

“Deep” NNs, their modern incarnation, have many more layers than older (“shallow”)
NNs. (“Deep Learning” is ML performed by DNNs). NNs differ from Statistical
Learning in two ways.

NNs make few or no assumptions about variables’ characteristics: their statistical
distributions don’t matter, and their inter-relationships may be non-linear (typically,
unknown). Consequently, NNs may sometimes yield accurate predictive models where
traditional SL fails.

While NNs can use human-expert-supplied features, they don’t have to. For image input,
DNNs can discover features directly from the raw pixels/voxels. The initial layer
discovers basic feature such as regional lines, subsequent layers assemble these into
shapes, and so on: LeCun et al’s classic Nature paper ? describes this process, which
parallels the cat visual cortex’s operation, as discovered by Nobelists David Hubel and
Torsten Wiesel 10. After training, the initial layers can be reused for other image-
recognition problems, a phenomenon called Transfer Learning (TL) 1: starting training
with layers that recognize basic features is faster than starting from scratch.

TL is also widely used in DNN-based Natural Language Processing (NLP) for medical
text: BERT 12, a giant DNN trained by a Google team on the entire contents of Wikipedia
and Google Books, was used to bootstrap the training of BioBERT, trained on the full
text of PubMed and PubMed Central 13. Choudhary et al 4 review medical-imaging

applications of Domain Adaptation, a special case of TL, where a DNN trained on a set of




labeled images (e.g., relating to a particular medical condition) are reused for images for
a different, but related, condition, either as-is or after an accelerated training process.
This gain in power isn't free.

The number of computations involved goes up non-linearly with the number of
layers 15, and so much more compute power is required: notably, abundant random-
access-memory (RAM) and the use of general-purpose Graphics Processing Units
(GPUs) 16, which perform mathematical operations on sequences of numbers in parallel.
(In fact, the theoretical advances embodied in diverse modern DNN architectures
would be infeasible without powerful hardware.)

DNNs require vastly more data than SL to discover reliable features which human experts
may find obvious. Data volume isn’t enough: one must also try to eliminate bias by
using diverse data. (We address bias in section 3.)

Certain arithmetic-based issues manifest when the number of layers becomes large -
production DNNs can have hundreds of layers - and inputs from each layer pass to the
next. Underneath the hood, numbers are being multiplied. When a large sequence of
numbers that are all either larger or less than 1 get multiplied repeatedly, the product
tends to infinity or to zero: for example, 2 multiplied by itself 64 times = 1.88 x 10'°.

In DNNSs, the consequences of repeated multiplication, called the “Exploding Gradient”
or “Vanishing Gradient” problems, can thwart the training process. These are both
prevented by Batch Normalization (BN), which re-adjusts the numerical values of all
the outputs of each hidden layer during each iteration of the optimization training, so
that the average of the outputs is zero and their standard deviation is one. Apart from
speeding learning, BN allows more layers to be added to the DNN, and hence one can
tackle harder problems.

Because of their performance characteristics - DNNs have achieved better accuracy than
previous methods, on numerous benchmarks, in a variety of domains - most current Al
research focuses on DNNs.

Table 1 summarizes the differences between the symbolic, statistical and DNN

approaches.




[Table 1 goes here]
1.2. Training in Machine Learning
ML models can be trained in one of two ways:

Supervised Learning: The objective here is to predict a category (presence/absence or

severity of a lesion/disease) or a numeric (interval) value. Category prediction is also
called “classification”. The training data contains the answers: either in the output
variable/s for tabular data, or for images, human annotation/Labeling that identifies
specific object categories (including their region of interest, if multiple categories coexist
within an image.)

Unsupervised Learning: Here, the objective is to discover patterns in the data, thereby

achieving dimension reduction (i.e., a more compact, parsimonious representation of
the data).

Semi-supervised learning: The drawback of supervised learning is that for unstructured

data (narrative text, images) annotation/Labeling is human-intensive, as well as costly
if it involves human expertise that must be paid for. Semi-supervised learning uses a
combination of (some) labeled and (mostly) unlabeled data, under the assumption that
unlabeled data points close to (or in the same cluster as) labeled data points are likely to
share the same category/class.

Statistical learning techniques can be either supervised or unsupervised. Examples of
supervised techniques are: Multivariate linear regression/general linear models, which
predict interval values; logistic regression and support vector machines, which predict
categories; K-nearest neighbor and Classification and Regression Trees (CART), which
predict either. Unsupervised SL methods include clustering algorithms, principal
components/factor analysis and Latent Dirichlet Allocation.

DNNSs, which need very large amounts of data, have motivated the development of
semi-supervised methods. They are intrinsically suited for classification. For interval-
value prediction with image data, they typically perform or assist in segmentation
(which can work with/without supervision), after which numeric volumes can be

computed from the demarcated voxels.




1.2.1. Preprocessing

Before training, the data is typically pre-processed with one or more steps. Pre-
processing makes the training (and hence predictions) more reliable. The strategies used
depend on the kind of data (numeric vs image). Some strategies are general, while
others are problem specific (we occasionally refer to the latter). Among these steps are:

Detecting suspected erroneous valuesincluding unrealistic outliers (e.g, non-
physiological clinical-parameter values). The adage “Garbage In, Garbage Out” applies
to all facets of computing.

Replacing missing/erroneous values (“imputing”): An entire subfield of applied statistics
is devoted to this problem. Strategies include picking the average value across all data
points, average value for the individual patient, interpolated values (for time-series
data), efc. In general, SL algorithms, many of which mandate either imputing all
missing values or dropping the data point/s in question, are more vulnerable to
missing values than DL.

Standardizing: adjusting numeric values so that disparate variables are represented on
the same scale. For variables with a Gaussian (“Normal”) distribution, each value is
subtracted from the variable’s mean and the result divided by the variable’s standard
deviation, with the sign preserved. For non-Gaussian variables, the value is subtracted
from the median and divided by the inter-quartile range. (Batch normalization,
discussed earlier, was inspired by standardizing.)

For images, editing out artefacts extraneous to the content to be analyzed - eg.,
superimposed text labels or rulers to indicate object size. We come back to this issue
later.

1.2.2. Sources of Error: Overfitting and Hidden stratification

A strength of DNNS, stated earlier, is their ability to discover features from raw data.
Sometimes, this can also be a weakness: overfitting occurs when any ML model is led
astray by incidental but irrelevant features in the input. Apart from working unreliably
with a new dataset, an overfitted model often making mistakes that humans never

would. A DNN for diagnosing skin malignancies used a ruler/scale’s presence to infer




cancerous lesions, whose dimensions are usually recorded diligently 7. Similarly,
textual labels on plain musculoskeletal radiographs were confused with internal-
fixation implants, lowering accuracy, 8.

Several strategies minimize the risk of overfitting, in addition to making reporting of
results more honest:

Cross-validation: The training data is partitioned into a certain number, N (e.g., 10), of
approximately equal slices. The training is conducted N times, each time sequentially
withholding 1 slice (i.e., only the remaining N-1 slices are used), and the results are
averaged.

Withholding of test data from training: A portion of the data is completely withheld
from the training process. After the ML model is fully trained with the training data, it
is evaluated with the test data, and results are (or should be) reported against the test
data only.

Regularization: This is a general term for computational techniques that reduce the
likelihood of overfitting during the operation of the training algorithm’s optimization
phase. The most well-known and general approach is to penalize model complexity: the
fewer the number of variables that remain in the final trained model, the less the
complexity. Originally applied to linear and logistic regression !, where Lasso and
Ridge Regression respectively include penalties that are linear and quadratic in the final
number of variables, it is also used for DL.

A regularization approach specific to DLs is Dropout: disabling a certain fraction of
neurons in hidden layers of a multilayer network during each cycle of training. Li et
al 2 provide theoretical reasons why dropout can interfere with batch normalization,
discussed above, resulting in performance degradation. They recommend that dropout
be employed only after the last hidden layer where BN is used, and that the proportion
of disabled neurons not exceed 50% (and should usually be much smaller).

A related problem, Hidden Stratification?! occurs when a category contains sub-
categories (“strata”) unrecognized during problem analysis: here, performance on some

strata may be poor. Thus, Rueckel ef al Zcite an example of severe pneumothorax being




recognized accurately only in those images where a chest tube (inserted to provide an
outlet for trapped air) is present 2. While mild pneumothorax is treated conservatively
without a tube, misdiagnosing a yet-to-be-treated, severe pneumothorax has serious
consequences.

Nakkiran ef al 2 had earlier observed the phenomenon of “double descent.” For some
problems, when a DNN classifier is trained on increasingly larger datasets, performance
intially gets worse. Later, when the training dataset has become much larger,
performance gets better. This could be explained by hidden stratification. The
somewhat-larger dataset is heterogenous in unconsidered ways, but the instances of
minority sub-categories are too few to learn from, so they only serve to degrade
performance. With much larger datasets, these instances become numerous enough to
yield a signal that the DNN can use to discriminate more accurately.

The Need for a Holistic, System based Approach

Most recent research in radiology Al has focused on DNNSs: the following is just a brief

list of DL applications. (This list is not intended to be comprehensive.)

Binary (Yes/no) classification: Elbow fractures 2, rib fractures 2, orthopedic implants %,
pneumothorax 28, pulmonary embolism 2%, lung cancer3?, pulmonary tuberculosis
(where several commercial applications exist) 31.

Multi-category classification (grading/ staging): anterior cruciate ligament injuries 32, hip

fracture 33,

Segmentation with quantitation: Pulmonary edema 3! ,epicardial fat3>3¢; gliomas 37 38;

liver metastases 3. 40; spleen 4, and brain infarcts 42.

While impressive, much more is needed to apply Al to realistic problems, especially
when intended for deployment in teleradiology scenarios where onsite skill/experience
is often lacking. We summarize the issues here before discussing each issue in detail.
The focus on DNN applications that perform only a single task, while proliferating the
number of publications in the literature, does little to advance the likelihood of practical

deployment.




Depending on the problem, humans use multiple problem-solving strategies. Similarly,
realistic solutions must combine multiple Al approaches, in addition to old-fashioned
software engineering (such as intuitive and robust user interfaces).

Good radiologists are also good clinicians. Al must be able to use all available evidence,
including collective wisdom gained over decades of experience.

Both humans and Al can be biased; this susceptibility must be recognized. Among the
numerous ways to reduce bias, one must consider explainability - the ability to clearly
describe the workings of a particular application to a subject-matter expert unfamiliar
with AI technology.

21. The Limitations of Uni-tasking

As Krupinski notes !, most DNNs in radiology uni-task. Thus, a DNN specialized for
rib-fracture recognition will, even if outperforming radiologists, ignore concurrent
tuberculosis, pneumothorax, or Flail Chest, unless trained for the same. For that matter,
DNN tuberculosis (TB) diagnosis considering only
consolidation/cavitation/mediastinal lymph nodes may miss TB in children. In one
series of pediatric patients with pleural effusions, 22% had TB; in 41% of these, effusion
was the only radiologic TB sign 3. We have noticed that these effusions may be lamellar
and track upwards, akin to pleural thickening, without being overtly visible, unlike the
usual pleural effusions. In fact, in our experience, a lamellar effusion in a child is a good
pointer towards the presence of a Primary Complex of TB.

No clinical radiologist uni-tasks: “Savant Syndrome” describes humans with
exceptional skill in one area who are mentally challenged otherwise. Overspecialized
DNNss suffer, in effect, from perceptual blindness. This phenomenon can be induced
experimentally in normal humans by overwhelming their cognitive abilities: in a
famous experiment, where subjects had to watch a basketball-game video and count the
number of passes one team made, half the subjects failed to notice an intermingling
gorilla-suited actor in the center of several scenes 4.

Based on general-purpose vision (GPV) studies, features learned in one specialized uni-

tasking recognition problem (e.g. cats) transfer poorly to a related problem (e.g.,




recognizing horses). GPV has advanced because of the public availability of datasets,
most notably ImageNet 45, which contain a vast number of object categories, often with
multiple categories per image. The images are annotated by crowdsourcing: each object
is indicated with a bounding box. Any DL approach expecting to perform well in a
challenge to identify these objects cannot be over-specialized. (Unfortunately, DNNs
trained on ImageNet perform very poorly with radiology images: transfer learning is
not guaranteed to work.)

We believe that focusing short-term on research publications addressing relatively
simple problems (with much research being PhD-thesis-driven) retards overall
progress. Historically, symbolic Al's notorious addiction to this approach, accompanied
by hype that greatly outpaced actual achievement, led to several “Al Winters” 4647,
steep funding drops following disillusionment. McDermott (a symbolic Al researcher)
raised such concerns in a famous 1976 paper, “Artificial Intelligence Meets Natural
Stupidity”4s.

2.1.1. Moving toward multi-tasking

There is no reason (besides the costs of compensating radiologists for their time) why
radiographic modality-specific ImageNet equivalents cannot be created. Collections of
images for trauma patients where multiple lesions are likely to be present may be a
good starting point. One could also reuse the vast amount of existing annotated images
for uni-tasking-DL research: federated DL (see section5.1) may help to test new,
broader, lesion-recognition algorithms.

While DNNs excel at the important subtask of pattern recognition, they alone would
not suffice to move radiology Al into the clinic, as now discussed.

22 The Right Strategy for the Right Subtask

Decades of research in cognitive psychology, especially observations of human
expertise, have shown that humans use different strategies to different problems. In his
classic, “Conceptual Blockbusting” 4, James L.Adams identifies strategies as varied as:
general-purpose critical thinking; knowledge of science and mathematics (including

calculus); visualization; and applying ethical constraints.




The psychologists Daniel Kahneman and Amos Tversky, founders of “behavioral
economics” (Kahneman got a Nobel- Tversky was deceased by then) postulate two
modes of thinking. These are “System 1”7 - “lower level”, rapid, intuitive, and reflex
(“short-cut”)- and “System 2” - “higher level”, slow, deliberate, considering multiple
sources of information, and requiring concentration. (We return to this work later.) As
noted by Lawton *,DNNs embody System 1 thinking, while statistical and symbolic
approaches embody System 2. Both must be used together.

What applies to humans also applies to electronic systems. Symbolic, statistical and NN
approaches have been combined in several ways:

In new domains where little practical human experience has accumulated, statistical
learning has led to discovery of patterns that can then be encoded as rules or in decision
trees, which originated symbolic Al

While symbolic Al can identify differential diagnosis for a given clinical presentation,
statistical Al, using data from local sources or from the literature, can compute
probabilities to rank these diagnoses, as well as sensitivity/positive predictive value of
individual findings (including test results) to suggest the way forward.

Symbolic approaches are easier for human experts to understand (because they parallel
deliberative human problem-solving approaches), and so are often used to “explain”
patterns discovered by DNNs. (We discuss explainability in Section 4.)

In radiology Al, Rudie et al combine DNN with symbolic/statistical Al (Bayesian
networks) for differential diagnosis of brain lesions. Doing this on a large scale across
multiple radiology domains has the potential to improve clinical decision making.

23.  Using All Available Evidence

In sufficiently diverse patient populations, attribution of diagnoses to detected
radiographic lesions requires evidence from history, physical exam, non-radiology
investigations, plus knowledge of prevalence. Our recommendation to combine all such
information to make better decisions is not unique: Kwon ef al 5! also suggest a

Radiology Al that approach that combines multiple evidence sources (imaging plus




clinical variables) for COVID-19 prognostication, while Jamshidi ef al 52 also recommend
a combined approach for COVID-19 diagnosis and treatment.
We provide examples below.

An upper-lobe cavity on a chest X-ray could suggest neoplastic processes, mycobacterial
infection, intracellular fungal infection (histoplasma, coccidiosis), efc. Serological
confirmation plus newer technologies (e.g., GenXPert for tuberculosis ) assist
diagnosis.

The failure to elicit a proper history can be expensive and traumatizing. One of us
(S.A.M.) encountered a young girl who had been repeatedly evaluated under general
anesthesia for possible ectopic ureter localization, because of failure to make one simple
observation on the plain radiograph. A subsequent Multidetector CT exam concluded
erroneously that the incontinence was due to a vesicovaginal fistula, which is extremely
rare in children, more so if acquired. This erroneous diagnosis could have been avoided
by a simple observation (a slight gap in the pubic symphysis) and one simple question:
when did symptoms start? (From birth.) This suggested the correct diagnosis: female
epispadias, which a pediatric surgeon confirmed.

Recognizing Midline shift (MLS), plus trans-tentorial and other herniations, allows better
triaging for intracranial bleeds or head trauma 3 %). Xiao et al 3¢ describe an algorithm
to MLS of the brain on CT, with a sensitivity of 94 % and specificity of 100 %,
comparable to radiologists.

In head injury, ear-nose-throat bleeds / pneumocephalus suggest basilar skull fractures %7,
which are non-displaced and difficult to detect unless looked for diligently.

Pneumothorax diagnosis by DNNs 38, while useful, could increase accuracy for Tension
Pneumothorax by additionally looking for simple radiological signs like - inversion of
the diaphragm, tracheal shift/shift of mediastinal structures to the opposite side (Figure
1).

Al for rib-fracture recognition # can be complemented by the clinical finding of “Flail
Chest”, which seriously impairs respiratory physiology ® and may occur when three or

more ribs are broken in at least two places.




24.  Combining Al with Other Technologies
A major thrust of medical Al is in making other technologies, both existing and novel,
much “smarter”, reducing error by assisting manual tasks and decision-making
performed by the radiologist or operator.

Applications in Interventional Radiology: The Royal Free Hospital in London employs
an Al-backed keyhole procedure for stenting, coupled with Optical coherence
tomography (OCT). While OCT allows viewing the inside of a blood vessel, the Al
software automatically measures vessel diameter to enhance decision-making by the
interventionist. 61. Similar roles are possible in interventions such as robotic
intussusception-where visualization of the ileocecal junction and reflux into terminal
ileum could be taken as end points of the procedure.

Al-assisted 3-D Printing of biological tissue such as heart valves, blood vessel grafts and
possibly complete organs is discussed in 2.

3. Biases in Radiology

Artificial Intelligence needs real Intelligence to guide it. Truly intelligent humans are
distinguished from the merely smart by intellectual humility and flexibility: as noted in
Robson’s “The Intellect Trap” %3, they constantly consider the possibility of being
wrong, and abandon long-held beliefs when these are invalidated by new evidence.
Tetlock’s work on human expertise also emphasizes flexibility’s importance; both in
adapting to reality, as well as in problem-solving strategies. As discussed in section 2.2,
Al approaches must be flexible too.

Tversky and Kahneman emphasize that, because of its reflex nature, System 1 thinking
is prone to bias. Also, because System 2 requires sustained mental effort (which can
cause fatigue), System 1 often contaminates System 2 thought, leading to errors or bias.
Busby et al ¢ cite this work in their excellent article on bias in radiology. An early paper
by Egglin and Feinstein considers context bias in radiology %, where certain aspects of
patients’ initial presentation to their clinicians led radiologists to give less weight to
alternative diagnoses.

Electronic applications can be biased just as humans are. The sources of bias are several.




Symbolic approaches may reflect the biases of their human creators.

Machine-learning approaches that rely on humans to specify relevant features/input
variables may be biased if the features chosen are inappropriate, or if relevant features
are omitted.

If features are discovered entirely by DL, the data itself may be biased or non-
representative. An early version of Facebook’s artificial-vision system misidentified
bare-chested black males as “primates” ®because of too few samples in the training
data.

4. Explainability of AL
Explainability is the ability to describe the internal workings of a particular AI model
(which may apply one or more techniques to a practical problem) to a human expert
who intimately knows the problem’s-domain but not Al technology. Molnar’s book on
Interpretable ML ¢ is an excellent reference. From this perspective, ML techniques are
classified into “white-box” (explainable in terms resembling ordinary language),
and “black-box” models, which cannot be readily explained, because they rely on
complex mathematical functions/concepts.

41.  What determines “Black-Box” vs “White-Box"?
Explainability is determined by the following factors:

The choice of technique. In general,

Symbolic Al (and techniques that display output as symbols, such as decision trees) are
most understandable/explainable.

Statistical techniques are less explainable. Tversky and Kahneman found in their studies
of cognitive errors that people find statistical concepts - such as the phenomenon of
regression to the mean due to random processes- more difficult to understand than
symbols. In the real-life example of the “Monty Hall problem” ¢8, at least 1,000 PhDs,
including the great mathematician Paul Erdos, had difficulty believing the correct
answer, which is an application of Bayesian reasoning that causes a revision of posterior
probabilities when new evidence arrives. Therefore, the explainer must often educate

the human expert in statistics before addressing the specifics of the application.




In DNNSs, the “explanation” is actually a large set of numbers, corresponding to the
weights of the inputs of each “neuron” to the neurons to which it connects, along with
descriptions of the mathematical transformation/s involved. This is so far removed
from everyday experience as to be practically incomprehensible (though there is active
research in converting this information into explanatory visuals).

The classification of a particular technique as “black-box” or “white-box” is somewhat
arbitrary, depending on the beholder, and on the domain expert’s background
knowledge. For example, Loyola-Gonzales #classifies Support Vector Machines (SVMs)
as “black-box”. However, SVMs, developed by applied statistician Vladimir Vapnik’s
group at Bell Labs 72, are mathematically very closely related to regression 7, but try to
optimize a different mathematical function (maximized separation between instances of
different classes vs minimized sum-of-least-squares deviations between observed and
predicted values). Multivariate regression (linear, logistic, efc.) is taught in enough
practically oriented college-level statistics courses for non-statisticians (e.g., business

majors, life scientists, medical researchers) to be widely understood.

The complexity of individual problems:

Any model with hundreds of input variables (such as the regression models used by
macro-economists) will be intrinsically hard to comprehend.

Business-Rule systems are naturally expressed in ordinary language, and so are in
principle, highly explainable. However, R1, devised by McDermott?2 to configure
Digital Equipment Equipment’s VAX minicomputers based on a customer’s needs,
eventually used 2,500 rules. Proving that a BRS is internally consistent - that is, no rule
contradicts any other rule in the system- is known to be combinatorically hard.
“Understanding” the principles of a large BRS does not make it any easier to debug if
its output is incorrect.

Whether human-understandable input needs to be modified into an unfamiliar form to

make it amenable to computation. This is the case with SVMs when employed for

optical character recognition: the image of each letter is converted to a set of numeric




features. In the extreme case, radiographic images are transformed by DNNs from
individual pixels into hundreds of features that are “discovered” from the raw data,
with each subsequent layer in the DNN representing composite features of increasing
complexity.

42, The Consequences of Non-Explainability
The concerns about explainability are closely tied to two risks:

Bias: if you cannot explain the application (to a human expert, or to a jury if the
application’s use is challenged legally), how can you show that it is not biased?
“Because the computer says so” is unpersuasive.

Failure: DNNs that process images often make unexplained, bizarre mistakes -

misidentifications or failure to identify, as noted by Heaven DZ. Explanations for such
mistakes” origins are not obvious in “post-mortems” even to DNN experts. One
approach to forestalling such errors is to deliberately attempt to fool image-
classification DNNs by generating “fakes” using another “adversary” DNN to make
tweaks (minor or not-so-minor) to authentic images, which are then supplied as
training input to the classification-DNN 7 However, while adversarial networks have
reduced misidentifications, they do not offer cast-iron guarantees that a mistake will
never be made. As in the cliché, absence of evidence (of defects) is not evidence of
absence.
Failure can have consequences ranging from the merely frustrating to the near-
apocalyptic. A famous example of the latter was the Soviets’ satellite-based Early-
Missile-Warning System, which, in 1983, flagged 5 missiles from US sites heading
toward the USSR 7. A retaliatory nuclear strike, which would have started World War
3, was averted by Lt. Col. Stanislav Petrov, who reasoned that this was a false alarm -
an intentional US attack would need many more missiles - and disobeyed standing
orders (to relay the warning up the command-chain) by deciding to wait for confirming
evidence, which never arrived.

43.  Approaches Toward Making “Black-Box” Al More Explainable




In general, such approaches are specific to the problem being addressed, as Molnar

makes clear.

One can show the impact of the values of individual input variables/features on the

output variable (e.g., categorization, risk score) using a technique called Deep Taylor
Decomposition (DTD) 76, based on the Taylor series taught in intermediate-level
Calculus. Lauritsen ef al 77 use DTD as part of an explanation module for predicting four
categories of acute critical illness in inpatients based on EHR data. DTD works when the
number of input variables is modest (this paper used 33 clinical parameters), and the
variables correspond to concepts in the domain. It would not be useful for very

numerous, transformed, or automatically discovered variables.

Sometimes, a detailed technical explanation may not be necessary: one can simply test

with enough test cases where the system’s output matched that of human experts. For
images, delineating areas of interest with highlight boxes can draw the user’s attention.
(This is a standard technique employed by object-recognition systems on benchmark
datasets such as ImageNet.) This technique has the drawback that in case of erroneous
diagnosis, merely drawing the user’s attention to regions of interest may not suffice.

Also, “absence of evidence is not evidence of absence”. For a “black-box” system with a
critical bug that manifests under uncommon circumstances, you will discover the
problem only when it happens. In a complex-system (non-Al) context, Jon Bentley, in
his classic work “Programming Pearls” 78 cites a colleague who implemented what he
thought was a performance optimization in a FORTRAN compiler. Two years later, the
compiler crashed during use. The colleague traced the crash to his “optimization”,
which had never been invoked in the interim and crashed the very first time it was

activated in production.

Loyola-Gonzales ¢ suggests combining a white-box and black-box approach (the order

44.

depending on the problem) in a pipeline, so that the output of the first is processed into
a more human-understandable approach by the second.

Regulatory Concerns




Certain software applications for tasks previously requiring specialized human skills
have already received FDA approval and are in wide use. For example, smartphone-
deployable electrocardiogram (EKG)-interpretation programs report standard EKG
parameters as well as a few abnormal signals such as Ventricular Premature Beats.
Given the increasing deployment of Software as a Medical Device (SaMD), and the
possibility of catastrophic medical error when operated (semi-) autonomously, national
regulatory bodies are naturally concerned about standardizing the processes of
development and testing of SaMD to prevent such errors.
The FDA has specified an action plan, including guidelines for best ML practices,
version control when the algorithm is changed, and protection of patient data 7. The
European Commission’s proposal for regulation is much wider, encompassing uses of
Al across all of society 8 Human Rights Watch has criticized this proposal & on the
grounds that it currently does not offer sufficient protection for the social safety net
when such software functions autonomously to make decisions concerning, for
example, eligibility of individuals for benefits.
5. Future Directions
51.  Federated Machine Learning

ML in general, and DL specifically, need lots of data to achieve desired accuracy.
Volume alone does not suffice: the data must also be sufficiently diverse (i.e., coming
from multiple locales) to minimize bias. The obvious solution, physical pooling of data.
faces the following barriers:

Data privacy - which is less of an issue with digital radiography, where DICOM metadata
containing identifiable information can be removed.

Mistrust - a formidable hurdle when academic or commercial consortia bring rivals
together.
The technique of Federated Learning (FL), originally pioneered by Google as an
application of their well-known MapReduce algorithm #2 allows iteratively training an

ML model across geographically separated hardware: the ML algorithm is distributed,




while data remains local, thereby ensuring data privacy. It can be employed for both
statistical and deep learning.
Typically, a central server coordinates computations across multiple distributed clients.
At start-up, the server sends the clients initialization information. The clients commence
computation. When each client is done, it sends its results back to the server, which
collates all clients” results. For the next iteration, the server sends updates to each client,
which then computes again. The process continues until the ML training completes
convergence.
FL’s drawbacks are Internet-based communication overhead, which limits training
speed, and greater difficulty of analysis of any detected residual bias. Ng ef al 83 provide
a detailed technology overview. Sheller et al #use FL to replicate prior analysis of a 10-
institution brain-tumor-image-dataset derived from The Cancer Genome Atlas(TCGA).
Sarma et al % describe 3-institution FL-based training on whole-prostate segmentation
from MRIs, while Navia-Vasquez et al 8¢ describe an approach for Federated Logistic
Regression.
In balance, FL's finessing of data privacy issues enables addressing of problems at
scales not previously possible, with the greater data volume and diversity ensuring
better accuracy and generalizability.

52. Quantum Computing
See our previous work, Merchant et al 87, for an exploration of this rapidly progressing
and revolutionary field. Here, we only provide a basic introduction and address some
issues not covered in that paper.
Quantum mechanics describes the rules governing the properties and behavior of matter
at the molecular and subatomic levels. Established technologies such as digital
photography and nuclear radiography (based on the photoelectric effect), the integrated
circuit (based on semi-conduction of electricity by certain materials), and the laser
(based on coherent emission of photons) are all applications of quantum mechanics.
Quantum computing (QC) uses the phenomenon of quantum superposition, in which

matter at the atomic/subatomic level can exist (briefly) in two different states




simultaneously, as the basis for computing hardware design. Unlike the bit in an
ordinary computer, which can be either 1 or 0, the quantum bit (“qubit”) can be both 1
and 0 simultaneously, so that an array of N qubits could represent 2N states
simultaneously.

QC can, in theory, help solve certain computational problems (called NP-hard
problems, where NP = “non-deterministic polynomial” ). The time taken to solve an
NP-hard problem by brute force (i.e., trying out every possible solution, which is the
only way to solve such a problem exactly) increases exponentially as the problem size
grows linearly. For example, cracking the widely used Advanced Encryption Standard-
256 (with 256 bits) would take all the world’s (non-quantum) computers working
together, longer than the age of the Universe. In 1994, Peter Shor's theoretical
work 8 showed that a “quantum computer” with enough qubits could solve a
particular NP-hard problem (factoring the product of 2 Large prime numbers, used in
AES-256) in polynomial time, making cryptographic attacks feasible.

The physical challenge is to maintain the qubits stable for a sufficiently long time to
accomplish some computation (thus far, such stability has been achieved at
temperatures close to absolute zero). In addition, for a computer based on qubits,
prototypical work suggests that replacing the conducting elements (the interconnecting
wires in an integrated circuit) with light-conducting elements (so-called optical
computing #) may be the way forward L.

There are also theoretical considerations as to the kinds of problems for which QC will
offer benefits. Thus, Aaronson %2 points out that we don’t yet know if the class of
problems involved in the optimization (training) phase of DNNs will benefit: while we
can hope that they do, the simulations must still be performed to show that this will be
the case. Similar concerns are echoed by Sarma %, who expresses uncertainty about the
timeline for QC to become commercially feasible.

Despite the risks of hype and disillusion., it may be worth remembering Arthur C.
Clarke’s dictum about the future: “If an elderly but distinguished scientist says that

something is possible, he is almost certainly right; but if he says that it is impossible, he




is very probably wrong.” %4 If quantum computing becomes commercially viable,
almost every aspect of computing (and therefore, every technology that depends on
computing) will benefit vastly. The Quantum Internet, Intelligent Edge devices, Edge
Computing, Quantum Artificial Intelligence, Quantum Artificial Intelligence
Algorithms and their applications in Augmented Reality/Virtual Reality and a more
immersive Metaverse experience (for teaching/simulations, actual interactions etc.); are
some of the exciting future developments/enhancements based on Quantum

Computing that we have discussed in our previous paper .

CONCLUSION

Combining the wisdom (of both knowledge and meta-knowledge - ie., problem-
solving strategies) gained over the years, with the tremendous versatility of Al
algorithms will maximize the utility of Al applications in medical imaging for everyday
clinical care. However, scaling up the use of multiple algorithmic strategies and sources
of evidence is challenging. Because of its sheer diversity and volume, radiologists’
experiential knowledge is very hard to encode in a form that allows instant retrieval.
This difficulty applies even to its subset, “artificial general intelligence” (AGI), also
known as “common sense”. Common sense, apart from being not so common across
humans, turns out to be surprisingly hard to implement, because of the sheer breadth of
information that must be encoded into computable form.
We see two ways forward: the first long-term and less feasible, the second possible
today.

Allocating massive effort and resources to create medical/radiology AGIL

Using software technology (including Al) to extend the human mind, much as access to
Web search engines has vastly democratized access to considerable specialized
knowledge.
In the latter approach, Al technology can be ubiquitous, integrated, and often
functioning behind the scenes for tedious, monotonous and time-consuming tasks (as

suggested by Krupinski !, but still leaving humans in control of critical decisions.
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