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Abstract
The aberrant use of alcohol is a major factor in cancer progression and metastasis. 
Contributing mechanisms include the systemic effects of alcohol and the exchange 
of bioactive molecules between cancerous and non-cancerous cells along the 
brain-gut-liver axis. Such interplay leads to changes in molecular, cellular, and 
biological functions resulting in cancer progression. Recent investigations have 
examined the role of extracellular vesicles (EVs) in cancer mechanisms in addition 
to their contribution as diagnostic biomarkers. Also, EVs are emerging as novel 
cell-free mediators in pathophysiological scenarios including alcohol-mediated 
gut microbiome dysbiosis and the release of nanosized EVs into the circulatory 
system. Interestingly, EVs in cancer patients are enriched with oncogenes, 
miRNA, lipids, and glycoproteins whose delivery into the hepatic microenvir-
onment may be enhanced by the detrimental effects of alcohol. Proof-of-concept 
studies indicate that alcohol-associated liver disease is impacted by the effects of 
exosomes, including altered immune responses, reprogramming of stromal cells, 
and remodeling of the extracellular matrix. Moreover, the culmination of alcohol-
related changes in the liver likely contributes to enhanced hepatic metastases and 
poor outcomes for cancer patients. This review summarizes the numerous aspects 
of exosome communications between organs with emphasis on the relationship of 
EVs in alcohol-associated diseases and cancer metastasis. The potential impact of 

https://www.f6publishing.com
https://dx.doi.org/10.3748/wjg.v27.i41.7080
http://orcid.org/0000-0002-8475-1412
http://orcid.org/0000-0002-8475-1412
http://orcid.org/0000-0001-8982-760X
http://orcid.org/0000-0001-8982-760X
http://orcid.org/0000-0002-3431-6842
http://orcid.org/0000-0002-3431-6842
http://orcid.org/0000-0001-7876-149X
http://orcid.org/0000-0001-7876-149X
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
mailto:benita.mcvicker@va.gov


Kuracha MR et al. Exosomes in AALD and metastatic cancer

WJG https://www.wjgnet.com 7081 November 7, 2021 Volume 27 Issue 41

s/by-nc/4.0/

Specialty type: Biochemistry and 
Molecular Biology

Country/Territory of origin: United 
States

Peer-review report’s scientific 
quality classification
Grade A (Excellent): 0 
Grade B (Very good): B 
Grade C (Good): 0 
Grade D (Fair): 0 
Grade E (Poor): 0

Received: May 15, 2021 
Peer-review started: May 15, 2021 
First decision: June 22, 2021 
Revised: July 2, 2021 
Accepted: September 30, 2021 
Article in press: September 30, 2021 
Published online: November 7, 
2021

P-Reviewer: Wang Z 
S-Editor: Chang KL 
L-Editor: A 
P-Editor: Chang KL

EV cargo and release along a multi-organ axis is highly relevant to the promotion 
of tumorigenic mechanisms and metastatic disease. It is hypothesized that EVs 
target recipient tissues to initiate the formation of prometastatic niches and cancer 
progression. The study of alcohol-associated mechanisms in metastatic cancers is 
expected to reveal a better understanding of factors involved in the growth of 
secondary malignancies as well as novel approaches for therapeutic interventions.
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cancer; Liver metastasis; Interorgan communication

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Alcohol consumption is an independent risk factor for cancer development as 
well as the promotion of metastatic disease, a major cause of morbidity and mortality 
in cancer patients. The identification of mechanisms and potential therapeutic targets 
for metastases remains to be determined for many cancers. Interorgan communication 
involving extracellular vesicles (EVs) is considered a vital process in the promotion of 
tumorigenic pathways and the spread of disease. Understanding the role of EVs in 
organ-organ communication networks will likely contribute to the development of 
future opportunities to combat cancer metastasis.
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INTRODUCTION
The consumption of alcohol in chronic and/or aberrant drinking patterns correlates 
with a substantial burden of disease worldwide. A recent study conducted by the 
National Survey on Drug Use and Health stated that in the United States alone, 73.1% 
of adults regularly use alcohol and nearly 15 million people have an alcohol use 
disorder[1]. Based on World Health Organization reports, alcohol use has a negative 
impact on health and quality of life, creating more than 5% of global disease burden 
and premature deaths[2,3]. The processing of alcohol in the body significantly affects 
multiple organs including the liver, gut, lungs, heart and brain[4-7]. A prominent 
alcohol-related disorder is alcohol-associated liver disease (AALD) that is initially 
facilitated by ethanol metabolism in the liver[8]. However, AALD is a complex disease 
with factors from other organs also contributing to its development and progression. 
Notable contributing factors include cells of the innate immune system and bacteria of 
the alcohol-altered gut microbiota[9,10]. Overall, the interplay between alcohol-
affected organs clearly plays a role in the outcomes of AALD as well as additional 
adverse consequences such as alcohol-related cancer development and metastatic 
disease.

Alcohol is an identified carcinogenic factor in several cancers including head and 
neck, esophageal, liver, breast, pancreatic, and colorectal[11,12]. Recent reports 
indicate that alcohol consumption is the third and fourth largest contributor of all 
primary cancers in women and men, respectively[3]. Further, studies have shown that 
alcohol associates with an increased risk of secondary cancers of the upper aerodi-
gestive tract (i.e. oral cavity, pharynx and esophagus) as well as metastases of 
colorectal cancers[13,14]. Multiple mechanisms are attributed to alcohol-induced 
cancer risk including toxic products and reactive oxygen species generated by ethanol 
metabolism. Additionally, cellular factors produced in response to injury such as 
protein, lipids and microRNAs can be packaged and released in extracellular vesicles 
(EVs)[15]. The EVs can migrate to modulate neighboring cells and/or distant tissues, 
acting in many cases as tumorigenic signaling molecules. Multiple cell types including 
endothelial cells, epithelial cells, neuronal cells, immune cells, and cancer cells can 
secrete nanosized EVs as part of their normal physiology, as well as during the 
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pathophysiology of disease[16]. Recent studies have suggested that during patho-
physiological conditions exosomes have multiple roles in disease progression. 
Interestingly, tumor-derived exosomes have been implicated as regulatory factors in 
cancer progression by promoting cancer cell proliferation, migration, and the 
establishment of a premetastatic niche for drug-resistant cells[17,18]. Overall, EVs have 
the capability to contribute to the progression of AALD as well as alcohol-related 
advanced or secondary cancers. A better understanding of the integrated cell-cell 
communication between cancer cells and normal cells is critical for the development of 
new therapeutic options. Research into the complex interactions of diverse organs by 
EVs is a focus of new and clinically relevant areas of study. Here, we review studies on 
exosome biology and EV communication networks associated with alcohol-related 
disorders and metastatic cancers.

EXOSOME CHARACTERISTICS
Exosome biogenesis
Exosomes were first identified in 1981 as cell-derived, membrane-bound enzymatic 
vesicles[19]. Subsequently, it was demonstrated that exosomes are nano-sized (30 to 
150 nm) lumen vesicles that originate from the endosomal system[20]. Further, it was 
elucidated that EV biogenesis is a sequential process in which multivesicular bodies 
(MVBs) form following membrane invagination of intraluminal vesicles[18,20]. A 
small fraction of MVBs fuse with the plasma membrane and are released into the 
extracellular milieu[21]. The regulation of MVB fusion and release can involve cho-
lesterol content as seen in B-lymphocytes where membrane fusion and exosome 
release were only observed for the high cholesterol pool of MVBs[22]. Additionally, 
several reports have shown that exosome release depends on the cell polarity and the 
contribution of specific components of apical or basolateral membranes[23-25]. 
Overall, existing evidence indicates that different MVB populations exist inside cells 
and that select pools are involved in extracellular release[25] as well as the scavenging 
of plasma membrane proteins[26] to maintain cellular homeostasis during the EV 
maturation process[27,28].

Endosome pathways identified in the regulation of exosome biogenesis include 
endosomal sorting complex required for transport (ESCRT)-dependent and inde-
pendent pathways (Figure 1). Studies have eloquently described ESCRT pathways 
showing the direct control of ESCRT-mediated membrane machinery[29] and ESCRT-
independent regulation of EV budding and release by factors such as sphingolipid 
ceramide[30,31]. It was also demonstrated that vesicle formation and trafficking 
involve functional proteins such as Rab GTPases, heat shock proteins (HSP70 or 
HSP90), tetraspanins (CD9, CD63, and CD81), and integrins[18,32]. Further, the role of 
sphingomyelin, phosphatidylcholine, diacylglycerol, and ceramide as exosome 
membrane lipids was described[33]. Altogether, these studies suggest that distinct 
exosome biogenesis pathways, in addition to specific sorting and cargo mechanisms, 
dictate diverse biological functions and effects of EVs on recipient cells.

Exosome sorting and cargo delivery 
A significant feature of exosomes is the morphological and size profile of the vesicles. 
Based on size, EVs are classified into large exosome vesicles (90-120 nm), small 
exosome vesicles (60-80 nm), or non-membranous nanoparticles called exomeres (35 
nm)[34]. While both large and small size exosomes can respond to signaling pathways 
such as IL-2/STAT5, density gradient centrifugation studies revealed differences in 
lipid compositions between various sized EVs[34]. Moreover, subpopulations of low-
density and high-density exosomes can have differential effects on gene expression 
profiles.

In addition to EV size, the characterization of exosome cargo is important to the 
understanding of EV effects in healthy and pathophysiological scenarios. Exosomes 
contain distinct ratios of molecular constituents such as nucleic acids, proteins, lipids, 
and metabolites that vary depending upon their cellular conditions, cells of origin, 
epigenetic changes, and metabolomic stages[35]. Moreover, studies have described 
various RNA species that are components of exosome cargo including microRNAs 
(miRNAs), rRNAs, tRNAs, or long noncoding RNAs (lncRNAs)[36]. The role of 
miRNAs as EV cargo is an emerging area of study, especially in oncology. In cancer 
cells, exosomes are highly enriched in miRNAs compared to parent cells indicating 
that miRNAs are sorting into the exosome cargo[37-39]. Several studies have identified 
exosomal miRNAs as serum biomarkers for the prediction of cancer progression and 
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Figure 1 Extracellular vesicle biogenesis. Pathways involved in extracellular vesicle (EV) generation from the endocytosis of cargo components to release of 
targeting exosomes. EV biogenesis is achieved by endosomal sorting complex required for transport (ESCRT)-dependent or ESCRT-independent pathways. Several 
cytoplasmic and nuclear molecules can be sorted in the EVs such as ubiquitin-related proteins, heat shock proteins, miRNAs, and cytoskeleton proteins. ESCRT: 
Endosomal sorting complex required for transport; sER: Smooth endoplasmic reticulum; rER: Rough endoplasmic reticulum.

metastasis[40-42]. Significantly, the differential expression of exosomal miRNA was 
noted to have a role in the regulation of tumor progression and metastasis in various 
cancer models[43-45]. However, the mechanisms involved in the loading and sorting 
of molecules into exosome vesicles remain to be elucidated. Towards those efforts, 
Villarroya-Beltri et al[46], have identified a sequence motif that controls the miRNA 
loading into exosomes. In addition, Kirsten rat sarcoma (KRAS) oncogene-dependent 
miRNA sorting into exosomes was found to play a key role in colorectal cancer cell 
(CRC) since CRC cells expressing mutant KRAS have distinct miRNA profiles 
compared to wild-type cells[47]. In another study, it was shown that the hyper-
activation of mutated KRAS inhibited the localization of the regulatory protein 
Argonaute 2 into exosomes[48]. The sorting of exosome mRNAs and enrichment of 3’ 
UTR fragments also demonstrates the importance of exosomal RNA effects in recipient 
cells[49,50]. Also, tumor-derived exosomes can carry double stranded DNA and 
genomic DNA fragments that reflect the mutational status of oncogene and tumor 
suppressor genes[51,52]. And finally, ubiquitination has been noted to have a role in 
the packaging of target proteins into exosomes[53-55].

Another important aspect of exosome cargo and sorting mechanisms is the lipid 
content of exosome membranes such as cholesterol, sphingomyelin, and glycosphin-
golipids that have specific roles in protein sorting into exosomes[33,56]. Data indicates 
that subdomains of the plasma membrane (lipid rafts) enriched with distinct proteins 
on exosome membranes mediate exosome signaling as well as molecule sorting into 
exosomes[57,58]. Further, mechanistic studies demonstrated the release of factors such 
as flotillin-1 and stomatin into the external medium via EVs associated with lipid 
microdomains[59]. Another study showed a positive regulation of sphingosine 1-
phosphate (S1P) by sphingosine kinases that enabled S1P receptors to be continuously 
active on EVs[31]. The continuous activation of S1P has been shown to regulate CD63, 
CD81, and flotillin-mediated sorting into exosomes through inhibitory G protein-
coupled S1P receptors located on MVBs[31]. This suggests that G protein receptor-
mediated S1P signaling on MVEs is mainly involved in the ESCRT-independent 
exosome cargo. Collectively, these studies suggest that distinct molecular constituents 
such as proteins, lipids, and nucleic acids play an essential role in exosome maturation 
culminating in effective sorting and extracellular release of EV cargo. The molecular, 
cellular, and biological functions that result from the released EVs is a critical area of 
research, especially in the evolving era to understand the mechanisms of alcohol-
associated diseases including cancer.
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THE EFFECTS OF ALCOHOL ON EXOSOME COMMUNICATION
Alcohol and liver-associated EVs
Clinical manifestations of AALD include steatosis, steatohepatitis, fibrosis, and 
cirrhosis[8,60]. The liver is sensitized to triggers such as oxidative stress and en-
dotoxins in early phases of AALD resulting in cellular damage and development of 
advanced disease. Further, consequences of ethanol metabolism lead to alterations in 
the function of hepatic cells as well as the recruitment of circulating cells and 
molecules that contribute to organ dysfunction. Previous reviews have compre-
hensively described the emerging role of EVs during the pathogenesis of alcohol-
mediated diseases[61-63]. In brief, alcohol-mediated stresses result in elevated EV 
generation and release from hepatocytes as well as non-parenchymal cells. The 
released EVs can modulate gene expression and function of target cells contributing to 
the perpetuation of liver damage. Examples of the effect of EV cargo (i.e. miRNA, 
proteins, and lipids) include changes in macrophage phenotype and the activation 
status of hepatic stellate cells. Altogether, EVs generated in the liver are key players in 
alcohol-mediated liver inflammatory and profibrogenic mechanisms. In addition to 
EV-mediated intra-organ signaling, communication to extra-hepatic tissues can occur, 
as well as bidirectional exosome communication between organs such as liver, brain, 
gut, and lung.

Gut-Liver axis
Alcohol-induced impairments to the intestinal epithelial barrier result in increased gut 
permeability and release of bacterial products into the circulation[9,64]. The released 
products can perpetuate gut-barrier dysfunction, as well as contribute to hepatic 
injury, as the liver is the primary organ to receive and detoxify gut-derived factors. 
The translocation of intestinal products to the liver is involved in several diseases 
including obesity, metabolic syndrome, and non-alcoholic and alcoholic liver diseases. 
In the setting of alcohol, the gut-liver axis sustains bilateral communications between 
the intestine and the liver leading to gut-dysbiosis and progression of liver injury[65,
66]. Notably, the transfer of gut-derived toxins to the liver due to alcohol consumption 
is considered a pivotal event in the development and severity of AALD. Clinical data 
indicates that drinking patterns correlate with processes of the gut-liver axis as 
changes in intestinal permeability increase with the degree of alcohol consumption
[64]. Next-generation sequencing data further confirmed the association between 
chronic alcohol consumption and altered gut microbiome functions in mice and 
humans[67,68]. Overall, alcohol consumption is linked to multiple changes in the gut 
including intestinal epithelial barrier dysfunction, alterations in gut epithelial and 
mucosal cells, and changes to the intestinal microbiota. As a result, bacterial products (
i.e. endotoxin and other pathogen-associated molecular patterns) translocate to the 
liver and contribute to the production of proinflammatory pathways. Despite the 
current understanding of alcohol’s effects on the gut microbiome, the role of EVs in the 
transfer of gut-derived products is not defined. However, emerging data indicates the 
EVs significantly contribute to alcohol-related liver inflammation.

The effects of alcohol on the intestinal microbiome and the translocation of injurious 
factors to the liver is an area of extensive research. It is well characterized that alcohol 
consumption results in the dysbiosis of bacterial and fungal intestinal species and the 
release of products including lipopolysaccharide (LPS) from the leaky gut[69,70]. In 
search of contributing mechanisms, studies have described alcohol-induced reductions 
in the expression of tight junction proteins as well as direct injury to gut epithelial cells
[71,72]. The overexpression miRNA has been implicated in tight junction alterations as 
the knockdown of miRNA-21 prevented ethanol-induced disruption of tight junctions 
through the restoration of associated transmembrane proteins such as occludin and 
zonula occludens-1 (ZO-1)[71,73]. Additionally, the blockade of miRNA-122a was 
found to be protective against tight junction alterations in Caco-2 cells[74]. It is 
suggested that EVs generated during alcohol-induced changes to the intestinal barrier 
contain cargo such as miRNAs, LPS, and bacterial products that target the liver and 
contribute to AALD. Indeed, a recent study by Lamas-Paz et al[75] demonstrated that 
EVs derived from alcohol-affected intestinal epithelial cells contributed to hepato-
cellular injury. Further, it is likely that ethanol-mediated changes in intestinal barrier 
and microbiome composition result in the release of bacterial EVs. For example, in 
addition to its role as a soluble factor, LPS can also be packaged into EVs for transport 
from the injured gut. This is supported by a recent report indicating the presence and 
activity of bacterial EVs in patients with intestinal barrier dysfunction[76]. The role of 
bacterial EVs in alcohol consuming patients remains to be characterized along with the 
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therapeutic potential of targeting such EVs.
The mechanistic role of bacterial products in the progression of alcohol-associated 

diseases has led to the study of the gut microbiota as a therapeutic target in patients 
with alcohol use disorders[77]. Currently, probiotics (living bacterial cultures), pre-
biotics (promoters of beneficial or commensal bacteria), and antibiotics, all serve as 
potential therapies for alcohol-associated diseases[78]. For instance, Lactobacillus 
rhamnosus is protective against alcohol-induced liver injury in mice[79]. Further, the 
administration of prescribed probiotics is promising as a protective barrier against 
alcohol-induced gut permeability and AALD[80]. The use of prebiotics may also be 
beneficial as certain diets (i.e. oats, flaxseed) protect against alcohol-induced oxidative 
stress and hepatic inflammation[81,82]. Similarly, antibiotic treatment can attenuate 
alcohol-induced endotoxemia by preventing the overgrowth of harmful bacteria in the 
gut[83]. Overall, insight into the mechanistic utility of targeting exosomes generated 
by the alcohol-altered gut warrants investigation for the development of effective 
therapeutics against disease progression related to the gut-liver axis.

Liver–Brain axis
It is well described that manifestations of AALD lead to a spectrum of symptoms in 
the brain such as cerebral edema and hepatic encephalopathy. Of notable involvement, 
ammonia and other harmful substances produced by the alcohol-injured liver can 
reach the brain causing injury and neuroinflammation. However, mechanisms related 
to exosome communication networks of the liver-brain axis remain to be characterized. 
Reports to date indicate that the coadministration of alcohol and LPS result in altered 
profiles of cytokines such as TNF-α, MCP-1, IL-1β in the gut, liver, and brain[84]. Other 
studies demonstrate that the lack of the tumor necrosis factor receptor 1 results in the 
accumulation of TNF-α in mouse serum, gut, and liver; and that alcohol intake 
potentiates long-lasting levels of proinflammatory cytokines in the brain[85]. A recent 
study demonstrated that TNF-α inhibition reduced systemic inflammation and 
improved symptoms[86]. Additionally, chronic alcohol consumption not only in-
fluences brain inflammation but also interferes with stress-mediated psychiatric 
behavior through the disruption of the hypothalamic-pituitary-adrenal (HPA) axis
[87]. The alcohol-mediated neutralization of the HPA axis could be a potential 
mechanism by which systemic inflammation continues in individuals who have an 
addiction to alcohol.

Besides chronic alcohol addiction, the loss of gut barrier integrity is a causative 
factor of endotoxin transport during sepsis and brain inflammation. Alcohol-induced 
gut dysbiosis is thought to not only play a role in alcohol dependency but also in the 
regulation of effects including neuro and endocrine signaling and immune system 
alterations[64,68]. However, a connective factor such as EVs in the gut-liver-brain axis 
has yet to be identified. Interestingly, the blood-brain barrier (BBB) serves as a 
defensive barrier against the extravasation of tumor cells and pathogens[88]. However, 
cancer cells can destruct the BBB structure to mediate migration during brain me-
tastasis[89]. Overall, it is suggested that EVs facilitate cell network communications 
through the delivery of their cargo (i.e. proteins, mRNA, and miRNAs) to trigger the 
breakdown of the BBB through EV-induced changes in tight-junction proteins in-
cluding ZO-1, N-cadherin, and actin.

Liver–Lung axis
Excessive alcohol use is a major factor in the enhanced risk of acute respiratory distress 
syndrome (ARDS)[90]. Chronic alcohol exposure in the liver-lung axis is linked to 
hepatopulmonary syndrome, bacterial infection, and increased mortality from ARDS
[90,91]. Recently, Siore et al[92] reported that pulmonary edema and acute lung 
damage occur through the activation of inflammatory responses and oxidative stress 
involving liver-lung axis communications. It was shown that alcohol administration 
results in elevated levels of the TNF-α responsive chemokines, macrophage inflam-
matory protein, and keratinocyte chemoattractant. Further, the enhanced chemokine 
expression is associated with the recruitment of pulmonary neutrophils. Additional 
studies indicated that the liver-lung axis is bidirectional for the com-munication and 
effects involved in alcohol-enhanced hepatopulmonary injury. For instance, ventilator-
induced lung injury in a mouse model resulted in significant inflammatory responses 
produced in cultured hepatic sinusoidal endothelial by perfusate from injured lungs
[93]. In relationship to the role of the liver-lung axis in alcohol-related cancers, several 
studies have investigated the role of metastatic determinants[94,95]. In particular, 
tumor-derived exosomes may have a significant role in cancer cell metastasis that is 
mediated by cell adhesion molecules such as integrins, tenascin, and periostin[96-98]. 
In summary, the role of EVs in the interplay between pulmonary disease, AALD and 
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alcohol-associated cancers is a needed area of research for the identification of 
potential therapeutic targets.

EXOSOMES AND CANCER: ROLE OF ALCOHOL-MEDIATED EFFECTS
The interorgan communication mediated by EVs is clearly a factor of pathophysiology 
in various disease states. The role of alcohol-induced EV communication in the 
development and progression of cancer is not defined and is an area of clinical 
importance due to the prevalence of alcohol consumption and associated risk of 
cancers. Thus, investigations into the role of EVs in the initiation and severity of 
cancers aims to gain insight into the relationship of comorbid conditions related to the 
effects of alcohol consumption. Moreover, realization of the importance of EVs in 
cancer progression and metastasis has increased exponentially, as have their potential 
application in therapy and diagnosis[99]. The contribution of EVs in pathological 
processes is far reaching since tumor-secreted exosomes can mediate angiogenesis, 
modulate the immune system, and facilitate the generation of pre-metastatic niches[96,
100]. Indeed, EVs have been identified as key mediators of communication networks 
within and between organ systems, highlighting the clinical importance of exosome 
function[18,101,102]. Existing web-based online bioinformatic tools including high-
throughput techniques (i.e. ExoCarta, EVpedia, Vesiclepedia catalog, and Ingenuity 
Pathway Analysis, IPA) are beneficial to the scientific community in EV research[103,
104]. These resources assist in the characterization of EV molecular and pathophy-
siology mechanisms through the identification of key functional elements. Based on 
IPA data, EV cargo delivery depends on the content of bioactive molecules such as 
mRNA, enzymes, proteins, DNA and lipids that can dictate the role of EVs in disease 
progression and diagnostic functions (Figure 2).

The clinical assessment of EVs in body fluids provides another measure towards the 
understanding of exosomes as diagnostic biomarkers and therapeutic targets. 
Biomolecule-loaded EVs from blood are stable for more than 90 days under normal 
storage conditions making EV analyses more useful compared to other less-stable 
measures of cell-free DNAs and circulating tumor cells that are used as liquid biopsies
[105,106]. Examples of exosome-related identification in serum samples include 
prostate cancer-derived exosomes[107]; and exosome cargo containing an androgen 
receptor variant that is a biomarker of metastatic prostate cancer[108]. Several studies 
have also reported the sensitivity of EV miRNA composition as biomarkers in disease 
identification that can be isolated from various body fluids including blood, saliva, 
and urine[109,110]. A noted example is the oncogenic signature of miR-21 as a 
biomarker for various cancers including colorectal[111], breast[112], brain[113], and 
liver[114]. Concerning diseases of the liver, it has been shown that the concentration of 
EVs in the circulation is enhanced in the setting of AALD, nonalcoholic fatty liver 
disease, viral hepatitis, and hepatocellular carcinoma indicating the clinical signi-
ficance of EV-mediated communication and subsequent effects[66]. Overall, clinical 
measures as well as bioinformatic programs are valuable in deciphering EV-mediated 
mechanisms and are useful tools for the characterization of alcohol-associated EVs in 
development and progression cancers.

Role of exosomes in cancer progression
Mechanisms of tumor development and progression are dynamic, multi-step processes 
that occur in response to the accumulation of genetic alterations in damaged cells. An 
integral component of tumor development is thought to be the communication 
between cancerous and non-cancerous cells that is mediated by nanosized vesicles
[115]. Research to date indicates that cancer cell microvesicles actively transfer 
oncogenic molecules from primary cancer cells to intercellular populations. Indeed, 
tumor-derived exosomes can regulate cancer progression by stimulating oncogene 
overexpression, stromal cell remodeling, immune system modulation, and angio-
genesis[115]. The transfer of tumorigenic material via EVs is implicated in the 
modulation of morphological changes and the enhancement of anchorage-
independent growth capacity of cancer cells. Similarly, tumor-derived exosomes can 
act as survival factors that bind to and activate anti-apoptotic pathways[116].

The knowledge that exosomes are potential stimulators in cancer progression 
indicates that EVs can promote angiogenesis and changes in the microenvironment
[117]. In this regard, tumor-derived exosomes can influence mesenchymal stem cell 
differentiation facilitating cancer cell proliferation and disease progression[118]. 
Moreover, the exosome-mediated transfer of lncRNAs as tumor-promoting material 
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Figure 2 Exosome network analysis. Based on Ingenuity Pathway Analysis, distinct molecules from different tissues and cells can be involved in exosome 
secretion during cancer progression as well as in diagnostic functions. CRYAB: Chaperone alphaB-crystallin; CTTN: Cortactin; EXPH5: Exophilin 5; HGS: Hepatocyte 
growth factor; HPSE: Heparinase; HTT: Huntingtin protein; PLEC: Plectin; RAB27A: Ras-related protein Rab-27A; RAB27B: Ras-related protein Rab-27B; RAB2B: 
Ras-related protein Rab-2B; RAB5A: Ras-related protein Rab-5A; RAB7: Ras-related protein Rab-7; RAB9A: Ras-related protein Rab-9A; SDCBP: Syndecan binding 
protein; SYTL4: Synaptotagmin like 4; TGFA: Transforming growth factor alpha; ZFP36: Zinc finger protein 36; ADARB1: Adenosine deaminase RNA specific B1; 
AKT1S1: AKT1 Substrate 1.

has been shown during the transformation of non-malignant cells[119]. The role of EVs 
enriched with miRNAs has also been shown in cell-cell communications and con-
version of cells to populations with enhanced motility[120]. Specific examples include 
the role of miR-17-92 and miRNA-92a as potent promoters of angiogenesis and 
oncogenic activity[121]. Likewise, miR-135b-5p[122], miR-30a-5p[40], miR-150-5p
[123], miR-183-5p[124], miR-155[125], miR-497[126], miR-181b-5p[127], miR-375[128,
129] and the miR-200 family[110,130,131] have been shown to be effective markers of 
cancer progression. The clinical evaluation of EV miRNA cargo provides insightful 
information into processes involved in the various stages of cancer from detection to 
metastasis as summarized in Table 1.

Another component identified in cancer progression is the release of cancer-
associated fibroblasts (CAFs) from exosomes. CAF-derived EVs can play a key role in 
tumor progression by enabling the transfer of oncogenic molecules such as amino 
acids, lipids, and TCA-cycle intermediates to confer glycolysis modulation and 
carboxylation in cancer cells[132]. Tumor-derived exosomes have also been shown to 
be involved in the stimulation of vascular cell adhesion molecule-1 and intercellular 
adhesion molecule-1 (ICAM-1) enhancing the process of neovascularization in en-
dothelial cells in the microenvironment[133]. Moreover, recent studies suggest that 
EVs are important in mediating cellular communication between cancer cells and other 
cells of the microenvironment such as immune cells, neutrophils, natural killer (NK) 
cells, dendritic cells, T cells, and macrophages. For example, cancer-derived exosomes 
can alter macrophage polarization[134], induce the recruitment of neutrophils to the 
tumor site[135], decrease the cytotoxic activity of NK cells[136], or inhibit T-cell prolif-
eration mechanisms[137]. Altogether, it is evident that exosomes can mediate cancer 
progression through a variety of pathways and cellular communications leading to 
cancer cell proliferation and spread to distant sites.
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Table 1 Summary of exosome miRNA signatures as cancer biomarkers

Exosomal miRNA Expression profile Mode of action Type of cancer Ref.

miR-320d Upregulated Predicts metastasis CRC Tang et al[41]

miR-106b-3p Upregulated Promotes metastasis CRC Liu et al[163]

miR-6803-5p Upregulated Prognosis marker CRC Yan et al[42]

miR-874 Upregulated Prognosis marker GC Zhang et al[164]

miR-30a-5p Downregulated Diagnostic tool CRC Sun et al[40]

miR-21 Upregulated Diagnostic tool CRC Bastaminejad et al[111]

miR-135b-5p Upregulated Metastatic marker CRC Li et al[122]

miR-150-5p Downregulated Prognosis, marker CRC Zou et al[123]

miR-183-5p Upregulated Angiogenesis CRC Shang et al[124]

miR-155 Upregulated Diagnostic tool CRC Lv et al[125]

miR-16-5p Upregulated Regulation of ITGA2 CRC Xu et al[165]

miR-497 Downregulated Prognosis marker CRC Zou et al[126]

miR-4461 Downregulated Regulation of COPB2 CRC Chen et al[43]

miR-146a Upregulated Invasion and metastasis BC Yang et al[45]

miR-125a-3p, miR-320c Upregulated Stage I marker CC Wang et al[166]

miR-4772-3p Upregulated Stage II & III marker CC Liu et al[167]

miR-21, miR-10b Upregulated Metastatic marker HCC Tian et al[44]

miR-1290, miR-375 Upregulated Prognostic marker CRPC Huang et al[129]

miR-373, miR-200a, miR-200b, 
miR-200c

Upregulated Tumor progression EOC Meng et al[131]

mir-181b-5p Downregulated Diagnostic tool GC Yun et al[127]

CRC: Colorectal cancer; GC: Gastric cancer; ITGA2: Integrin alpha 2; COPB2: COPI coat complex subunit beta 2; BC: Breast cancer; Stage I, II, III: North 
American Association of Central Cancer Registries Stages I, II, III and IV; CC: Colon cancer; HCC: Hepatocellular carcinoma; CRPC: Castration-resistant 
prostate cancer; EOC: Epithelial ovarian cancer.

Exosomes role in cancer metastasis
Metastasis is one of the most common causative factors in cancer-related death. Cancer 
metastasis is a multi-step process for the development of secondary cancers. In 1889, 
Stephen Paget described the “seed and soil” theory, in which metastasis depends on 
the interaction between primary cancer cells as the seed and secondary host microen-
vironments designated as the soil[138]. Involved mechanisms were found to include 
changes to the extracellular matrix architecture and associated reprograming of 
normal cells. Clinically significant interactions between cancer cells and the cells of 
secondary organ sites have been shown to involve hepatocytes, bone marrow pro-
genitor cells, CAFs, macrophages, and neutrophils. However, regulatory mechanisms 
of secondary organ-specific metastasis are poorly understood. Towards that 
understanding, studies have indicated that tumor-derived exosomes assist in the 
priming of premetastatic niches by delivering prometastatic factors. In particular, the 
integrin expression profile of tumor derived EVs can act as functional “ZIP codes” 
during metastatic organotropism to direct metastatic cancer cells to target 
tissue/organs[96]. Proteomic and clinical data support the role of exosome-sorted 
integrins as vital players in the development of cancer metastasis. For instance, α6β4 
and α6β1 integrins are associated with lung metastasis and αvβ5 is involved with liver 
metastasis[139]. Also, tumor-derived exosomes are involved in the activation of the Src 
kinase pathway and the upregulation of pro-inflammatory S100 genes during the 
establishment of premetastatic niches[140]. Thus, cell-cell communication mediated by 
EVs appears to be a critical element during premetastatic niche formation in cancer 
development (Figure 3). Review of the literature indicates the variety of cancer types 
and stromal cell-derived exosome molecules can initiate signals during the re-
programming of the tumor microenvironment (Table 2). Thus, exosome-mediated 
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Table 2 Extracellular vesicle components in cancer progression and metastasis

EV cargo Type of molecule Action on recipient cells/tissue Type of cancer Ref.

CEA Protein Inflammation Colorectal Yokoyama et al[162]

KRAS Protein Invasiveness in recipient cells Colorectal Beckler et al[152]

ITG Protein Metastatic organotropism Breast Hoshino et al[96]

TNC ECM protein Stem cell niche formation Breast Oskarsson et al[97]

MIF Protein Liver premetastatic niche formation Pancreatic Costa-Silva et al[168]

ZFAS1 lncRNA Cancer growth/metastasis Gastric Pan et al[119]

Amino acids, lipids, TCA-cycle 
intermediates

Metabolites Cancer growth Prostate Zhao et al[132]

CEA: Carcinoembryonic antigen; KRAS: Kirsten rat sarcoma viral oncogene; ITG: Integrins; TNC: Tenascin C; MIF: Macrophage migration inhibitory 
factor; ZFAS1: ZNFX1 antisense RNA1; LncRNA: Long non-coding RNA; ECM: Extracellular matrix.

Figure 3 Exosome-mediated functions in the pre-metastatic niche. The role of tumor-derived exosomes along the establishment and progression of 
metastatic disease. Extracellular vesicle cargo can be involved in the initiation and regulation of cancer by promoting immune responses, angiogenesis, extracellular 
matrix modulation, stromal cell changes and metastatic organotropism. EVs: Extracellular vesicles; Tspan8: Tetraspanin-8; MMP2: Matrix metallopeptidase 2; MMP9: 
Matrix metallopeptidase 9; EGFR VIII: Epidermal growth factor receptor variant III; ZFAS1: ZNFX1 antisense RNA1; ECM: Extracellular matrix.

intracellular signaling as well as organ-organ communication can influence cancer 
progression and changes to host and tumor microenvironments to facilitate metastatic 
disease.

CLINICAL IMPLICATIONS OF EXOSOME COMMUNICATION NETWORKS
Role of EVs in alcohol and colorectal cancer disease
Recent studies indicate an alarming increased rate of morbidity and mortality from 
alcohol use disorders in the United States[141]. Of particular clinical significance is the 
disease burden related to alcohol use in colorectal cancer and associated liver me-
tastasis. CRC is a leading cause of cancer mortality with the majority of deaths due to 
the development of colorectal liver metastasis (CRLM) as the liver is the foremost site 
of distant metastatic spread in CRC patients[142,143]. Epidemiological studies suggest 
that chronic alcohol consumption is one of the major causative factors of colorectal 
cancer mortality in both men and women[144]. Alcohol use correlates with CRLM at 
colorectal cancer diagnosis as well as hepatic metastases that occur over time. Further, 
alcohol-associated CRLM requires intensive follow-up and treatment due to poor liver 
function and unresectable lesions. Despite advancements in surgical interventions and 
chemotherapeutics, CRLM morbidity and mortality are leading healthcare concerns 
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emphasizing the significant need to determine contributing mechanisms. The 
involvement of EV signaling during CRC progression in the setting of alcohol is not 
known. Thus, understanding EV communication networks and the role of EVs as 
biomarkers can significantly contribute to the development of strategies to address the 
serious public health issues associated with alcohol use and cancers.

The development of CRC is a multi-step process involving the malignant trans-
formation of normal cells of the colon. The contribution of ethanol metabolism and 
related metabolites in colon carcinogenesis has been investigated for some time. A 
variety of pathways attributed to the effects of alcohol have been identified in the 
promotion CRC including genetic abnormities, epigenetic dysregulation, cell 
signaling, and changes in the tumor microenvironment[13]. However, the role of 
alcohol during CRC spread to other organs is less understood. In particular, the contri-
bution of alcohol during liver metastasis is emerging as a critical area of study given 
the substantial mortality associated with CRLM and need to identify targetable 
mechanisms. Current literature indicates that alcohol creates a hepatic microenvir-
onment susceptible to CRC seeding and growth. Attributable mechanisms include the 
sensitization of resident macrophages (Kupffer cells, KCs) to endotoxin-induced 
signaling, the production of inflammatory factors, and the activation of fibroblastic 
cells that promote disease rather than wound-healing[145]. Moreover, it is likely that 
targetable mechanisms of CRLM involve communication networks between alcohol-
affected macrophages and cancer cell-associated factors. The contribution of EVs in 
alcohol-associated CRLM is not defined but is clearly considered an important process 
to characterize.

EVs represent a new form of communication in colorectal cancer progression and 
liver metastasis. The fact that EVs can deliver cargo (i.e. RNAs, lipids, proteins) 
between cells and organs indicates the potential of playing a key role in metastatic 
disease[146,147]. CRC proliferation and migration can induce the release of EVs and 
other tumor-derived factors that can promote prometastatic niche formation, vascular 
changes, inflammation, and immunosuppression in host microenvironments. Several 
studies have recently described the contributions of EV cargo as prime mechanisms of 
CRC metastasis. For example, proteomic data revealed a distinct profile of metastatic 
factors, signal transduction molecules, and lipid raft-associated components in EVs 
obtained from metastatic CRC cells[148]. The contribution of mRNA components from 
CRC-derived EVs in cancer progression has also been shown for miRNAs (i.e. miR-21, 
miR-192 and miR-221) as well as natural antisense RNAs such as Leucine Rich Repeat 
Containing 24, MDM2 Proto-Oncogene, and Cyclin Dependent Kinase Inhibitor 1A
[149]. Moreover, the role of genetic mutations in CRC patients are of interest. In 
particular, KRAS mutations are frequently associated with CRC metastasis and the 
regulation of exosome composition and release in CRC cells[150,151]. In addition, 
many oncogenic proteins (e.g. KRAS, Src family kinases, integrins) are highly enriched 
in mutant KRAS-derived exosomes indicating a role in CRC progression and 
metastasis[152]. Together, these observations provide novel insight into the role of EVs 
and the therapeutic potential of targeting the CRC-generated EVs during metastatic 
disease.

There is a growing body evidence suggesting that tumor-derived exosomes are 
crucial factors that influence differentiation in the microenvironment through 
particular signaling pathways[153]. For example, CRC cell-derived EVs have been 
shown to promote angiogenesis and tumor growth in the host microenvironment 
through the hyper-activation of Wnt/β-catenin signaling. As a result, hypoxic me-
tastatic niches provide CRC cells protection from chemotherapy and attack from 
immune cells[154]. Another signaling pathway implicated in colon tumorigenesis is 
the activation of proinflammatory cellular kinases. A recent study by Talwar et al[155] 
demonstrated that phosphorylated p38γ is activated in CRC tumorigenesis. Further, it 
is suggested that the activation of p38γ may be associated with immunoglobulin 
adhesion molecules such as carcinoembryonic antigen (CEA) and biliary glycoprotein 
(BGP). In support, the expression of CEA and BGP have been linked to hepatic 
metastasis in various preclinical models and in CRC patients with ongoing efforts to 
define the mechanistic role of CEA during CRLM[156-158]. Key studies have shown a 
direct relationship between CEA and the metastatic potential of CRC cells, and that 
CEA stimulation results in the production of tumorigenic factors by Kupffer cells[159-
161]. Current works are evaluating the role of alcohol on KC function to determine if 
ethanol-sensitized macrophages are more responsive to CEA leading to advanced 
metastatic disease. To date, studies have shown that the alcohol-injured liver provides 
a permissive environment for CRLM and that CEA-mediated inflammatory mecha-
nisms may play a key role[157,162]. However, the role of tumor-derived and alcohol-
associated EVs in the process of metastatic mechanisms involving MAPK signaling or 
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Figure 4 Model of extracellular vesicle interactions along the gut/liver/lung/brain axis during alcohol disorders and cancer progression. 
Alcohol exposure leads to enhanced gut microbiome dysbiosis, the development of alcohol-associated liver disease, lung inflammation, and neurological 
manifestations. The potential role of tumor- and alcohol-derived extracellular vesicles (EVs) in advanced malignancies is a potential consequence of EV organ-organ 
communication during alcohol disorders. BBB: Blood brain barrier; CRC: Colorectal cancer; AALD: Alcohol-associated liver disease.

carcinoembryonic antigen-related cell adhesion molecules is unknown. Further, the 
effectiveness of blocking EV-mediated communication in the alcohol-injured liver 
during CRLM also remains to be defined. Overall, the characterization of exosome 
cargo and communication networks in the transformation of CRC cells and 
reprogramming of the tumor microenvironment is an important area of translational 
research, especially in the context of complex comorbidities associated with aberrant 
alcohol intake.

CONCLUSION
In recent years, investigations into the role of EVs in cancer progression and AALD 
have increased in a remarkable manner. The elucidation of EV communication 
networks to date have indicated the powerful role of EVs as metastatic cancer markers 
and inducers of varied biological effects. Extensive work is ongoing to characterize the 
biogenesis and effects of distinct EV populations generated from different cell types 
and diseases. The unique features of EV size and cargo contents can produce hallmark 
effects on recipient cells. Therefore, the heterogeneity of exosome populations will 
dictate studies on the role and outcomes of exosome networks during disease states. 
For example, understanding the diversity of EVs released during gut microbiome 
dysbiosis, migration, and organ-organ communication aims to reveal the association of 
AALD and hepatic CRC metastasis. The complexity of interorgan communication and 
the involvement of mediators such as EVs, cytokines, and chemokines is the ongoing 
focus of translational research. Related to alcohol-associated diseases, it is proposed 
that EV-mediated communication affects multi-organ damage as well as cancer 
metastasis along the liver/gut/lung/brain axis (Figure 4). Future studies will likely 
focus on the characterization of exosomal components involved in alcohol’s effects and 
cancer cell metastasis to secondary organs. Moreover, further investigation is needed 
to explore the role of exosome-mediated cell-free networks in the detection of alcohol-
related tumors and microenvironment interactions for the development of targeted 
therapeutics.
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