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Abstract
Heme oxygenase (HO)-1 is the inducible isoform of the 
first and rate-limiting enzyme of heme degradation. 
HO-1 not only protects against oxidative stress and 
apoptosis, but has received a great deal of attention in 
recent years because of its potent anti-inflammatory 
functions. Studies with HO-1 knockout animal models 
have led to major advances in the understanding of how 
HO-1 might regulate inflammatory immune responses, 
although little is known on the underlying mechanisms. 
Due to its beneficial effects the targeted induction of 
this enzyme is considered to have major therapeutic po-
tential for the treatment of inflammatory disorders. This 
review discusses current knowledge on the mechanisms 
that mediate anti-inflammatory protection by HO-1. 
More specifically, the article deals with the role of HO-1 
in the pathophysiology of viral hepatitis, inflammatory 

bowel disease, and pancreatitis. The effects of specific 
HO-1 modulation as a potential therapeutic strategy in 
experimental cell culture and animal models of these 
gastrointestinal disorders are summarized. In conclu-
sion, targeted regulation of HO-1 holds major promise 
for future clinical interventions in inflammatory diseases 
of the gastrointestinal tract.
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INTRODUCTION
Heme oxygenase (HO), which was initially described 
more than 40 years ago, enzymatically degrades heme and 
produces equimolar amounts of  carbon monoxide (CO), 
biliverdin, and iron[1] (Figure 1). In a coupled reaction, 
biliverdin is converted into bilirubin (BR) via biliverdin 
reductase[2]. Two distinct isozymes of  HO, HO-1 and 
HO-2, have been identified and represent the products of  
two different genes with distinct tissue- and cell-specific 
expression patterns[3-5]. The constitutive isoform HO-2 
is preferentially expressed in brain and testis[6], and is es-
sentially not regulated by metabolic or receptor-mediated 
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stimuli[4,7]. In contrast, the inducible HO isozyme, HO-1, 
which exhibits low basal expression levels in most cells 
and tissues, is markedly upregulated not only by its sub-
strate heme, but also by other oxidative stress stimuli, 
such as UV-light and lipopolysaccharide (LPS) or directly 
by reactive oxygen species, such as hydrogen peroxide. In 
addition, heavy metals, sulfhydryl-reactive reagents, and 
hypoxia are potent inducers of  HO-1[8-10]. Thus, although 
HO-1 does not directly catalyze an antioxidant reaction, its 
induction is generally considered an adaptive cytoprotec-
tive response against the toxicity of  oxidative stress[11-13]. 
In the current review, we focus our attention on recent 
findings that show the emerging anti-inflammatory and 
immunomodulatory role of  HO-1 and its products. In 
particular, we highlight recent advances in the understand-
ing how HO-1 might modulate the inflammatory immune 
response and the potential role of  HO-1 for therapeutic 
applications in inflammatory conditions of  various organs 
in the gastrointestinal tract.

HO-1 GENE DEFICIENCY CAUSES 

PROINFLAMMATORY PHENOTYPICAL 

ALTERATIONS
A potential link between HO-1 and inflammatory disease 
has been shown by Willis et al[14] in an animal model of  
carragenin-induced pleurisy, in which specific upregula-
tion of  HO enzyme activity attenuated a complement-de-
pendent inflammation. Mice that are deficient for HO-1 
not only develop chronic inflammation, but are also 
highly vulnerable to experimental sepsis induced by the 
classical proinflammatory mediator endotoxin[15]. In ad-
dition, innate and adaptive immune reactions are severely 
affected in these knockout mice[16-18]. In contrast, HO-2 
knockout mice appear to have an intact immune regula-
tion, but exhibit defects in their central and autonomous 
nervous system[19]. The phenotype of  the only known 
human case of  genetic HO-1 deficiency is very similar to 
that observed in HO-1 knockout mice. This HO-1 defi-
cient patient, a Japanese boy who died at the age of  six 
years, was initially diagnosed with anemia and a chronic 
inflammatory  disorder[20,21].

ANTI-INFLAMMATORY EFFECTS OF 
HO-1 IN MONONUCLEAR PHAGOCYTES 
AND ENDOTHELIAL CELLS 
Although HO-1 is expressed in all tissues and cells, the im-
munomodulatory functions of  HO-1 appear to be primar-
ily dependent on HO-1 functions in mononuclear phago-
cytes and endothelial cells. In the following, we describe 
pertinent findings that illustrate the anti-inflammatory role 
of  HO-1 in these two cell types. 

Mononuclear phagocytes
Mononuclear phagocytes, such as monocytes and mac-

rophages, are cells with a common bone marrow lineage 
and have versatile functions in the innate and adaptive 
immune system[22,23]. As an example, macrophages ingest 
and kill invading microorganisms as a first line of  defence 
and are activated by various immunological stimuli, such 
as microbial products or cytokines. In response to these 
stimuli, macrophages are able to initiate and enhance the 
inflammatory immune response[23]. It has been known for 
many years that tissue macrophages, such as Kupffer cells 
and spleen macrophages, are cell types in which HO-1 
is highly expressed under normal conditions[24,25]. Several 
studies have been performed with cultured mononuclear 
cells from rodents. Here, HO-1 is upregulated in response 
to LPS[25-27], which attenuates the expression of  various 
proinflammatory genes, such as cyclooxygenase-2, tu-
mor necrosis factor-α, interleukin (IL)-1, and IL-6[18,28-31]. 
The cell-specific antiinflammatory function of  HO-1 in 
mononuclear phagocytes was recently confirmed in a con-
ditional HO-1 knockout mouse model. The cell-specific 
lack of  HO-1 in mononuclear cells caused a major defect 
of  interferon-β expression. In addition, a pathological 
immune response in an experimental infection with Sen-
dai virus and in autoimmune encephalomyelitis in these 
animals was observed[32]. Interestingly, others have shown 
that HO-1 is also important for the appropriate function 
of  human and mouse dendritic cells. It has been shown 
that pharmacological induction of  HO-1 attenuates matu-
ration and cell-specific functions of  dendritic cells[33,34]. 
Moreover, HO-1 expression in mononuclear cells has 
been demonstrated to be essential for the functionality of  
regulatory T cells[17]. 

Endothelial cells
The endothelium plays a central role in the regulation 
of  inflammatory reactions, because it serves as a barrier 
between the peripheral blood stream and inflamed tis-
sues. More specifically, endothelial monolayers regulate 
the recruitment and transmigration of  immunologically 
active blood cells, such as polymorphonuclear leukocytes 
(neutrophils) or T lymphocytes, to the site of  an inflam-
mation[28,35,36]. Hayashi and colleagues[37] have reported 
that HO-1 regulates cell-cell interactions between poly-
morphonuclear leukocytes and endothelial cells. These 
authors showed in an in vivo rat model that the increased 
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Figure 1  The heme oxygenase enzyme reaction. Heme is enzymatically de-
graded to yield carbon monoxide (CO), iron, and biliverdin, which is converted 
into bilirubin in a coupled reaction.



enzyme activity of  HO in the endothelium of  microves-
sels downregulated the adhesion of  leukocytes during 
experimental oxidative stress[37]. Accordingly, others have 
demonstrated that the activity of  endothelial HO-1 spe-
cifically modulates leukocyte recruitment into organs 
with an experimental inflammation[38]. Independently, in a 
streptozocin-induced rat model of  experimental diabetes, 
overexpression of  HO-1 has been shown to attenuate oxi-
dative stress-dependent endothelial cell damage[39]. Similar 
findings in the endothelium have recently been reported 
for knockout mice, in which genetic deficiency of  HO-1 
caused major pathological alterations of  the endothelial 
monolayer[40]. Specifically, endothelial cells from HO-1 de-
ficient mice were shown to be more susceptible to apop-
tosis and denudation from the extracellular matrix. More-
over, independent groups have shown that antiinflamma-
tory endothelial protection of  HO-1 might be mediated 
via its ability to downregulate the tumor necrosis factor-
α-induced expression of  various adhesion molecules[41-43]. 
It is also remarkable that histopathological studies in the 
autopsy of  a human patient with genetic HO-1 deficiency 
revealed major endothelial cell damage[21]. 

HOW DOES HO-1 MEDIATE ITS 
ANTIINFLAMMATORY FUNCTIONS
The mechanisms of  how HO-1 may counteract inflam-
matory reactions are not understood in detail. An ac-
cumulating body of  evidence, however, indicates that 
the HO substrate heme is a compound with major pro-
inflammatory properties and that the HO products BR 
and CO have potent antiinflammatory functions.

Heme as a proinflammatory compound
The tetrapyrrole heme has contradictory biological prop-
erties. On the one hand, heme is important for oxygen 
and mitochondrial electron transport as the prosthetic 
group of  various hemoproteins such as hemoglobin, myo-
globin, and cytochromes[44,45]. On the other hand, heme 
can be toxic as it can cause oxidative stress in its “free” 
non-protein bound form. The prooxidant properties of  
heme have been shown in various animal and cell culture 
models[46,47]. Due to the critical role of  intracellular heme 
levels, enzymatic synthesis and degradation of  this com-
pound is tightly controlled[48-50]. More recently, heme has 
also been recognized to exhibit potent proinflammatory 
properties[18,51]. As an example, Jeney et al[52] have dem-
onstrated that heme-dependent oxidation of  low-density 
lipoproteins is involved in inflammation-mediated tissue 
damage. In this report, the proinflammatory effects of  
heme have also been shown to be correlated with specific 
clinical conditions, such as atherosclerosis and hemolytic 
anemia[52]. Independently, others have demonstrated that 
intravenous administration of  heme caused experimental 
inflammation in vivo with a major influx of  leukocytes[38]. 
Heme-dependent toxicity has also been associated with 
its proinflammatory effects in an animal model of  experi-

mental cerebral malaria, in which heme-dependent detri-
mental effects were markedly more pronounced in HO-1 
knockout mice[53]. Recent findings might shed light on the 
mechanisms that could be involved in the proinflammato-
ry effects of  heme. Figueiredo and colleagues have dem-
onstrated that initiation of  heme-dependent inflammation 
was mediated via specific interaction of  heme with the 
central pattern recognition receptor toll-like receptor-4, in 
a cell culture model of  mononuclear cells and in mice[54]. 
The role of  HO-1 in maintaining intracellular heme ho-
meostasis has been reviewed elsewhere[18,47,48,51]. 

Bilirubin
The role of  bilirubin (BR) as a beneficial compound with 
potent antioxidant and antiinflammatory effects has only 
been appreciated in recent years[55,56]. Protection against 
an experimental inflammation has been shown for HO-
derived BR in an animal model[37]. Moreover, it has been 
observed in a murine asthma model that BR specifically 
reduces leukocyte transmigration to the site of  an ex-
perimental inflammation via interaction with the adhe-
sion molecule vascular cell adhesion molecule-1[57]. More 
recently, it has been reported in a mouse model of  sepsis 
that a single bolus of  BR markedly blocked the toxicity of  
endotoxin[58]. Epidemiological studies have indicated that 
moderately increased concentrations of  serum BR (e.g. 
in Gilbert’s disease) are associated with a lower risk of  
developing cardiovascular disease[59,60] and colorectal car-
cinoma[61]. In conclusion, the generation of  BR by HO-1 
might, in part, explain the antiinflammatory effects of  this 
enzyme. 

CO
Although CO is generally considered a toxic gas, vari-
ous physiological functions of  CO as a major signaling 
molecule have been recognized in recent years[3,62,63]. In 
particular, HO-1-derived CO has been shown to be in-
volved in the regulation of  apoptosis, neurotransmission, 
coagulation, vasodilation, and inflammation. In a pio-
neering report on the potential protective effects of  this 
gas, administration of  exogenous CO has been shown to 
block the LPS-induced production of  proinflammatory 
cytokines via modulation of  p38 MAP kinase[29]. Similar 
to the signaling gas NO, CO upregulates the production 
of  cGMP via activation of  soluble guanyl cyclase. This 
mechanism has also been implicated in other functions 
of  CO, such as vasodilation and blockage of  smooth 
muscle cell proliferation. A remarkable development 
with major potential for future therapeutic applications 
has been the introduction of  CO-releasing molecules 
(CORMs). CORMs are compounds that can be admin-
istered intravenously and are intended to deliver CO 
to its target site without the toxicity of  gaseous CO[64]. 
Further details on CO and CORMs are given in specific 
reviews[63,65,66].

HO-derived iron
Iron, as the third product of  HO, is an essential com-
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pound for redox-dependent enzyme reactions and bioen-
ergetics. Iron, however, might cause the formation of  tox-
ic reactive oxygen species, if  not appropriately contained 
by specific intracellular protective mechanisms. A key role 
in the protection against the toxicity of  HO-1-derived 
iron is played by the intracellular iron storage protein ferri-
tin[67,68]. This protection has been demonstrated in various 
cell culture models, in which the synthesis of  HO-1 and 
ferritin was coordinately upregulated and prevented iron-
mediated cell toxicity[12,47,69]. Remarkably, genetic deficiency 
of  HO-1 in mice[70] and humans[20,21] is associated with a 
major pathological iron overload in the liver and kidney.

In summary, the HO products BR and CO have anti-
inflammatory potential, which could be relevant for thera-
peutic interventions.

TARGETING HO-1 IN INFLAMMATORY 
DISORDERS OF THE GASTROINTESTINAL 
TRACT 
HO-1 and chronic viral hepatitis
Chronic viral hepatitis mainly consists of  viral hepatitis 
B and C, and is a major cause of  liver cirrhosis and end-
stage liver disease worldwide. These disorders are charac-
terized by chronic self-perpetuating inflammation of  the 
liver for at least six months. For example, chronic hepatitis 
C virus (HCV) infection affects 4 million US citizens, a 
third of  whom will progress to liver cirrhosis and primary 
hepatocellular carcinoma if  left untreated[71-73]. Treatment 
with interferon and ribavirin is effective in only 50% of  
patients, because many patients either have contraindica-
tions to these therapies or have failed to respond to this 
treatment, indicating a need for alternative or supplemen-
tary therapeutic strategies. In the following, we will focus 
on links between HO-1 and chronic viral hepatitis and 
their potential therapeutic use. Research on hepatitis B 
virus (HBV) and HCV infections has been prevented by 
a lack of  appropriate animal and cell culture models to 
study these infections[73]. 

As regards HO-1 and HBV infection, Protzer and col-

leagues have reported that HO-1 has antiviral activity in 
a transgenic mouse model of  chronic HBV infection. In 
this animal model, specific induction of  HO-1 by cobalt-
protoporphyrin-IX significantly reduced the levels of  the 
viral HBV core protein. Moreover, these authors have 
shown that the antiviral effects of  HO-1 are mediated via 
reduction of  HBV core protein stability in cell cultures of  
stably transfected hepatoma cells[74] (Table 1).

Several reports suggest that HO-1 might serve as a 
specific therapeutic target for the treatment of  chronic 
HCV infection, although the results are somewhat con-
tradictory. On the one hand, Schmidt and colleagues have 
presented evidence that HCV specifically downregulates 
gene expression of  HO-1, but not that of  other antioxi-
dant genes, such as manganese superoxide dismutase and 
catalase[75]. In cell cultures of  hepatoma cells, inhibition 
of  HO-1 by HCV appeared to be specifically regulated via 
the HCV-core protein[75,76]. On the other hand, it has been 
demonstrated that HCV leads to an increased expression 
of  HO-1 in hepatoma cell lines, possibly via interactions 
with the HO-1 repressor, Bach1[77]. Clearly, further studies 
are necessary to reconcile these conflicting results. 

In contrast, findings from independent reports have 
indicated that targeted overexpression of  HO-1 had anti-
viral effects on HCV replication (Table 1). The group of  
Bonkovsky has demonstrated that upregulation of  HO-1 
either by a pharmacological approach or, more recently, by 
a microRNA-based strategy repressed HCV replication in 
human Huh-7 hepatoma cells[78,79]. Accordingly, Zhu et al[80] 
have shown that targeted overexpression of  HO-1 led to 
a significant inhibition of  HCV replication without affect-
ing other parameters of  cell viability in human hepatoma 
cells, which stably replicate subgenomic selectable HCV 
RNAs[80]. These studies have recently been extended by 
others, who have shown that the HO-1 product biliverdin 
interfered with HCV replication via direct modulation of  
the antiviral interferon-α response in two human hepa-
toma replicon cell lines[81] (Table 1).

Due to the limited success rate of  current therapies 
for chronic viral hepatitis, it is conceivable that targeted 
modulation of  HO-1 might be an innovative comple-
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Table 1  HO-1 and inflammatory disorders of the gastrointestinal tract

Disorder Mechanism of protection by HO-1 Experimental model Ref.

Viral hepatitis
(HBV, HCV)

HBV: repression of HBV replication In vivo: transgenic mice; in vitro: human HepG2 hepatoma cells [74]

HCV: repression of HCV replication In vitro: human Huh-7 hepatoma cells [78-80]

In vitro: human Huh-5-15 hepatoma cells [81]

Inflammatory 
bowel disease

HO-1-derived biliverdin inhibits inflammatory activity In vivo: colitis in dextran sodium sulfate-treated mice [89]

Inhibition of IRF8 activation In vivo: colitis in IL-10-/- mice [90]

HO-1 mediates protection of 5-aminosalicylic acid In vivo: colitis in trinitrobenzene sulfonic acid-treated rats [91]

Inhibition of NF-kB activation In vivo: colitis in trinitrobenzene sulfonic acid-treated mice [92]

Inhibition of interleukin-17 In vivo: colitis in dextran sodium sulfate-treated mice [93]

Pancreatitis Homing of hemin-treated macrophages in pancreas before onset 
of inflammation

In vivo: acute pancreatitis in choline-deficient diet-fed mice [101]

Decreased expression of proinflammatory cytokines In vivo: acute pancreatitis after allograft transplantation in rat [102]

Inhibition of cell proliferation via repression of ERK activity In vitro: platelet-derived growth-factor-treated rat pancreatic 
stellate cells 

[105]

HO: Heme oxygenase; HBV: Hepatitis B virus; HCV: Hepatitis C virus.
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mentary strategy for the treatment of  these infectious 
diseases. 

HO-1 and inflammatory bowel disease
Inflammatory bowel disease (IBD) is a group of  chronic 
inflammatory disorders, which is primarily represented by 
ulcerative colitis and Crohn’s disease. The etiology of  IBD 
is not well understood and a complex interplay of  genetic, 
immunological and environmental factors appears to play 
a role in the initiation and perpetuation of  IBD[82]. The 
onset of  IBD is characterized by an autoimmune inflam-
matory reaction that causes excessive production of  pro-
inflammatory cytokines and reactive oxygen species, which 
in turn damage the intestinal mucosa[83]. A number of  ex-
perimental animal models of  IBD have been established, 
in which IBD develops either spontaneously, such as in 
various knockout mouse models, or after treatment with 
specific chemical compounds, such as trinitrobenzene sul-
fonic acid[84]. These models are widely used to investigate 
potential therapeutic strategies for the treatment of  IBD. 
HO-1 regulation has been studied in a variety of  these ani-
mal models and in biopsies from human IBD patients. 

In a trinitrobenzene sulfonic acid-induced model of  
experimental colitis, it has been demonstrated that HO-1 
is prominently upregulated in various cell types of  the 
inflamed colon[85]. These findings correspond with ob-
servations from an independent study, in which increased 
HO-1 expression has been observed in mucosa biopsies 
of  a murine colitis model. Importantly, in this study, 
HO-1 expression has also been shown to be increased in 
inflamed mucosa of  human IBD patients[86]. Similar find-
ings have been reported by Takagi et al[87] for a Japanese 
population. Indirect evidence that HO-1 might play a 
role in the pathogenesis of  IBD has been demonstrated 
in knockout mice for the Nrf2 gene, which is the major 
transcriptional regulator of  HO-1. Nrf2-deficient mice 
were more susceptible to develop an experimental colitis 
in response to dextran sodium sulphate when compared 
with their wild-type counterparts[88]. 

As regards the potential therapeutic role of  HO-1 
in IBD, important insights have been presented in inde-
pendent reports on HO products (Table 1). In a dextran 
sodium sulphate-induced colitis model, HO-1-dependent 
protection against inflammation has been attributed to 
the beneficial effects of  biliverdin[89]. By contrast, others 
have indicated that CO might provide anti-inflammatory 
protection in mice with genetic IL-10 deficiency, which 
develop a chronic colitis-like disease. In these mice it is 
also shown that the immunosuppressive effects of  CO 
were recapitulated by pharmacological induction of  
HO-1[90]. Interestingly, upregulation of  HO-1 might also 
play a role in the antiinflammatory protective effects of  
some established current standard therapies of  IBD. As 
an example, Horváth et al[91] have shown that 5-amino sali-
cylic acid (5-ASA), which is one of  the pharmacological 
standard therapies of  IBD, might, at least in part, mediate 
its antiinflammatory effects via upregulation of  HO-1 in a 
trinitrobenzene sulfonic acid-induced rat colitis model. In 

addition, others have demonstrated that the fungal metab-
olite gliotoxin and the HO-1 substrate heme mediate an-
tiinflammatory effects in independent experimental colitis 
models via specific induction of  HO-1, respectively[92,93] 
(Table 1). 

Finally, it is important to point out that targeted HO-1 
induction does not provide anti-inflammatory protec-
tion in an experimental animal model of  dextran sulphate 
sodium-induced colitis, when HO-1 was induced after the 
onset of  IBD[86]. Therefore, it seems questionable whether 
HO-1 induction is useful for treatment of  established 
IBD, but rather might be useful as a preventive measure.

HO-1 and pancreatitis
Pancreatitis is an inflammatory disorder that is clinically 
categorized into acute and chronic pancreatitis[94]. The 
clinical stages of  pancreatitis range from a transient self-
limiting inflammatory reaction to a fulminant disease with 
necrotic lesions. Severe acute pancreatitis, which might 
have multiple local and systemic complications, is associ-
ated with high mortality[87]. In general, acute pancreatitis 
is caused by alcohol abuse and gallstones. More recently, 
however, genetics and obesity have been identified as in-
dependent risk factors. The pathogenesis of  pancreatitis is 
not well understood, but it is known that proinflammatory 
pancreas-independent factors, such as exposure to endo-
toxin, can trigger the onset of  the disease. Oxidative stress 
has repeatedly been implicated in the pathogenesis of  
pancreatitis[95,96]. Although the exact role of  oxidative stress 
during the course of  the disease is not well understood, 
antioxidant enzymes and vitamins have been shown to 
improve the clinical consequences of  pancreatitis[97]. Other 
therapeutic strategies for the treatment of  pancreatitis in-
clude inactivation of  pancreatic enzymes and blockage of  
platelet factor activating receptor[94,97,98].

HO-1 is upregulated in animal models of  experimental 
pancreatitis in a cell-specific manner[99,100]. In particular, it 
has been demonstrated that HO-1 gene expression in the 
inflamed pancreas is primarily upregulated in peripheral 
macrophages, which migrate into areas of  inflammation[101] 
(Table 1). In the latter report, the authors have also asked 
whether HO-1 induction might protect against pancreati-
tis. The major finding of  this study, in which experimental 
pancreatitis was induced with a choline-deficient diet, indi-
cated that administration of  heme decreased pancreatitis-
associated lethality in mice. Moreover, administration of  
heme increased the pancreatic tissue secretion of  chemo-
kines, which was responsible for the infiltration of  HO-1 
expressing peritoneal macrophages into the pancreas. It is 
important to note, however, that heme-dependent HO-1 
induction after the onset of  pancreatitis failed to reduce 
the severity of  the disease. This finding is similar to what 
has been observed in IBD, as mentioned above. Thus, al-
though HO-1 induction might not be useful for the treat-
ment of  established pancreatitis, it might help to prevent 
the onset of  pancreatitis in a clinical setting, in which pan-
creatitis is likely to develop. In a model of  pancreas trans-
plantation, in which pancreatitis develops as a consequence 
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of  ischemia-reperfusion injury, pharmacological induction 
of  HO-1 has been shown to be protective against pan-
creatitis[102] (Table 1). Similar observations have also been 
reported in an independent study, in which pretreatment 
with cobalt-protoporphyrin-IX prevented the microcir-
culatory dysfunction after pancreas ischemia-reperfusion 
injury in rat[103]. More recently, the CO donor CORM-2 has 
been shown to protect against acute pancreatitis in rats[104]. 

Finally, specific induction of  HO-1 might also be ap-
plicable for treatment of  chronic pancreatitis. In a recent 
report, Schwer et al[105] have shown that HO-1 induction 
by curcumin inhibited pancreatic stellate cell proliferation, 
which plays a major role in the pathogenesis of  pancreatic 
fibrosis in chronic pancreatitis. This protection was abol-
ished by blockage of  HO activity, either by an enzyme in-
hibitor or by knockdown of  HO-1 with a specific siRNA 
(Table 1).

CONCLUSION
Targeted overexpression of  HO-1 has major potential for 
the treatment of  inflammatory disorders of  the gastroin-
testinal tract. Current knowledge on the applications of  
HO-1 as a therapeutic target, however, still seems preco-
cious and critical questions remain to be answered before 
clinical interventions might be available.
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