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Abstract
Liver cirrhosis (LC) is a chronic illness caused by 
inflammatory responses and progressive fibrosis. 
Globally, the most common causes of chronic liver 
disease include persistent alcohol abuse, followed 
by viral hepatitis infections and nonalcoholic fatty 
liver disease. However, regardless of the etiological 
factors, the susceptibility and degree of liver damage 
may be influenced by genetic polymorphisms that 
are associated with distinct ethnic and cultural 
backgrounds. Consequently, metabolic genes are 
influenced by variable environmental lifestyle factors, 
such as diet, physical inactivity, and emotional stress, 
which are associated with regional differences among 
populations. This Topic Highlight will focus on the 
genetic and environmental factors that may influence 
the metabolism of alcohol and nutrients in the setting 
of distinct etiologies of liver disease. The interaction 
between genes and environment in the current-day 
admixed population, Mestizo and Native Mexican, will 
be described. Additionally, genes involved in immune 
regulation, insulin sensitivity, oxidative stress and 
extracellular matrix deposition may modulate the degree 
of severity. In conclusion, LC is a complex disease. The 
onset, progression, and clinical outcome of LC among 
the Mexican population are influenced by specific 
genetic and environmental factors. Among these are 
an admixed genome with a heterogenic distribution 
of European, Amerindian and African ancestry; a 
high score of alcohol consumption; viral infections; 
a hepatopathogenic diet; and a high prevalence of 
obesity. The variance in risk factors among populations 
suggests that intervention strategies directed towards 
the prevention and management of LC should be 
tailored according to such population-based features. 
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Core tip: Liver cirrhosis is a global health problem. The 
onset, progression, and clinical outcome of liver cirrhosis 
are influenced by several hereditary and lifestyle 
factors. Worldwide, interactions between genetic 
and environmental factors involved in liver cirrhosis 
may be associated with ethnic-based variations. 
Globally, in populations with admixed genomes, such 
as the Mexican population, individualized medicine 
represents a new challenge for hepatologists and 
gastroenterologists. 
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INTRODUCTION
Liver cirrhosis (LC) is a chronic illness caused by 
multiple, long-term injuries to the liver[1]. Globally, LC 
represents the 14th leading cause of mortality[2] but 
is the 12th leading cause of mortality in the United 
States[1] and the 4th leading cause in Central Europe[3] 

and Mexico[4]. In general, the main etiologies of LC 
are chronic alcohol abuse, followed by viral infections 
(hepatitis C and B viruses) and nonalcoholic fatty liver 
disease (NAFLD), including nonalcoholic steatohepatitis 
(NASH)[5]. Other causes that occur in a lesser extent 
are autoimmune hepatitis, obstructive cholestasis, 
hereditary hemochromatosis, alpha-1-antitrypsin 
deficiency, Wilson’s disease and drug toxicity[6]. 

Liver cirrhosis is characterized by the degeneration 
and necrosis of hepatocytes, the replacement of liver 
parenchyma with fibrotic tissues and regenerative 
nodules and loss of liver function[7]. The impaired liver 
architecture induces intrahepatic vascular distortion 
and portal hypertension, which manifests in major 
complications, such as ascites, upper gastrointestinal 
bleeding, jaundice and hepatic encephalopathy[8]. 
However, regardless of the etiological factors, the 
susceptibility and degree of liver damage may be 
influenced by genetic polymorphisms that are associated 
with particular ethnic backgrounds[9]. Consequently, 
genes involved in various metabolic pathways are 
influenced by distinct environmental lifestyle factors, 
such as diet, physical inactivity, and emotional stress[10]. 

Thus, this Topic Highlight will focus on the genetic 
and environmental factors that may influence the 
metabolism of alcohol and nutrients in the setting of 

distinct etiologies of liver disease. Additionally, genes 
involved in immune regulation, insulin sensitivity, 
oxidative stress and extracellular matrix deposition 
may modulate the degree of severity. The interaction 
between genes and environment in the current-day 
admixed population, Mestizo and Native Mexican, 
will be described. The inheritance of a heterogenic 
distribution of European, Amerindian and African 
ancestry in this population[11,12] may play a central role 
in the clinical outcome of liver disease in conjunction 
with specific environmental factors. 

CELLULAR AND MOLECULAR 
MECHANISMS INVOLVED IN THE 
PATHOGENESIS OF LIVER CIRRHOSIS
Hepatic fibrogenesis is a key factor for the progression 
of liver damage as a result of an excessive healing 
response triggered by acute and chronic liver injury 
associated with the continuous deposition of extracel
lular matrix (ECM), mainly fibrillary collagen[13]. The 
accumulation of ECM is due to both increased synthesis 
and decreased degradation that contributes to the loss 
of hepatocyte microvilli and endothelial fenestrations, 
resulting in LC and liver failure[14,15]. Hepatic fibrosis 
is driven by a population of activated fibrogenic cells 
known as myofibroblasts (MFs)[16]. The hepatic stellate 
cells (HSCs) are the primary source of MFs, orchestrating 
the deposition of ECM in normal and fibrotic liver, and 
activation of the immune response[17]. However, recent 
research has revealed that several cell types contribute 
to MF formation, including portal fibroblasts and bone 
marrow-derived mesenchymal cells[18]. 

The clinical assessment of cirrhosis and the staging 
of fibrosis have given rise to a number of non-invasive 
techniques that have been validated as surrogate 
tests for liver biopsy, such as the most recently develo
ped transient elastography (FibroScan; Echosens, 
Paris, France). By this method, shear wave velocity 
correlates with liver stiffness, which is staged from 
F0 to F4, regardless of the etiological agent of liver 
fibrosis (Figure 1)[1]. 

Regarding the cellular and molecular mechanisms 
of LC, activation of HSCs involves two main stages 
(Figure 2). The first stage of initiation renders the 
cells responsive to diverse agents of liver injury, which 
results from the paracrine stimulation of neighboring 
cells, such as hepatocytes, circulating leukocytes, 
platelets and endothelial and Kupffer cells (KCs). 
Such stimuli include reactive oxygen species (ROS) 
and inflammatory cytokines. Others effectors are 
transcriptional factors, such as the three types of 
peroxisome proliferator-activated receptors (PPAR-α, 
-β and -γ), c-Myb, nuclear factor kappa B (NF-κB), 
Kruppel-like factor 6 (KLF6) and the CCAAT/enhancer 
binding protein-β (C/EBPβ). In addition, growth factors, 
mainly transforming growth factor beta 1 (TGF-β1), 
platelet-derived growth factor (PDGF), epidermal 
growth factor (EGF) and insulin-like growth factor 1 
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(IGF-1), play an important role in the activation of 
HSCs[19,20]. 

Once the HSCs are activated, the perpetuation 
stage encompasses phenotypic changes in cell biology, 
such as proliferation, contractility, fibrogenesis, matrix 
degradation, chemotaxis, retinoid loss, cytokine 
release and white blood cell chemoattraction. These 
events are regulated in an autocrine and paracrine 
manner by proinflammatory, pro-fibrogenic and pro-
mitogenic signals to exacerbate the accumulation of 
ECM[20]. Finally, if the causal agent is eliminated, liver 
injury may be resolved. In this case, activated HSCs 
limit the fibrogenic response through the up-regulation 
of genes involved in apoptosis, enhanced immune 
surveillance and the increased secretion of ECM-
degrading enzymes[21].

GENETIC, METABOLIC AND 
ENVIRONMENTAL FACTORS INVOLVED 
IN LIVER DISEASE
Alcoholic liver disease
Overconsumption of alcohol is directly associated 
with liver disease and affects millions of individuals 
worldwide[22]. It is estimated that a consumption of 
> 40 g of alcohol/d in men and > 20 g of alcohol/d 
in women over a period of 10 years significantly 
increases the risk of LC[23]. Alcohol-induced liver 
disease pathogenesis involves alcohol-metabolizing 
enzymes that alter the levels of acetaldehyde and 
ROS; these enzymes are known to have variable 
allelic distribution worldwide (Table 1)[24]. High levels of 
ROS diminish antioxidant activity, leading to oxidative 
damage of proteins, lipids, and DNA, which serve as 
antigens for eliciting the host immune response[25]. 
In addition, oxidative stress can modify intracellular 
signaling cascades related to an inflammatory state[26]. 
The resulting oxidative damage and subsequent 
mitochondrial and autophagy dysfunction lead to 

energy depletion, the accumulation of cytotoxic me
diators and cell death[27]. Furthermore, acetaldehyde 
promotes bacterial lipopolysaccharide (LPS) translocation 
from the gut to the liver, which in turn stimulates 
Kupffer cells to release proinflammatory cytokines[28]. 
Additionally, acetaldehyde alters lipid homeostasis by 
disrupting lipoprotein transportation from the liver, 
decreasing β-oxidation of fatty acids and increasing its 
biosynthesis; resulting in hepatic steatosis[29]. Moreover, 
acetaldehyde is involved in fibrogenesis because this 
metabolite stimulates the synthesis of collagen and 
ECM components through the activation of the TGF-β1/
SMAD3 signaling pathway[30]. Finally, acetaldehyde 
and ROS can form DNA adducts that are prone to 
mutagenesis and carcinogenesis[31].

Furthermore, in alcoholic liver disease (ald), addi
tional genetic factors involved in alcohol dependence 
and alcohol abuse have been intensively studied. Among 
these factors are the dopamine receptor D2 (DRD2); the 
bitter taste receptor (TAS2R38); and the liver enzymes 
alcohol dehydrogenase class Ⅰ, beta polypeptide 
(ADH1B), cytochrome P450, family 2, subfamily E, 
polypeptide 1 (CYP2E1) and aldehyde dehydrogenase 
2 family (ALDH2). Moreover, polymorphisms of lipid 
metabolizing genes, such as apolipoprotein E (APOE), 
fatty acid-binding protein 2 (FABP2), patatin-like 
phospholipase domain- containing 3 (PNPLA3) and 
peroxisome proliferator-activated receptor γ2 (PPAR-γ2) 
have been associated with the severity of ald. Others 
genes related to the process are inflammatory tumor 
necrosis factor alpha (TNF-α), nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB), CXC 
chemokine ligand 1 (CXCL1) and CD14 endotoxin 
receptor (CD14) (Table 1). 

Additionally, environmental cultural factors involved 
in ald may vary among populations. In Spain, drinking 
moderate amounts of red wine is part of the traditional 
Mediterranean diet and has been associated with 
reduced all-cause mortality[32]. Mexico has a strong 
Spanish cultural influence; however, the Mexican 
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Figure 1  Stages of liver fibrosis. Liver fibrosis may be evaluated by liver biopsy and non-invasive methods. Regardless of etiological factors, liver fibrosis 
encompasses 3 stages until the development of cirrhosis. NAFLD: Nonalcoholic fatty liver disease.
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has demonstrated ethnic differences. Interestingly, 
the APOE*2 risk allele is highly frequent in the 
Caucasian population[12], whereas the CYP2E1*c2 
risk allele prevails among Amerindians[37]. Other 
factors may affect the development of alcoholic liver 
damage, including dose, duration and type of alcohol 
consumption; drinking pattern; gender; obesity; 
iron overload; and diet[24]. Consistently, patients 
with chronic alcohol abuse had a higher intake of 
cholesterol, sodium and simple carbohydrates than 
other groups with liver disease, which may accelerate 
hepatocellular injury[38].

Furthermore, certain polymorphisms that are 
associated with Amerindian ancestry may have placed 
the current-day Mestizo population at a higher risk 
of genetic susceptibility to alcoholism. The novel AVV 
haplotype of TAS2R38, which has not been identified 
in other populations, was associated with alcohol abuse 
in the population of West Mexico[39]. Globally, Mexico 
has the highest frequency of the allele A1 in DRD2, 
which has been correlated with alcohol addiction[24]. 
The identification of these factors has contributed to an 
integrative understanding of ald in Mexico. However, 

population did not inherit this Mediterranean alcohol 
drinking pattern. Instead, the Mexican population has 
a pattern of alcohol consumption that differs from 
what has been reported in other regions worldwide[24]. 
Specifically, in West Mexico, young people consume 80 
to 360 g of alcohol (mainly beer) over the weekends 
in a period of 10 years. In the next decade, alcohol 
consumption eventually increases from 360 to 640 g 
of alcohol per day, including beer and a combination of 
beer and distilled beverages, such as tequila. Finally, 
3-5 years later, the amount of alcohol increases up 
to 720 g daily, mainly tequila[24,33], until LC clinically 
manifests[34,35]. This pattern of alcohol consumption 
is consistent with the age-related onset of alcohol-
induced LC previously reported[36]. The average peak 
age for LC onset has been reported to be 45 years; 
however, one group reported an average age of 30 
years, which may be the earliest onset ever reported 
most likely due to genetic susceptibility[36]. Genetic 
polymorphisms in the CYP2E1, APOE, and FABP2 
genes have been associated with the early onset of LC 
in the population of West Mexico (Table 1). However, 
the distribution of these genetic polymorphisms 
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Figure 2  Hepatic fibrogenesis. Different etiological factors induce production of several stimuli to HSCs activation. Activated HSCs promote fibrosis and necrosis 
of hepatocytes. These pathogenic processes can be modulated by genetic polymorphisms involved in each stage of the pathophysiological process. HSC: Hepatic 
stellate cells; DRD2: Dopamine receptor D2; TAS2R38: Bitter taste receptor; CYP2E1: Cytochrome P450, family 2, subfamily E, polypeptide 1; ALDH2: Aldehyde 
dehydrogenase 2 family; ADH1B: Alcohol dehydrogenase class I, beta polypeptide; PNPLA3: Patatin-like phospholipase 3; MTTP: Microsome triglyceride transfer 
protein; PPAR-γ2: Peroxisome proliferator-activated receptors; IL-28B: Interleukin-28B; APOE: Apolipoprotein E; LDLr: Low-density lipoprotein receptor; TGF-β1: 
transforming growth factor beta 1; COL: Collagenases; MMP: Matrix metalloproteinase; TNF-α: Tumor necrosis factor alpha; NF-κB: Nuclear factor kappa B; ROS: 
Reactive oxygen species.
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further large-scale studies that involve distinct ethnic 
groups are needed to determine how genetics may 
influence the onset and progression of LC.

Viral Hepatitis 
Hepatitis C virus
The hepatitis C virus (HCV) is a hepatotropic single-
stranded RNA virus of the Flaviviridae family[40]. HCV 
infection is one of the most common causes of chronic 
liver disease worldwide, with an estimated prevalence 
of 3% or 170 million infected people[41]. Latin America 
has one of the lowest prevalences (1.23%); however, 
this prevalence varies between different regions[42]. In 
Mexico, 400000 to 1400000 individuals are infected 
with HCV. Of these individuals, 200000 to 700000 
present with active viremia[43]. HCV has been classified 
into six main genotypes with a heterogeneous global 
distribution. HCV genotypes 4, 5 and 6 are common 
in Africa and South East Asia, whereas genotypes 2 
and 3 are more frequent in European countries[44]. 
However, the most predominant HCV genotypes in 
Mexico are 1a and 1b[45], which have been associated 
with increased resistance to treatment with pegylated 
interferon and ribavirin. These HCV endemic differences 
are explained in part by the prevalent routes of 
transmission in each region. In West Mexico, the 
predominant risk factors for HCV transmission are 
blood transfusions from infectious donors and surgeries 
with contaminated surgical instruments[46]. In contrast, 
in North America, injection drug use is the major route 
of HCV infection[47].

Approximately 18%-34% of patients with acute 
HCV infection undergo spontaneous clearance through 
a sustained, vigorous and virus-specific CD4+ T-cell 

response in peripheral blood[48]. However, in cases 
of persistent HCV infection, the virus evades the 
host innate immune response[49]. This condition may 
potentially increase the risk of progression to hepatic 
fibrosis, cirrhosis and hepatocellular carcinoma (HCC) 
over 20-30 years of HCV infection[50]. HCV is a non-
cytopathic virus; therefore, the related liver damage 
is mainly caused by the host immune response. 
The potential mechanisms of LC include portal 
lymphoid infiltration, focal and bridging necrosis, 
and degenerative lobular lesions, which may be 
amplified by the accumulation of specific T cells that 
are recruited by adhesion molecules and chemokine 
expression[51]. 

Studies in West Mexico have found that cytokines 
influence the extent of HCV development in patients 
infected with genotype 1a. Our data reveal that 
chronic infection results in an increased secretion of 
interleukin 8 (IL-8) and the chemokine (C-C motif) 
ligand 5 (CCL5), whereas patients who spontaneously 
cleared HCV exhibited augmented levels of interleukin 
1 alpha (IL-1α), interleukin 13 (IL-13), interleukin 15 
(IL-15), TNF-α, TGF-β1 and the chemokine (C-C motif) 
ligand 8 (CCL8)[52]. This finding correlates with studies 
conducted in regions where the virus is endemic and 
suggests that variations in the profile of cytokines 
involved in the immune response may contribute to 
either the ability to clear HCV or to the long-term 
persistence of HCV and thus the potential development 
of LC[53].

Chronic HCV infection causes numerous pathogenic 
changes in the liver, including iron overload, steatosis, 
insulin resistance, the induction of endoplasmic 
reticulum stress, the unfolded protein response, 
oxidative stress, mitochondrial dysfunction and altered 
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Table 1  Genetic polymorphisms associated with alcohol dependence, alcohol abuse and liver disease

Gene Risk allele Association Population Ref.

Alcohol-metabolizing enzymes
   CYP2E1 CYP2E1*c2 Higher susceptibility to LC; decompensated liver function Mexican (Mestizo), West Mexico [110]
   ADH1B ADH1B*2 Higher risk to LC Japanese [111]
   ADH1B ADH1B*1 Alcohol dependence European, Asian [112-114]
   ALDH2 ALDH2*1 Higher susceptibility to LC Japanese [111]
Alcohol dependence genes
   DRD2 Taq I A1 Alcohol dependence European, East Asian [115]
   TAS2R38 AVV haplotype Higher alcohol intake Mexican, (Mestizo), West Mexico [39]
Lipid metabolism
   APOE APOE*2 Hypertriglyceridemia and increased development of early 

LC
Mexican (Mestizo), West Mexico [36]

   FABP2 Ala54 Earlier onset of LC Mexican (Mestizo), West Mexico [116]
   PNPLA3 M148 Alcoholic liver disease and clinically evident LC Mixed European and Native 

American, Mexico City
[117,118] 

   PPAR-γ2 Ala12 Increased risk to develop severe steatohepatitis and fibrosis German [119]
Immune response
   TNF-α -238 A Higher prevalence of LC Spanish [120]
   NF-ΚB ATTG deletion Higher prevalence of LC Spanish [121]
   CXCL1 rs4074 A Higher prevalence of LC German [122]
   CD14 -159 T Advanced liver disease, hepatitis and especially with LC Finnish [123,124]

LC: Liver cirrhosis.
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growth control[54-56]. Other factors are significantly 
associated with the progression of fibrosis in chronic 
HCV carriers. These factors include the duration of 
infection, advanced age, male sex, heavy alcohol use 
(> 50 g/d), HIV coinfection, diabetes and a low CD4 
count[57-59]. Moreover, physical inactivity, obesity, and 
related lipid alterations may play a critical role in the 
progression of fibrosis[42]. Recently, we found that 
approximately 65% of HCV-infected patients in West 
Mexico have a sedentary lifestyle, and approximately 
70% of these patients are overweight or obese[38]. 
Because overnutrition may influence the course of 
infection, the analysis of distinct cohorts, including 
obese and non-obese individuals, should be conducted 
to characterize the influence of this factor on LC 
development.

In addition to environmental and viral features, 
host genetic factors are important contributors to the 
modulation of HCV outcomes[42]. Diverse polymorphisms 
in genes involved in lipid metabolism have been 
described, such as apolipoprotein B (APOB), APOE, 
LDL receptor (LDLr), microsomal triglyceride transfer 
protein (MTTP) and PNPLA3. Polymorphisms in several 
immune regulatory genes have been demonstrated 
to influence HCV outcomes, including CXCL1, 
interleukin 28B (IL-28B), TGF-β1 and TNF-α ; and 
matrix metalloproteinase 1 (MMP-1), 3 (MMP-3) and 9 
(MMP-9). Additionally, genetic polymorphisms that have 
been implicated in the metabolism of homocysteine 
(methylenetetrahydrofolate reductase, MTHFR), iron 
(hemochromatosis gene, HFE), and vitamin D (vitamin 
D receptor, VDR) have been reported (Table 2). Finally, 
a meta-analysis demonstrated that two polymorphisms 
in IL-28B (rs12979860 CC and rs8099917 TT) were 
strong predictors of sustained virological response 
in patients on pegylated interferon and ribavirin 
treatment[60].

Hepatitis B virus
The hepatitis B virus (HBV) is a noncytopathic, hepa
totropic virus of the Hepadnaviridae family[61]. HBV 
infection is a public health problem, in which nearly 
400 million people suffer chronic HBV infection[62]. In 
Mexico, epidemiological studies have indicated that at 
least 15 million adults may have been exposed to HBV 
during their lifetime[63], and up to 300000 individuals 
may be active carriers[64]. Globally, geographical 
areas with a high endemicity of HBV infection include 
Asian countries, regions in South America with 
indigenous peoples and Alaska[65,66]. In contrast, 
Mexico is considered a region of low endemicity[43], 
which is associated with predominant HBV genotypes 
H and G[67], low hepatitis B surface antigen (HBsAg) 
seroprevalence[64], and low viral loads[63] but a high 
prevalence of occult B infection (OBI) among native 
Mexican groups (Nahuas and Huichol)[68]. OBI is dia
gnosed based on a negative serum hepatitis B surface 
antigen (HBsAg) test, the presence of HBV DNA in 

the liver and very low HBV DNA levels in serum[69]. 
Therefore, given these features, the detection of HBV 
infection in Mexico may be underestimated in the 
setting of HBV-induced chronic liver disease.

The outcome of HBV infection is the result of 
complex interactions between HBV and the host 
immune system[53,70]. A study of cytokine sera profiles 
in native Mexican groups revealed that OBI patients 
displayed increased interleukin 2 (IL-2) secretion and 
a characteristic inflammatory profile (reduction in IL-8 
and TNF-α, and increased levels of TGF-β1)[71]. This 
finding correlates with the accepted role of TGF-β1 in 
the progression of liver disease[72], whereas the high 
secretion of IL-2 suggests that OBI may be modulated 
by IL-2. Experimental data indicate that cytotoxic 
T cells are the main cell type responsible for the 
inhibition of viral replication and for hepatocyte lysis[73]. 

Moreover, HBV genotypes influence the natural 
course of infection and related liver damage. Regarding 
the distribution of HBV genotypes, HBV genotype H 
in native and Mestizo Mexicans and genotype F in 
native Latin Americans are linked to a less severe 
natural course of disease and a faster resolution of 
infection[74]. This finding may be due to a high degree 
of immune adaptation to the virus in these populations. 
Nonetheless, in Mestizo Americans, genotype F is 
commonly associated with acute and chronic liver 
disease with a tendency toward HCC[74]. 

Additionally, HBV is associated with metabolic 
alterations in host cells, which lead to hepatic steatosis, 
oxidative stress, inflammation, and carcinogenesis. 
The main mechanisms include the transcriptional up-
regulation of genes involved in the biosynthesis of 
lipids, phosphatidylcholine, and hexosamine; as well 
as modifications in cell proliferation and differentiation. 
Together, such changes promote HBV replication and 
liver damage[75]. Other factors, such as alcohol abuse 
(> 60 g/d) for at least 10 years, central obesity, insulin 
resistance, diabetes and environmental hepatotoxins, 
including tobacco smoke and aflatoxins, may increase 
the progression rate of liver injury in chronic HBV-
infected patients[76]. In addition, genetic polymorphisms 
modulate the outcome of HBV infection. These 
polymorphisms include interleukin 10 (IL-10), IL-28B, 
TGF-β1 and the collagenases, type I, alpha 1 (COL1A1) 
and type Ⅲ, alpha 1 (COL3A1) (Table 3). 

Other viral hepatitis 
Recently, we described a high seroprevalence of 
the hepatitis E virus (HEV) in serum samples from 
cirrhotic patients in whom no etiological agent 
was found[43]. Consequently, this finding suggests 
a potential role of HEV in LC development and 
is consistent with the description of HEV-related 
cirrhosis in immunocompromised patients[77]. Further 
epidemiological studies are warranted among the 
Mexican population to elucidate the plausible influence 
of HEV in liver disease. 
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NAFLD
Obesity is considered the main factor associated with 
multiple metabolic disorders, such as NAFLD, which 
comprises simple steatosis, NASH, cirrhosis and 
HCC[78,79]. Hepatic steatosis is defined by the presence 
of cytoplasmic triglyceride (TG) droplets in more than 
5% of hepatocytes as a result of an imbalance between 
lipid input and output[80,81]. The abnormal accumulation 
of TGs in the liver induces lipotoxicity, endoplasmic 
reticulum (ER) stress, mitochondrial dysfunction, 
and inflammation, which all result in fibrosis (Figure 
3)[82,83]. Conventionally, international guidelines 
and intervention strategies have been proposed for 
the treatment of NAFLD/NASH. However, because 
disparities in genetic and environmental factors among 
populations were not considered, the application of 
these strategies may not be feasible for all populations 

worldwide. Therefore, intervention strategies for the 
prevention and management of such obesity-related 
diseases should be based on a regionalized genome-
based diet by focusing on the specific ancestry of 
each population and the convenience of consuming 
traditional ethnic food[11].

Currently, Mexico is one of the countries with the 
highest number of obese individuals, which is closely 
related to dietary factors and physical inactivity[84]. The 
diet in West Mexico is hepatopathogenic because of its 
high content of fat derived mainly from the habitual 
consumption of meat, fried foods and sausages[11,38]. 

Interestingly, we have observed that a genetic variant 
in the fat taste CD36 receptor may play an important 
role in this condition[85]. High-fat diets are associated 
with an increase in body weight, the upregulation of 
blood glucose levels, the progression of steatosis, 
and marked inflammation of the liver[86]. Moreover, 
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Table 2  Genetic polymorphisms associated with the outcomes of hepatitis C virus infection

Gene Risk allele Association Population Ref.

Lipid metabolism
   APOB -516 C Increased susceptibility of HCV infection Chinese [125]
   APOE APOE*3 Viral persistence Northern European [126]
   LDLr rs2738459 C, rs2569540 G, 

rs1433099 A, rs11672123 A
Higher viral load in genotypes 1 and 4 Spanish [127]

   MTTP -493 T Higher degree of steatosis, HCV RNA serum levels and 
hepatic fibrosis

Native Italian [128,129]

   PNPLA3 M148 Higher risk for steatosis and fibrosis progression European: Belgian, 
German and French

[130]

Inmune response mediators
   CXCL1 rs4074 A Higher risk for LC German [131]
   IL-28B rs12979860 T Higher risk for LC and HCC Native Italian and Chinese [132,133]
   TGF-β1 -509 T Higher risk for LC and HCC Egyptian [134]
   TNF-α -308 A Higher risk for LC and HCC Egyptian [134]
Fibrogenesis
   MMP-1 -1607 2G Higher prevalence of LC Japanese [135]
   MMP-3 -1171 5A Lower age at LC diagnosis and a higher Child-Pugh 

score
Japanese [135]

   MMP-9 -1562 C Higher prevalence of LC Japanese [135]
Nutrient metabolism
   MTHFR 677 T Hyperhomocysteinemia and higher degree of steatosis 

and fibrosis
Italian [136]

   HFE 63 D Higher likelihood of LC Taiwanese [137]  
   VDR CAA haplotype (rs1544410 

C, rs7975232 A, rs731236 A)
Higher fibrosis progression and LC Swiss [138]

LC: Liver cirrhosis; HCV: hepatitis C virus; HCC: hepatocellular carcinoma. 

Table 3  Genetic polymorphisms associated with the outcomes of hepatitis B virus infection

Gene Risk allele Association Population Ref.

Immune response mediators
   IL-10 -592 C Significant increased risk of LC Asian [139]
   IL-28B rs12979860 C Increased risk for developing LC Asian [140]
   TGF-β1 10 T Higher prevalence of LC Chinese [141]
   TGF-β1 -509 C Higher susceptibility to LC Chinese [142]
Fibrogenesis
   COL1A1 TC haplotype (-1997 T, -1363 C) Higher prevalence of LC Chinese [143]
   COL3A1 rs3106796 A Higher prevalence of chronic hepatitis, LC and HCC Koreans [144]

LC: Liver cirrhosis; HCC: hepatocellular carcinoma. 
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more than 70% of the Mexican population frequently 
consumes soda, which increases fructose input[38]. 
Fructose promotes steatosis, insulin resistance, 
necroinflammation, and fibrosis[87-89]. In contrast, our 
diet is deficient in n-3 polyunsaturated fatty acids 
(PUFA) and antioxidants, which favors oxidative stress 
and lipid alterations[90]. Finally, inadequate dietary 
behaviors, such as missing breakfast and a lack of 
feeding schedules, are common among the Mexican 
population[38] and have been linked to obesity[91]. 

Other interactions between genes and environmental 
lifestyle factors that favor changes in the body mass 
index have been studied in West Mexico. Dietary 
modifications consisting of a lower intake of saturated 
fat (< 7%) significantly decreased body mass index, 
waist circumference, waist-to-hip ratio, and reactive 
C protein in FABP2 Thr54 allele carriers compared to 
Ala54 allele carriers[92]. Additionally, recent studies in 
an obese cohort demonstrated that the expression of 
adiponectin levels may be modulated by changes in 
lifestyle regardless of the presence of an adiponectin 
(ADIPOQ) 11391G/A polymorphism[93]. 

However, despite the strong correlation between 
obesity and NAFLD, approximately 5% of morbidly 
obese patients do not develop NAFLD[94]. This finding 
supports the role of genetic factors in the development 
of NAFLD and NASH (Table 4). These factors may include 
polymorphisms in genes that affect lipid metabolism, 
such as apolipoprotein C3 (APOC3), PNPLA3, MTTP, 
and phosphatidylethanolamine N-methyltransferase 
(PEMT). Polymorphisms in genes that affect insulin 
sensitivity, such as ADIPOQ, adiponectin receptors 1 and 
2 (ADIPOR 1 and ADIPOR 2), PPAR-γ, PPAR-γ coactivator 
1α gene (PPARGC1A) and PPAR-α, may play a role in 
the development of NAFLD and NASH. Additionally, 

regulatory genes of oxidative stress, including glutamate 
cysteine ligase (GCLC), inducible nitric oxide synthase 
(NOS2), and manganese superoxide dismutase (SOD2), 
have been implicated. Genes related to immune 
regulation, including signal transducer and activator of 
transcription 3 (STAT3), TNF-α, IL-8 and interleukin-6 
(IL-6); as well as MTHFR and HFE have been described. 
Finally, other less common genes that have been 
associated with the development of NAFLD and NASH 
include ATP-binding cassette subfamily C member 2 
(ABCC2, also known as multidrug resistance protein 2, 
MRP2) and angiotensin Ⅱ type Ⅰ receptor (AGTR1)[95]. 

HCC 
Globally, HCC is the most common form of liver cancer, 
the sixth most prevalent cancer and the third most 
frequent cause of cancer-related death[96]. Nearly 75% 
of HCC cases are attributed to chronic HBV and HCV 
infections in high endemic regions[97]. Therefore, the 
particular characteristics of these viruses and the genetic 
structure and environmental factors that prevail in each 
population may explain the epidemiological differences 
in HCC worldwide. Regions with higher incidence 
rates of this malignant disease include sub-Saharan 
Africa, Eastern Asia, followed by Southern European 
countries[32]. However, HCC is rare in other geographical 
areas, such as North and South America, Northern 
Europe, Oceania, and Mexico[98]. The low incidence of 
HBV-related HCC among the Mexican population is 
associated with a low steady HBsAg seroprevalence[64]. 
Furthermore, because Mexican patients with alcoholic 
cirrhosis are young, death occurs earlier due to long-
term complications. This fact hinders the study of the 
association between alcohol consumption and HCC in 
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Figure 3  Nonalcoholic fatty liver disease pathogenesis. The spectrum of NAFLD includes simple steatosis, NASH, LC and even HCC. Risk factors such as 
obesity, hepatopathogenic diet, insulin resistance and adipose tissue lipolysis lead to accumulation of triglycerides. This abnormality can stimulate lipotoxicity, ER 
stress, mitochondria dysfunction and inflammation, promoting fibrosis. Chronic fibrogenesis causes histological changes in the liver that lead to LC, which in turn may 
evolve to HCC. NAFLD: Nonalcoholic fatty liver disease; NASH: Nonalcoholic steatohepatitis; LC: Liver cirrhosis; HCC: Hepatocellular carcinoma; FA: Fatty acids; 
VLDL: Very low-density lipoprotein; ER: Endoplasmic reticulum.
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Mexico because the average age of death from HCC is 
at least one or two decades after the clinical diagnosis of 
LC[98]. Similarly, epidemiological studies have indicated 
a positive correlation between liver cancer and the 
consumption of several foodstuffs contaminated with 
aflatoxins and fumonisins, including maize, cereals, 
ground nuts and tree nuts[99]. These mycotoxins are 
potent liver carcinogens through the formation of pro-
mutagenic DNA adducts. Nonetheless, the process of 
“nixtamalization” in the elaboration of Mexican tortillas 
since pre-Hispanic times[100] inactivates up to 95% of 
aflatoxins in corn (maize), which may exert a protective 
effect against the development of HCC[101]. 

EPIGENETIC FACTORS
Epigenetic changes affect gene expression without 
altering the underlying DNA sequence[102]. These 
changes include DNA methylation, histone modifications, 
chromatin remodeling, and microRNAs (miRs), which 

are essential for the proper maintenance of cellular 
homeostasis[103]. However, such processes are regulated 
by environmental factors, including diet, alcohol, drugs, 
exercise and stress[104]. Growing evidence suggests 
that epigenetic alterations are correlated with a wide 
range of chronic disorders, including liver diseases. 
Diverse miRs have been implicated in the development 
and progression of NAFLD by disrupting lipid and 
glucose metabolism, insulin resistance, the unfolded 
protein response, mitochondrial damage, ER stress, 
oxidative stress, cellular differentiation, inflammation 
and apoptosis[105,106]. Moreover, the reduction of histone 
expression promotes the differentiation of HSCs to 
myofibroblasts, thereby enhancing the fibrogenesis 
process[107]. Interestingly, alcohol directly stimulates 
changes in chromatin structure, which induces the 
trans-differentiation of HSCs and the increased 
expression of ECM proteins[108]. Global DNA hypo
methylation and the dysregulated expression of non-
coding RNAs and epigenetic regulatory genes have 
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Table 4  Genetic polymorphisms associated with the development of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis

Gene Risk allele Association Population Ref.

Lipid metabolism
   APOC3 482 T, 455 C Higher fasting plasma triglyceride concentration 

and higher prevalence of NAFLD
Asian Indian [145]

   PNPLA3 M148 Increased hepatic fat levels, hepatic inflammation 
and fibrosis in NAFLD and NASH patients

Hispanic, African American, 
European American, Finnish, 

Argentinean, Italian

[146-150]

   MTTP -493 G Higher intrahepatic triglycerides content. Higher 
incidence and progression of NASH

French, Japanese [151,152]

   PEMT M175 Higher prevalence of NAFLD and NASH Hispanic, African American, 
European American, Asian

[153,154]

Insulin resistance/sensitivity
   ADIPOQ 45 T, 276 T Higher prevalence of NAFLD. Lower postprandial 

adiponectin and higher postprandial triglyceride, 
VLDL, and FFA in NASH patients

Italian [155]

45 G, 276 G Higher prevalence of NAFLD, severe fibrosis and 
insulin resistance in females

Japanese [156]

   ADIPOR1 -8503 A, -1927 C Lower insulin sensitivity and higher liver fat German [157]
   ADIPOR2 rs767870 T Increased hepatic fat and biochemical surrogates of 

NAFLD
Finnish [158]

   PPAR-γ 161 T Higher susceptibility of NAFLD Chinese [159]
   PPARGC1A rs2290602 T Higher occurrence of NAFLD Japanese [160]
   PPAR-α Val227 Higher prevalence of NAFLD and anthropometrical 

indicators of obesity
Chinese [161]

Oxidative stress
   GCLC -129 T Higher prevalence of NASH Brazilian [162]
   NOS2 rs1060822 T Higher fibrosis index in NAFLD patients Japanese [163]
   SOD2 1183 T Higher prevalence of NASH Japanese [152]
Immune response mediators
   STAT3 rs6503695 T, rs9891119 A Higher prevalence of NAFLD Argentinean [164]
   TNF-α -238 A Higher prevalence of NAFLD and NASH Italian, Chinese [165,166]
   IL-8 -251 A Disease progression in NASH Turkish [167]
   IL-6 -174 C Higher risk for NAFLD and NASH Italian [168]
   MTHFR 1298 C, 677 C Higher prevalence of NASH Turkish [169]
   HFE 282 Y More hepatic fibrosis in NASH patients. Higher 

prevalence of NAFLD
Australian [170-172]

   ABCC2/MRP2 rs17222723 T, rs8187710 A NAFLD disease severity Argentinean [173]
   AGTR1 rs3772633 G, rs3772627 C, 

rs3772622 A
Higher prevalence of NASH Japanese [174]

NAFLD: Nonalcoholic fatty liver disease; NASH: Nonalcoholic steatohepatitis.
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been found to trigger carcinogenesis of hepatocytes[109]. 
Taken together, these findings support the need to 
evaluate epigenetic factors in distinct populations and 
their relationship to the severity of liver damage.

CONCLUSION
LC is a complex disease. The onset, progression, 
and clinical outcome of LC are influenced by genetic 
polymorphisms that are associated with particular 
ethnic backgrounds and their interaction with 
environmental factors, such as lifestyle. Currently, 
chronic alcohol abuse is the main etiological factor of 
LC in Mexico, which is associated mainly with cultural 
and genetic aspects. To date, HCV genotypes 1a and 
1b favor chronicity, liver damage and therapeutic 
failure among Mexicans. In contrast, the more fav
orable natural course of HBV infection in the native 
Mexican population may be linked to an evolutionary 
immune adaptation to HBV genotype H. Finally, the 
hepatopathogenic diet and the high prevalence of 
obesity in our population contribute to the onset and 
progression of NAFLD. These findings highlight the 
influence of genetic and environmental factors in the 
development of LC, which may be different than those 
reported in other regions of the world. Therefore, these 
factors represent a challenge for hepatologists and 
gastroenterologists in Mexico and worldwide because 
they require the incorporation of personalized genomic 
medicine into current medical practices. However, the 
development of intervention strategies according to 
individual or population-based features will have a 
substantial impact on the prevention, management and 
treatment of LC.
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