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Abstract
β cells are the main cells responsible for the hypoglycemic function of pancreatic 
islets, and the insulin secreted by these cells is the only hormone that lowers blood 
glucose levels in the human body. β cells are regulated by various factors, among 
which neurotransmitters make an important contribution. This paper discusses 
the effects of neurotransmitters secreted by various sympathetic and parasym-
pathetic nerves on β cells and summarizes the mechanisms by which various 
neurotransmitters regulate insulin secretion. Many neurotransmitters do not have 
a single source and are not only released from nerve terminals but also 
synthesized by β cells themselves, allowing them to synergistically regulate 
insulin secretion. Almost all of these neurotransmitters depend on the presence of 
glucose to function, and their actions are mostly related to the Ca2+ and cAMP 
concentrations. Although neurotransmitters have been extensively studied, many 
of their mechanisms remain unclear and require further exploration by 
researchers.
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Core Tip: β-Cells are the only islet cells in the body that release insulin, and the neurotransmitter is an important factor in 
regulating insulin secretion. This review systematically describes the release sources of different neurotransmitters and their 
effects on insulin secretion. There are common mechanisms among different neurotransmitters, which mainly involve 
neuroanatomy and blood glucose homeostasis in vivo. There are great differences among different species. Although many 
specific mechanisms remain to be explored, this review provides a certain reference value and direction for subsequent 
research.
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INTRODUCTION
Islets are important endocrine micro-organs for maintaining glucose homeostasis. In animals, intermittent feeding is an 
important cause of fluctuations in blood glucose levels, which are precisely controlled within a certain range by various 
hormones secreted by the islets. Islets are scattered in the exocrine parenchyma of the pancreas and are composed of cells, 
65%-80% of which are β cells that secrete insulin (the only hypoglycemic hormone in the body)[1]. In rodents, β cells are 
located in the center of the islets and are surrounded by α-cells (which secrete glucagon), δ-cells (which secrete growth 
inhibitory hormone), and PP-cells (which secrete pancreatic polypeptide). In humans, islets are formed by three main cell 
types in close proximity, allowing more local interactions than in rodents[2]. The blood glucose level is undoubtedly an 
important factor in the regulation of islet function. In addition, islets are innervated by autonomic nerves; thus, a logical 
hypothesis is that neurotransmitters act as messengers to regulate the autonomic innervation of islets[1]. Recent studies 
have found that in addition to neurotransmitters, many neuropeptides located in islets also participate in neuroregulation
[3]. The nerves that innervate islets mainly include sympathetic, parasympathetic and sensory nerves; acetylcholine 
(ACh), vasoactive intestinal polypeptide (VIP), gastric releasing peptide (GRP), 5-hydroxytryptamine (5-HT), pituitary 
adenylate cyclase activating peptide (PACAP) and nitric oxide (NO) are stored in parasympathetic nerve endings; 
norepinephrine (NE), dopamine (DA), galanin, calcitonin gene-related peptide (CGRP) and neuropeptide Y (NYP) are 
stored in sympathetic nerve endings; and sensory neuropeptides, cholecystokinin and substance P are stored in sensory 
nerve endings[1] (Table 1). Neurotransmitters do not only originate from nerve endings; in addition, β cells, as nonneural 
sources of neurotransmitters, synergize with nerve endings to secrete neurotransmitters and exert autocrine or paracrine 
effects locally[1]. These neurotransmitters synthesized by β cells are also released into the bloodstream together with 
insulin (Figure 1).

Islets are mainly innervated by sympathetic and parasympathetic nerves. Sympathetic preganglionic neurons are 
located in the mediolateral spinal cord at the T6-L2 levels, and their axons project from the visceral nerves to the superior 
mesenteric and celiac ganglia and to the pancreas[4]. The preganglionic fibers of parasympathetic nerves originate from 
the dorsal nucleus of the vagus nerve[5] and possibly from the ambiguous nucleus[6], both of which are under 
hypothalamic control. It is traditionally believed that sympathetic nerves play the opposite role as parasympathetic 
nerves in insulin secretion. In mice and humans, sympathetic nerves mainly stimulate the secretion of glucagon by α cells 
and reduces the secretion of insulin by β cells by regulating the islet vascular system[7]. However, it has been reported 
that the level of insulin increases slowly when visceral sympathetic nerves are stimulated in anesthetized dogs[8]. 
Parasympathetic nerves mainly play a role in regulating insulin secretion in the cephalic stage by integrating taste, smell, 
and visual signals in the hypothalamus, eventually leading to the stimulation of insulin secretion[9]. Dietary hormones 
such as cholecystokinin and 5-HT can also activate the vagus nerve. Vagal fiber endings release a variety of neurotrans-
mitters, such as ACh and gut GRP[10]. In a previous study, vagotomy was performed in both fed and fasted animals, and 
it was found that the vagus nerve had no effect on insulin secretion in fasted animals[11] but was involved in insulin 
secretion in fed animals. Therefore, it is generally believed that the vagus nerve is involved in insulin secretion under 
high-glucose feeding conditions but has little effect on basal insulin secretion. In addition, many studies have shown that 
the mode of glucose administration also affects the control of insulin secretion by the vagus nerve; for example, 
intravenous glucose administration rarely affects basal insulin secretion, while vagotomy substantially reduces insulin 
secretion when glucose is administered orally[1]. All these studies suggest that glucose is an important stimulus for the 
regulation of β cells by the vagus nerve in the gastrointestinal tract. Although the sympathetic nerves in the pancreas 
originate from the lower thoracic and upper lumbar segments of the spinal cord[12], their myelin sheaths form the 
paravertebral sympathetic chain[1] or cross the viscera to reach the ventral and mesenteric ganglia[12], and the postgan-
glionic fibers emanating from the paravertebral sympathetic chain, ventral ganglia and mesenteric ganglia ultimately 
innervate the pancreas. Neurotransmitters may be involved in regulating insulin secretion in healthy people as well as in 
individuals with type 1, type 2, or other types of diabetes, so we do not distinguish between their specific roles in various 
types of diabetes.

https://www.wjgnet.com/2307-8960/full/v11/i28/6670.htm
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Table 1 Role of neurotransmitters in the islet

Name Source Receptor Effect on pancreatic islet secretion

ACh Vagus nerve M3 ↑↑↑

NO Vagus nerve, beta cells sGC Low concentration ↑, high concentration 
↓

GRP Vagus nerve GRPR ↑

VIP Vagus nerve VIP-2 ↑

PACAP Vagus nerve, gut-pancreas nerve PACAP-3 ↑

5-HT Vagus nerve, gut-pancreas nerve, beta 
cells

Htr1 ↑↑

NE Sympathetic nerves α2, β2 α2 receptors ↑, β2 receptors ↓↓

Galanin Sympathetic nerves GALR1 ↓

NPY Sympathetic nerves Y2 ↓

DA Sympathetic nerves, beta cells D2, D3 D2↑, D3↓

CGRP Sensory nerves CGRP ↓

SP Sensory nerves NK1 ↑

Cholecystokinin Sensory nerves CCK ↓

“↑” represents the promotion of insulin secretion; “↓” represents the inhibition of insulin secretion. 5-HT: 5-hydroxytryptamine; ACh: Acetylcholine; CCK: 
Cholecystokinin; CGRP: Calcitoningenerelatedpeptide; DA: Dopamine; GRP: Gastrin releasing peptide; NE: Norepinephrine; NO: Nitric oxide; NPY: 
Neuropeptide Y; PACAP: Pituitary adenylate cyclase activating polypeptide; SP: Substance P; VIP: Vasoactive intestinal peptide.

NEUROTRANSMITTERS ORIGINATING FROM NERVE ENDINGS
ACh
ACh, an important hormone secreted by the vagus nerve, has traditionally been the focus of research by endocrinologists. 
However, ACh has been shown to be rapidly hydrolyzed by cholinesterase in the cytoplasm, and thus direct 
measurement of ACh levels is impossible. Therefore, researchers usually choose to measure plasma PP levels instead of 
Ach levels. PP also plays a role in regulating insulin secretion. PP acts on the Y4 receptor of delta cells, reducing 
somatostatin secretion and promoting insulin secretion[13].

ACh promotes insulin secretion, but this effect mainly depends on Ca2+ and glucose. After ACh is secreted by the vagus 
nerve, it acts on M3 receptors in β cells to promote glucose-mediated coupling of phospholipase C (PLC) to G proteins. 
The coupling of PLC to G proteins results in phosphoinositide (PI) hydrolysis. The hydrolysis of PI leads to the formation 
of inositol triphosphate (IP3). The binding of IP3 to IP3 receptors promotes the release of Ca2+ from the Ca2+ pool, thereby 
increasing the [Ca2+]i. It should be emphasized that the increase in Ca2+ release caused by the ACh-induced IP3 pulse 
peaks every 5-7 min, and this pattern of release is synchronized with the pulse secretion of insulin[14,15]. When a large 
amount of Ca2+ is released from the intracellular Ca2+ pool, the lack of Ca2+ in the storage pool leads to an inward flow of 
extracellular Ca2+, leading to volumetric Ca2+ inward flow, a second mechanism by which ACh promotes an increase in 
Ca2+ concentrations. In addition, voltage-dependent Ca2+ channels are located in the β-cell membrane, and large amounts 
of Ca2+ enter the cell when they are open.

ACh promotes insulin secretion by increasing the Ca2+ concentration in β cells on the one hand and enhances the effect 
of Ca2+ in promoting insulin secretion on the other hand. According to many studies, the PLC-PKC pathway may be 
involved in the mechanism by which ACh increases the prosecretory effect of Ca2+[10]. PLC activation results in the 
production of the diglyceride DAG2, which is a PKC activator that induces the translocation of PKC from the cytoplasm to 
the cell membrane; however, the mechanism by which PKC increases the effect of Ca2+ in promoting insulin secretion 
remains to be investigated. Further studies are needed to investigate whether phospholipase A2 is involved in this 
process. In addition, ACh does not regulate insulin secretion in one direction. ACh stimulates insulin secretion directly 
but simultaneously inhibits insulin secretion by promoting somatostatin secretion from δ-cells[1].

GRP
Enterostatin is a hormone that promotes insulin secretion, and its mechanism of action is closely related to glucose and 
Ca2+. However, the mechanism has not been fully elucidated. GRP seems to stimulate insulin secretion through direct and 
indirect mechanisms, and GRP seems to promote glucagon secretion.

GRP does not increase insulin secretion when the extracellular glucose concentration is less than 11.1 mmol/L in β 
cells, leading to the conclusion that the effect of GRP in promoting insulin secretion depends on the presence of glucose. 
Likewise, it was found that GRP did not increase the insulin concentration or insulin secretion when the extracellular 
culture medium was deficient in Ca2+, suggesting that GRP function also depends on extracellular Ca2+[16]. However, in 
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Figure 1 Regulation of insulin secretion by neurotransmitters. With the increase of glucose concentration, the concentration of adenosine triphosphate 
(ATP) produced by glucose metabolism also increases correspondingly, and the closure of internal rectifying K+-ATP channels leads to membrane depolarization, 
which opens volt-sensitive Ca2+ channels, and Ca2+ enters intracellularly to mediate insulin secretion in large quantity. Acetylcholine, gastrin releasing peptide, 5-
hydroxytryptophan, vasoactive intestinal peptide, pituitary adenylate cyclase activating polypeptide and nitric oxide promote insulin secretion. Dopamine, 
neuropeptide Y, galanin and norepinephrine inhibit insulin secretion. 5-HTTP: 5-hydroxytryptophan; AADC: Amino acid decarboxylase; ADP: Adenosine diphosphate; 
cAMP: Cyclic adenosine monophosphate; CCK: Cholecystokinin; cGMP: Cyclic guanosine monophosphate; DAG: Diacylglycerol; GCRP: 
Calcitoningenerelatedpeptide; GTP: Guanosine triphosphate; IP3: Inositol triphosphate; L-Arg: Levo-arginine; L-DOPA: Levo-dopa; NOS: Nitric oxide synthase; PIP2: 
Phosphatidylinositol(4,5)bisphosphate; PKA: Protein kinases A; PKC: Protein kinase C; PKG: Protein kinases G; PLC: Phospholipase C; SP: Substance P; TCA: 
Tricarboxylic acid cycle; TPH: Tryptophan hydroxylase; Trp: Tryptophan; VIP: Vasoactive intestinal peptide.

subsequent experiments, it was found that although GRP acts continuously on β cells, the extracellular secretion of Ca2+ is 
not continuous; thus, GRP promotes insulin secretion by inducing only transient extracellular secretion of Ca2+. GRP 
stimulates IP3 production[17] but not IP3 hydrolysis[16]. GRP likely promotes PKC production by stimulating DAG 
production, and PKC promotes insulin secretion[18], suggesting that GRP also indirectly promotes insulin secretion. 
Overall, the GRP-mediated promotion of secretion depends on the presence of Ca2+. First, GRP stimulates IP3 production, 
and although it does not promote its hydrolysis, it still substantially increases the intracellular Ca2+ concentration. In 
addition, GRP also seems to inhibit K+ channels, which accelerates β-cell depolarization and prolongs its duration, which 
is more favorable for inward Ca2+ flow. Many studies have also found that in addition to having direct effects, GRP may 
act indirectly through cholinergic mechanisms. The muscarinic receptor M3 is involved in the action of GRP in promoting 
insulin secretion[19].

VIP and PACAP
VIP and PACAP have similar mechanisms of action and are colocalized in rat ganglion neurons, so they are often 
discussed together. PACAP and VIP share the receptors VIP1 and VIP2, while PAC1 is a specific receptor for PACAP[6]. 
Of course, PACAP can also be secreted by the enteropancreas. PAC1 is expressed in intrapancreatic ganglia, intestinal 
neurons, and beta cells[3]. Similar to NO and GRP, VIP and PACAP act in a glucose-dependent manner; when glucose is 
absent in the extracellular matrix, the effects of VIP and PACAP are almost negligible. Most studies suggest that the 
mechanisms of action of VIP and PACAP are related to their ability to stimulate increased cyclic adenosine mono-
phosphate (cAMP) production[20], which increases the intracellular Ca2+ concentration in β cells. However, when Ca2+ is 
removed from the extracellular matrix, the intracellular Ca2+ concentration in β cells does not increase significantly, which 
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suggests that instead of intracellular Ca2+ being released from the storage pool, extracellular Ca2+ flows into the cell[20]. 
VIP and PACAP increase the cAMP concentration, and a peak in the intracellular Ca2+ concentration can indeed be 
detected in β cells[21]. However, in mice, researchers did not observe an association between VIP-stimulated insulin 
release and increased cAMP levels[22], suggesting that signaling pathways other than the cAMP pathway might also 
participate in this process. When the VIP- and PACAP-stimulated increase in cAMP levels was reversed, it was found 
that VIP and PACAP stimulated a transient increase in cAMP and Ca2+ concentrations but a persistent increase in insulin 
levels, which supports the existence of other mechanisms[21].

NE
NE is released into the pancreatic vein mainly by sympathetic excitatory postganglionic fibers[23]. In animal experiments, 
exogenous NE was found to inhibit glucose-mediated insulin secretion; colistin, an α2-adrenergic receptor agonist, was 
found to inhibit insulin secretion[24], as was the β-blocker, propranolol. Therefore, NE is presumed to inhibit insulin 
secretion. Phentolamine, however, acts as an α-adrenergic receptor blocker and seems to counteract the inhibition of 
insulin secretion after neuroelectrical stimulation[25]. NE may likewise promote insulin secretion; one pathway might be 
the direct stimulation of insulin secretion through the activation of β2-adrenergic receptors in pancreatic β cells, and the 
other pathway may involve signaling directly through α2 and β2-adrenergic receptors in α cells[26], promotion of 
glucagon secretion by these cells and indirect stimulation of insulin secretion through glucagon. Therefore, the effect of 
NE on islets seems to be a vector sum of the actions of two receptors.

However, in general, the main effect of NE on β cells is the inhibition of insulin secretion. The mechanism underlying 
this effect is mainly related to the promotion of K+-ATP channel opening by NE. The opening of K+-ATP channels directly 
affects the Ca2+ concentration in β cells[27], and when NE acts on α2-adrenergic receptors, K+-ATP channels remain open, β 
cells are in a hyperpolarized state, and Ca2+ does not flow inward, which in turn inhibits insulin release[28]. After NE acts 
on β2-adrenergic receptors, it also inhibits the reduction in cAMP production by β cells[29], which inhibits insulin 
production through another pathway.

NPY
Galanin and NPY are both released by sympathetic nerve fiber terminals, and their role in inhibiting insulin release is 
well recognized. Although they exert different inhibitory effects in different species, in general, their directions of action 
are consistent. Although the results of their actions are well understood, their mechanisms remain unclear. Galanin has 
been shown to inhibit insulin secretion in a variety of animals[30]. Although the mechanism remains unclear, galanin was 
found to inhibit the glucose-mediated increase in the Ca2+ concentration in previous studies[31]. Therefore, we speculate 
that galanin may inhibit K+-ATP channel opening to inhibit β-cell membrane depolarization. When researchers induced β-
cell depolarization with K+, galanin did not inhibit insulin secretion[32]; while other mechanisms through which galanin 
inhibits Ca2+ inward flow must exist, they remain unclear. Many studies suggest that NPY may inhibit insulin secretion 
by inhibiting G protein coupling and adenylate cyclase activity.

Sensory nerves
In addition to parasympathetic and sympathetic nerves, islets are also innervated by a wide range of sensory nerves, 
which secrete CGRP and SP. The CGRP receptor complex is expressed in mouse β cells, while the substance SP receptor 
NK-1R is expressed in mouse α cells. CGRP stimulates the release of gastrointestinal growth inhibitory hormone, which 
inhibits insulin release, and this pathway might be the mechanism by which CGRP inhibits insulin release. CGRP 
increases blood flow to the pancreas, which leads to a decrease in the insulin concentration due to an increase in blood 
flow when an increase in the insulin concentration is detected[33]. Several experiments have shown that CGRP inhibits 
glucose-induced insulin release, but the exact mechanisms involved need to be further investigated. However, there are 
some species-specific differences in this phenomenon. For example, CGRP does not affect insulin secretion in cattle[34]. 
The effect of substance P on insulin shows more obvious species-specific differences. While in vitro experiments on the 
effect of substance SP on insulin in rats have yielded inconsistent results, it has been shown that substance SP inhibits 
glucagon secretion; however, in dogs, substance SP stimulates insulin and glucagon secretion in a concentration-
dependent manner[35,36]. In vivo, substance SP inhibits insulin secretion in rats but increases insulin and glucagon 
secretion in pigs[36,37].

CGRP and substance P are also coexpressed with insulin receptors in vagal afferent neurons, but CGRP is predom-
inantly expressed in spinal sensory fibres[6]. In addition, some other neurotransmitters that are secreted by the pancreatic 
nerve have been identified; for example, cholecystokinin promotes insulin secretion, and its mechanism may be related to 
the activation of PLC[1].

NEUROTRANSMITTERS ORIGINATING FROM BOTH NERVE ENDINGS AND NONNERVE ENDINGS
5-HT
5-HT is a monoamine derivative that is present in the central nervous system and peripheral tissues[38], and as one of the 
most intense stimuli of vagal afferent neurons[39], it plays a role not only in neurotransmission in the central nervous 
system and brain development[40] but also in the physiological control and development of peripheral tissues[41]. In rats, 
5-HT is also secreted by enteral neurons in the duodenum and stomach[42]. 5-HT is synthesized by tryptophan 
hydroxylase (TPH) and aromatic amino acid decarboxylase (AADC) via a two-step reaction[43]. Pancreatic β cells 
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synthesize 5-HT de novo and release it via vesicular monoamine transporter 1/2 (VMAT1/2) as an autocrine and 
paracrine signal[44]. 5-HT is released from β cells along with insulin and ATP[45], and 5-HT secretion is regulated by the 
blood glucose concentration[46]. The 5HT3 receptor is a 5-HT receptor that is highly expressed on vagal afferent neurons. 
Antagonism of 5-HT receptors inhibits the response of vagal sensory neurons to β-cell stimulation[47], although the exact 
mechanism is unclear. In addition, intracellular 5-HT in β-cell granules acts as a substrate for the production of secretion-
related proteins, which enhances insulin granule secretion[43]. However, differences in the effects of exogenous and 
endogenous or redistributed 5-HT on insulin secretion have been identified. Extracellular 5-HT is usually presumed to 
attenuate insulin release by stimulating Htr1a receptors in islet tissue, possibly through 5-HT receptor subfamily 
members (Htr1) that are coupled to Gαi and thus inhibit cAMP formation.

5-HT effectively inhibits insulin and glucagon secretion in islets under nondiabetic conditions. Surprisingly, this 
inhibition is lost in the islets of individuals with T2D[48], suggesting that functional 5-HT signaling is essential for normal 
β-cell function. Furthermore, 5-HT has recently been shown to play a role in β-cell expansion and compensatory insulin 
secretion during pregnancy[45].

DA
DA, an excitatory neurotransmitter secreted by sympathetic nerves, plays an important role in insulin secretion. β cells, 
which are important sites for nonneuronal DA synthesis and utilization, also secrete DA and coregulate insulin secretion 
with sympathetic nerves. β cells convert DA precursors (e.g., L-DOPA) to DA mainly through the actions of AADC[49], 
and newly synthesized DA is subsequently released in response to high glucose stimulation. The increase in DA secretion 
by β cells in response to glucose stimulation may be due to increased L-DOPA uptake and subsequent DA synthesis, 
resulting in a larger pool of releasable DA[50]. Synthesized DA is stored in β cells and is consecrated with insulin via 
VMAT2[38]. This endogenous DA signals in an autocrine/paracrine manner in insulin-secreting cells that express D2-like 
receptors. When DA is bound, it activates the Gα subunit to negatively regulate cAMP production, thereby decreasing 
protein kinase A activity[51] and subsequently activating PLC and reducing intracellular Ca2+ levels by affecting 
intracellular stores and L-type calcium channels[52]. In addition, D2-like receptors regulate G protein-coupled inward 
rectifying K+ channels[53]. Plasma concentrations of glucose and insulin are usually tightly linked, and alterations in 
glucose levels may result in rapid alteration in insulin levels in an attempt to bring glucose levels back to normal. Psycho-
tropic drugs such as tiapride have a potent antagonistic effect on D2 receptors. Therefore, in previously reported patients, 
these counterregulatory mechanisms may not have worked, as they may have resulted in continuous insulin release even 
in the presence of normal or low glucose levels[54]. Furthermore, a certain rhythmicity in the regulation of insulin 
secretion by DA was found. When L-DOPA is coadministered with the D2 receptor antagonist sulpiride, the decrease in 
the circadian rhythm amplitude produced by the L-DOPA treatment was reversed, and the amplitude was restored to the 
level in carrier-treated cells. Based on these results, the D2 receptor modulates the effect of L-DOPA on circadian rhythm 
amplitude[55]. In contrast, the D2 receptor agonist bromocriptine significantly reduces the circadian rhythm amplitude in 
a concentration-dependent manner.

NO
NO is a stable and effective gaseous mediator that has become a hot topic in medical research in recent years, and a 
consensus on its role in vasodilation has been achieved. However, controversy exists regarding the role of NO in glucose-
induced insulin secretion, as both inhibitory and facilitatory effects have been reported; whether glucose inhibits or 
promotes insulin secretion may be related to the NO concentration.

NO is secreted not only by vagal nerve terminals but also by HIT-T15 in hamster islet β cells stimulated with glucose
[56]. L-arginine, a precursor of NO, is present in β cells, and L-arginine was shown to enhance the effect of glucose in 
promoting insulin secretion as early as 1966. NO synthase (NOS) was also detected in large quantities in β cells. 
Therefore, it can be inferred that L-arginine is likely to exert its insulin secretion-promoting effect after the conversion of 
NOS to NO. N-methyl-L-arginine (NMMA) is an NO inhibitor, and in the presence and absence of NMMA, researchers 
stimulated β cells with glucose and measured the concentration of NO in the extracellular culture medium. Glucose 
stimulated the release of NO from β cells in a concentration-dependent manner[57], but the mechanism underlying this 
effect is not clear at present. Based on this information, it can be concluded that glucose stimulates NO production in β 
cells in a concentration-dependent manner and that L-arginine and NOS are involved in NO production; however, the 
cytotoxicity of NO should not be ignored. When the glucose concentration exceeds a certain range, excess NO production 
in β cells reduces insulin release, potentially due to the cytotoxicity of NO. When β cells are stimulated with sodium 
nitroprusside (SNP, an extracellular NO donor) alone or both sodium nitroprusside and glucose, glucose is still the main 
factor that induces insulin secretion; NO alone does not induce insulin secretion but only enhances glucose-induced 
insulin secretion. The mechanism underlying this effect is not clear, but one hypothesis suggests that it may be related to 
NO-mediated stimulation of transient Ca2+ release[58].

The results of many studies have shown that NO exerts a negative effect on insulin secretion. Sodium nitroprusside 
inhibits glucose-induced insulin secretion, and hemoglobin, as a scavenger of NO, attenuates this inhibitory effect[59]. 
Due to the paradoxical effect of NO on glucose-induced insulin secretion, researchers studying islets have shifted their 
focus to changes in Ca2+ concentrations. Hemoglobin reduces the intracellular Ca2+ concentration in β cells, while high 
concentrations of NO reduce the intracellular Ca2+ concentration, which may explain the paradoxical effect of NO[60].
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CONCLUSION
As an organ that regulates blood glucose levels in the body, the pancreas mainly functions by secreting various 
hormones. Insulin secreted by β cells is the only hormone that lowers blood glucose levels in the body, and neurotrans-
mitters play an important role in β cell-mediated insulin; thus, the regulatory effect and mechanism of action of β cells are 
hot research topics. Insulin secretion mainly depends on the Ca2+ concentration in β cells, and when the glucose concen-
tration increases, the concentration of ATP produced by glucose metabolism also increases accordingly. Glucose and 
other substances that produce ATP after being metabolized induce inwardly rectifying K+-ATP channel closing, 
subsequently leading to membrane depolarization[61]. Glucose produces a large action potential peak during β-cell 
depolarization, allowing voltage-sensitive Ca2+ channels to open and Ca2+ to enter the cell in large quantities to mediate 
insulin secretion[62].

Parasympathetic nerves play a predominant role in promoting insulin secretion, and ACh stimulates IP3 hydrolysis to 
increase the Ca2+ content in β cells. ACh enhances Ca2+-mediated insulin release via the PLC-PKC pathway, but the 
mechanism involved is unclear. Some studies also indicate that ACh affects the β-cell membrane potential and promotes β
-cell membrane depolarization in the presence of glucose. GRP increases the intracellular Ca2+ concentration to stimulate 
insulin secretion from β cells. VIP and PACAP have similar mechanisms of action, binding to VIP-2 and PACAP-3 
receptors, respectively, to increase cAMP production and stimulate insulin release from β cells. Sympathetic nerves 
mainly inhibit insulin secretion from β cells. NE promotes K+-ATP channel opening to inhibit cell membrane depolar-
ization and reduce the inward flow of intracellular Ca2+, thus inhibiting insulin release from β cells. Both glycopeptide 
and NYP inhibit insulin secretion by β cells, and glycopeptide may block inward Ca2+ flow through an as-yet unknown 
mechanism; moreover, NPY inhibits insulin secretion from β cells by inhibiting cAMP signaling.

While some neurotransmitters are released solely from nerve terminals, many transmitters are released by β cells in 
conjunction with nerve terminals. 5-HT is synthesized by the conversion of tryptophan to the intermediate product 5-
HTP by TPH and AADC followed by the conversion of 5-HTP to 5-HT. The generated 5-HT is released via VMAT1/2, 
and it functions as an autocrine and paracrine signal to promote insulin secretion. DA precursors (such as L-DOPA) are 
converted to DA by AADC-dependent enzymes, and as L-DOPA uptake and DA synthesis increase, a releasable DA pool 
is generated in β cells. DA is then cosecreted with insulin through VMAT2. This endogenous DA acts in an autocrine/
paracrine manner on insulin-secreting cells that express D2-like receptors. When DA is bound, it activates the Gα subunit 
to negatively regulate cAMP production, thereby decreasing protein kinase A activity and inhibiting insulin secretion. In 
addition, a large amount of NOS exists in β cells, and L-arginine promotes insulin secretion after its conversion to NO. 
However, the effect of NO on insulin secretion is controversial, as studies reporting its effects in promoting and inhibiting 
insulin secretion have been published; this suggests that the functions of NO may be related to its concentration. NO does 
not promote insulin secretion from β cells alone, and NO plays a facilitating role only in the presence of glucose. 
However, due to the cytotoxicity of NO, high NO concentrations may damage β cells and affect glucose metabolism, 
leading to a decrease in insulin release.

In previous studies, the effects of neurotransmitters on insulin secretion were initially identified, and it was found that 
neurotransmitters mainly act during the last step of insulin release, i.e. on cytosolic insulin. The general direction of the 
sympathetic and parasympathetic effects on insulin secretion has been determined, but many unresolved questions 
remain. The current research can't answer these questions, but we hope that future researchers can investigate these 
directions: (1) Do differences in the release of peri-islet neurotransmitters exist under normoglycemic and hyperglycemic 
conditions? (2) Does glucose increase neurotransmitter secretion by stimulating nerve endings under hyperglycemic 
conditions? (3) Do any stimulatory conditions excite the peri-islet vagus nerve and promote insulin secretion by 
increasing neurotransmitter secretion? (4) Why does ACh promote insulin secretion for a short period but inhibit insulin 
secretion upon prolonged stimulation? (5) Do neurotransmitters originating from dual sources play a more important role 
in regulating insulin secretion than those from a single source (i.e. nerves)? (6) Are neurotransmitters involved in insulin 
synthesis and transport? (7) Are the concentrations of neurotransmitters in human blood altered by drugs used to 
regulate blood glucose levels? Do neurotransmitters affect the first and second phases of insulin secretion? (8) Does 
neurotransmitter release decrease in response to peri-islet nerve ending lesions during the development of diabetes 
mellitus? (9) Is the effect of sympathetic nerve radiofrequency ablation in alleviating type 2 diabetes related to 
neurotransmitters? And (10) Whether the brain itself affects insulin secretion through neurotransmitters?
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