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Abstract
Hepatic ischemia-reperfusion syndrome has been the subject of intensive study 
and experimentation in recent decades since it is responsible for the outcome of 
several clinical entities, such as major hepatic resections and liver transplantation. 
In addition to the organ’s post reperfusion injury, this syndrome appears to play a 
central role in the dysfunction of distant tissues and systems. Thus, continuous 
research should be directed toward finding effective therapeutic options to 
improve the outcome and reduce the postoperative morbidity and mortality rates. 
Treprostinil is a synthetic analog of prostaglandin I2, and its experimental 
administration has shown encouraging results. It has already been approved by 
the Food and Drug Administration in the United States for pulmonary arterial 
hypertension and has been used in liver transplantation, where preliminary 
encouraging results showed its safety and feasibility by using continuous 
intravenous administration at a dose of 5 ng/kg/min. Treprostinil improves renal 
and hepatic function, diminishes hepatic oxidative stress and lipid peroxidation, 
reduces hepatictoll-like receptor 9 and inflammation, inhibits hepatic apoptosis 
and restores hepatic adenosine triphosphate (ATP) levels and ATP synthases, 
which is necessary for functional maintenance of mitochondria. Treprostinil 
exhibits vasodilatory properties and antiplatelet activity and regulates proinflam-
matory cytokines; therefore, it can potentially minimize ischemia-reperfusion 
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injury. Additionally, it may have beneficial effects on cardiovascular parameters, and much current research 
interest is concentrated on this compound.

Key Words: Hepatic ischemia-reperfusion syndrome; Myocardial damage; Prostaglandins; Treprostinil; Liver transplantation; 
Hepatectomy
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Core Tip: End-stage liver disease is one of the leading causes of morbidity and mortality worldwide. The role of liver 
transplantation and liver resection in malignant disease has changed over the last decades with the evolution of high-risk 
surgical techniques and the great improvement in long-term survival. However, hepatic ischemia-reperfusion syndrome 
remains a significant clinical problem, as it is the main reason for postoperative liver failure and multiple organ dysfunction. 
Treprostinil is a synthetic analog of prostaglandin I2 with potential protective effects against ischemia-reperfusion injury. 
We herein discuss the effect of hepatic ischemia-reperfusion syndrome on the cardiovascular system and the role of 
treprostinil as a new promising therapeutic option.
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INTRODUCTION
Hepatic ischemia-reperfusion syndrome has been the subject of intense study and experimentation in recent decades 
since it is responsible for the outcome of several clinical events, such as hemorrhagic shock, major hepatic resections, 
Budd-Chiari syndrome and some types of hepatotoxicity[1-3]. Worldwide, end-stage liver disease is a common cause of 
morbidity and mortality, and liver transplantation remains the gold standard therapy for these patients. Nevertheless, 
prolonged exposure of the graft to cold and warm ischemia has a direct risk of serious postoperative complications, such 
as poor early graft function and primary nonfunction[4,5].

The complex blood supply in combination with the increased metabolic activity of the liver and its involvement in 
homeostasis, detoxification, protein synthesis, energy storage and immunity processes render the organ extremely 
sensitive to circulatory disorders. Liver ischemia-reperfusion syndrome remains a major cause of worse postoperative 
clinical outcomes. The pathophysiological changes do not pertain to single organ damage but also to a complex systemic 
process that affects other structures and tissues, causing a cascade of multiple organ dysfunction[6-9].

The responsible mechanisms are exceedingly complicated and involve numerous factors, including mediators, 
cytokines, adhesion molecules, vasoactive agents and reactive oxygen species. During an ischemic period, several 
functional processes take place at the cellular level and stimulate cell injury[9,10]. The exposure of hepatocytes to low 
oxygen levels results in changes in intracellular pH and a decrease in adenosine triphosphate (ATP) production, thereby 
attenuating the intrahepatic energy content[11]. Excessive production of reactive oxygen species and reactive nitrogen 
species in mitochondria and intracellular calcium overload promote organelle destruction and cell death. Innate immuno-
logical processes involve the activation of liver Kupffer cells; the accumulation of circulating lymphocytes, neutrophils, 
platelets and monocytes; and hepatic macrophage polarization and differentiation[12-14]. In this respect, Kupffer cells 
produce reactive oxygen species, interleukin (IL)-1, and tumor necrosis factor (TNF)-α, thereby triggering the recruitment 
of CD4+ T lymphocytes. In turn, activated CD4+ T cells can trigger Kupffer cells, leading to aggravation of the inflam-
matory response. Concurrently, Kupffer cells may have a protective role by producing anti-inflammatory IL-10 and 
suppressing the expression of proinflammatory factors, such as TNF-α, IL-1β, interferon-γ, and IL-2, and adhesion 
molecules, such as intercellular adhesion molecule 1[15,16]. Disrupted liver metabolism elicits an endogenous inflam-
matory cascade, which includes excessive cytokine and chemokine production, the release of adhesive molecules and 
caspase-1 activation[17,18]. Blood flow restoration and re-exposure of ischemic hepatocytes to high oxygen level 
conditions contributes to further hepatocellular damage, mediated by reactive oxygen species generation[19]. An inflam-
matory outbreak of hepatic ischemia-reperfusion has been found to initiate a series of pleiotropic mitogen-activated 
protein kinase (MAPK) cascades. Among them, the activated P38 and c-Jun N-terminal kinase (JNK) cascades are most 
involved in the pathways of apoptotic or autophagic hepatic cell death[20,21]. Notably, current evidence suggests that the 
MAPK, mammalian target of rapamycin and nuclear factor kappa B (NF-κB) inflammatory signals are adjusted by 
tripartite motif containing protein 37, which plays important role in exacerbation of hepatic ischemia-reperfusion injury 
by directly interacting with TNF receptor-associated factor 6 (TRAF6)[22]. Cellular damage has been shown to be 
promoted by the downregulation of microRNAs (miRNAs), which are small, single-stranded, noncoding RNA molecules. 
Specifically, suppression of miRNA-142-3p, miRNA-146a, miRNA-200c, and miRNA-34a is suggested to worsen the 
condition of hepatic ischemia-reperfusion injury, while the inhibition of miR-450b-5p has the opposite response[23,24]. 
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On the other hand, miR-125b attenuates hepatic ischemia-reperfusion injury by suppressing TRAF6 and NF-κB signal 
pathways[25]. In general, long non-coding RNA and miRNAs regulatory networks mediate the pathological progression 
of hepatic ischemia-reperfusion injury through mutual activation and interference[26].

Hepatic ischemia-reperfusion syndrome mechanisms and its systemic effects
Hepatic ischemia-reperfusion syndrome is associated with several vascular disorders, such as increased vascular 
permeability, endothelial cell edema and loss of homeostasis between vasoconstricting and vasodilating factors. 
Accumulated neutrophils form neutrophil extracellular traps (NETs) that have been shown to play a significant role in 
the interactions with platelets and are involved in pro-coagulation mechanisms in a variety of infectious and sterile 
inflammatory processes. A recent study demonstrated that hepatic ischemia-reperfusion leads to a NET-mediated 
hypercoagulable state and subsequent organ injury through microvascular immuno thrombi formation[27]. Further liver 
microcirculatory milieu obstruction results in deterioration of ischemic hepatocellular damage and cell death. Although 
hepatic cell injury appears to progress primarily via the lytic necrosis pathway, it seems that more complex, often comple-
mentary or overlapping mechanisms of programmed cell death occur based on the presence or absence of damage-
associated molecular patterns (DAMPs). These mechanisms can be categorized into inflammatory, such as necrosis, 
necroptosis, pyroptosis, and ferroptosis, and noninflammatory subtypes, such as apoptosis[13,28-30]. In conclusion, the 
hepatic ischemia-reperfusion mechanisms are summarized in Table 1.

Severe hepatic ischemia-reperfusion injury does not constitute only a local phenomenon. It is characterized by a 
widespread systemic sterile inflammatory response with the accumulation of inflammatory cells in distant organs. 
Reactive oxygen radicals that are released following ischemic hepatocyte reperfusion promote systemic oxidative stress, 
resulting in remote organ damage[31-35]. In addition, platelet aggregation induces a procoagulant state and associated 
ubiquitous platelet-rich microvascular thrombus formation. Systemic NET-mediated hypercoagulability leads to remote 
organ injury through platelet toll-like receptor 4 (TLR4)-dependent signaling pathways[36]. These underlying 
mechanisms are responsible for the dysfunction of other organs, including the lung, kidney, intestine, pancreas, brain, 
and myocardium (as shown in Figure 1)[1,37,38]. The resulting multiple organ dysfunction syndrome occurs as a 
progressive, complex and dynamic process with a variable extent of organ failure and a direct deteriorating effect on 
survivorship[39].

Effect of hepatic ischemia-reperfusion syndrome on the cardiovascular system
Multiple organ dysfunction is a major complication of acute liver failure. The incidence of this particularly severe 
condition is approximately 1-8 cases per million inhabitants, and it is responsible for 6% of deaths due to liver disease and 
up to 7%-8% of liver transplants[40]. Although there are several reports of acute liver failure cases followed by 
myocardial involvement, the direct effects of hepatic ischemia-reperfusion syndrome on the myocardium have not been 
analyzed completely. Significantly elevated cardiac troponin I and creatine phosphokinase myocardial band (CK-MB) 
values have been associated with increased mortality, while the incidence of major cardiovascular events is undoubtedly 
higher in patients with acute liver failure[1,30,41]. Troponin I is a sensitive and myocardium-selective biomarker with 
both prognostic and diagnostic value. Troponin has become ingrained in the Universal Definition of Acute Myocardial 
Infarction but may also be detected in stable chronic conditions[42]. However, there is a high prevalence of elevated 
troponin in noncardiac clinical conditions, such as myocarditis, pulmonary embolism, acute heart failure, septic shock, 
and drug-induced cardiotoxicity, as well as after interventional procedures such as coronary angioplasty and electrical 
cardioversions. Thus, measurement of troponin elevation, especially with high-sensitivity assays, allows detection of 
clinical cases with nonacute coronary syndrome-mediated myocardial injury[43,44]. CK-MB is also preferred in particular 
situations, specifically in the diagnosis of acute myocardial infarction and cardiac injury evaluation. Although it has 
limitations in terms of early diagnosis, elevated CK-MB levels reveal myocardial damage secondary to some noncardiac 
conditions[45,46].

Clinical and pathophysiological variability in the remote organ impairment following acute liver failure is a result of 
the complicated interactions. Mitochondrial dysfunction and impaired ATP production are characteristic features and 
lead to energy balance disruption. As a consequence, parenchymal cells are forced to alter their metabolic activity to 
maintain their energy provision by enhancing proteolysis and lipolysis[47]. Pathogen-associated molecular patterns 
(PAMPs) and DAMPs released by damaged cells reinforce the systemic immune response and trigger cell death[48,49].

Severe circulatory disturbances are also observed in patients with acute liver failure, regardless of the cause of liver 
disease. Hyperdynamic circulation is characterized by markedly elevated cardiac output and low systemic vascular 
resistance due to peripheral vasodilation. These pathophysiological cardiovascular changes are similar to those seen in 
patients with septic shock[50]. Changes in the microcirculation during acute liver failure have also been described. 
Intrahepatic and systemic microcirculation abnormalities include vasoconstriction, precapillary shunt formation and 
reduced blood flow resulting in loss of multiorgan function[51].

In some experimental models, increased cardiac enzyme levels and histopathological myocardial tissue damage were 
not attributed only to metabolic stress and hemodynamic instability. Other complex mechanisms, such as inflammation, 
endothelial cell disorders and the production of reactive oxygen and nitrogen species, were also observed[41,47]. The 
histological examination of animal heart tissue demonstrated wavy fibers, which are consistent with myocardial 
infarction and the presence of microthrombi in the capillary area of the myocardium, whereas the perivascular lesions 
were rather unrepresentative, supporting the idea of a mechanism of injury originating from the vascular system[41].

The postischemic phase is characterized by liver parenchymal dysfunction and the secretion of proinflammatory 
cytokines. Excessive TNF-α and IL-6 production and the systemic inflammatory response contribute to distant organ 
damage. Reactive oxygen species and cytokines generated during the reperfusion phase flow from the hepatic veins 
directly to the right atrium. Thus, the heart is the first organ receiving blood flow from postischemic hepatic tissue, which 
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Table 1 Hepatic ischemia-reperfusion injury mechanisms

Primary mechanisms Subsequent reactions Final outcomes
Metabolism disorders

Anaerobic glycolysis Mitochondria dysfunction

ATP production Cellular immunity

Lactic acid and toxic acidic metabolites Cell injury

Reactive oxygen species Programmed cell death and apoptosis

Intracellular calcium overload Microcirculatory dysfunction

Microcirculatory system disorders

Vasoconstriction

Obstruction Microcirculatory dysfunction

Apoptosis of sinusoidal endothelial cells Vascular permeability

Endothelial cells oedema

Ischemic injury

Expression of adhesion molecules

Neutrophil accumulation

Immune system disorders

Kupffer cells activation

Neutrophils activation

Production of pro- and anti-inflammatory 
cytokines

Excessive inflammatory process

Anti-inflammatory responseAccumulation of circulating lymphocytes, 
platelets and monocytes

Recruitment of CD4+ T lymphocytes

Gene expression

Imbalance in mRNAs expression Cell damage

Programmed cell death Necrosis, apoptosis, necroptosis, 
pyroptosis, ferroptosis

Systemic inflammatory response syndrome, multiple 
organ dysfunction syndrome

makes it more susceptible to damage[52,53]. The reactive oxygen radicals generated at the onset of reperfusion result in 
both direct cellular damage (necrosis, membrane disruptions) and indirect damage through cellular signaling pathways
[54,55]. In a recent study, a histopathological heart examination of animals subjected to hepatic ischemia-reperfusion 
demonstrated necrosis, hyperemia, hemorrhage, and edema of myocardial cells[52].

Calcineurin is a calcium- and calmodulin-dependent serine/threonine protein phosphatase that plays an important 
role in T-cell activation, transcription regulation, cell cycle control and apoptosis[56]. In the heart, calcineurin is primarily 
present in the context of the hypertrophic growth response and pathological cardiac remodeling due to its role in nuclear 
factor of activated T cells transcription factor activation[57,58]. The inhibition of the calcineurin signaling pathway by 
tacrolimus attenuates myocardial damage after total hepatic ischemia-reperfusion. Furthermore, the protective role of 
tacrolimus in stabilizing the mitochondrial membrane potential, avoiding impairment in mitochondrial respiration and 
oxidative phosphorylation, improving antioxidant capacity, and reducing calcium overload prevent the myocardium 
from experiencing cell injury and potentially cell death[59,60]. In general, regulation of calcium homeostasis showed 
effectiveness on protecting hepatocytes from ischemia-reperfusion injury, such as protection during cardiac arrhythmias. 
A recently discovered HBF001 heparin fragment acts on sodium-calcium exchanger, by altering peptide structure and 
accelerating the intracellular calcium output[61].

Hepatic ischemia may induce a series of biochemical reactions, including modifications in the interactions between 
factors controlling programmed cell death and apoptosis. In a recent experimental study, increased levels of the 
proapoptotic protein Bax and decreased levels of the antiapoptotic protein Bcl-2 were measured. According to the article, 
hepatic ischemia-reperfusion injury accelerated apoptosis of myocardial cells and damaged the myocardium. Likewise, 
based on cardiac function observations, the ventricles of animals were enlarged and thickened, and ventricular systolic 
function was decreased in the control group[62-64].

Occlusion of the hepatic artery and the portal vein may be necessary to avoid excessive bleeding during major 
hepatectomy and liver transplantation. However, total hepatic vascular exclusion is associated with profound volume 
shifts due to preload reduction, resulting in a decrease in cardiac output and hemodynamic instability[65,66]. Chen et al
[67] showed that decreased left ventricular preload was the primary reason for the reduced cardiac output, stroke volume 
and ejection fraction during liver ischemia. Along with impaired cardiovascular function, the systemic inflammatory 
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Figure 1  Remote organ damage after hepatic ischemia-reperfusion injury.

response and activated neutrophil accumulation in the myocardium are simultaneously responsible for remote organ 
injury induced by hepatic ischemia-reperfusion[56,57].

Myocardial injury appears to be a serious complication of hepatic ischemia-reperfusion syndrome, but the clinical 
manifestations in humans have not yet been established. Only a small percentage of patients who underwent liver 
transplantation and presented with mild hepatic ischemia-reperfusion injury (aspartate aminotransferase < 2000 IU/L) 
developed severe impairment of the left ventricular ejection fraction (< 35%)[68]. Despite being uncommon, post liver 
transplantation cardiac dysfunction remains a major clinical problem. Although the evidence supporting the idea of a 
direct association between hepatic ischemia-reperfusion and deterioration of left ventricular systolic function is still 
inconclusive, it is possible that the systemic inflammatory response and hemodynamic instability can contribute to 
postoperative cardiomyopathy[69]. Several studies have described an incidence of acute posttransplantation systolic heart 
failure of 1%-7%, frequently caused by stress-induced cardiomyopathy. However, hepatic ischemia-reperfusion 
syndrome was not exactly identified as an etiological underlying condition[70,71]. Intraoperative cardiovascular stress 
negatively affects preexisting cardiac dysfunction. Theoretically, hepatic ischemia-reperfusion syndrome presenting in 
the surgical postreperfusion phase may be associated with myocardial depression, pulmonary arterial hypertension, a 
significant reduction in systemic vascular resistance and bradycardia. Reactive oxygen species and multiple inflammatory 
mediators, such as cytokines and chemokines, are also responsible for the clinical phenotype of postreperfusion 
syndrome[72-74].

Although the link between hepatic ischemia-reperfusion syndrome and myocardial injury has been made in animal 
models, the consequences of this effect have yet to be defined. Myocardial damage has been described mostly as 
histopathological lesions and altered laboratory findings rather than serious clinical manifestations. After all, it must not 
be forgotten that most experimental and clinical observations are made in relatively healthy individuals and not in those 
whose heart is already affected by ischemia, cardiomyopathy and systolic/diastolic dysfunction[1,75,76]. Apparently, 
cardiac impairment following hepatic ischemia-reperfusion syndrome encompasses a large spectrum of subclinical and 
symptomatic conditions, which are responsible for additional short- and long-term morbidity and low survival[74]. Thus, 
continuous research should be directed to finding effective therapeutic options to improve the outcome and reduce the 
postoperative mortality rates.

The therapeutic use of prostaglandins
The therapeutic strategies against hepatic ischemia-reperfusion syndrome mainly include protective intraoperative 
techniques and an adequate number of pharmacological agents. Prostaglandins are a group of physiologically active lipid 
compounds called eicosanoids, which consist of oxidized derivatives of 20-carbon polyunsaturated fatty acids, primarily 
arachidonic acid, formed due to the cyclooxygenase pathway[77-79]. Many studies have shown the liver cytoprotective 
ability of prostaglandins based on direct or indirect signaling pathways[80]. The effectiveness of prostaglandin analogs 
has been evaluated in several experimental models along with patients who underwent liver transplantation. 
Prostaglandin E1 (PGE1) administration has been shown to improve liver microcirculation dysfunction by the expansion 
of blood vessels and enhancement of perfusion status. PGE1 also downregulates the expression of adhesion molecules 
and inflammatory mediators, resulting in inhibition of platelet aggregation and leukocyte adherence. Furthermore, 
suppression of thromboxane A2 in combination with the reduction in protease release and oxygen free radical production 
leads to attenuation of the inflammatory cascade and minimization of the sinusoidal cell apoptosis rate[81-84]. Prosta-
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cyclin (PGI2) is another member of the prostaglandin family with potential vasodilating, antithrombotic and anti-inflam-
matory effects. Prostacyclin analogs have been established for decades in the treatment of patients with pulmonary 
arterial hypertension and remain an integral component of the current therapeutic armamentarium[85-87]. Precondi-
tioning with beraprost sodium, a prostacyclin analog, in the experimental hepatic ischemia-reperfusion model led to 
suppressed production of the inflammatory mediators TNF-α and IL-1β, and attenuation of hepatic cell apoptosis in a 
dose-dependent manner. Through inhibition of the phosphorylation of P38 and JNK signaling cascades, beraprost 
sodium could ameliorate the systemic inflammatory response, apoptosis and autophagy processes of hepatic ischemia-
reperfusion[21]. Although several studies have shown beneficial effects of prostaglandin therapy in the prevention of 
liver damage following transplantation, the clinical utility of these agents is rather limited due to their unstable structure, 
serious adverse reactions and very short half-lives[77,82,88,89].

The protective role of treprostinil
Treprostinil is a relatively new prostaglandin I2 (PGI2, prostacyclin) analog with a stable structure (as shown in Figure 2), 
longer half-life and improved potency that has been approved by the Food and Drug Administration (FDA) in the United 
States since 2002 for the treatment of patients with pulmonary arterial hypertension[86]. Treprostinil demonstrated 
stability for 48 h at 40 °C in different solutions and multiple beneficial effects, promoting its administration in long-term 
therapy[90-93]. Its binding profile and corresponding biochemical cellular response on human prostanoid receptors have 
been sufficiently analyzed. Treprostinil has high affinity for the DP1, EP2 and IP receptors; low affinity for EP1 and EP4 
receptors; and even lower affinity for EP3, FP and TP receptors[94]. The mechanisms of action of treprostinil are 
summarized in Table 2. In general, the PGI2 signaling pathways are much more complex than anticipated and remain 
incompletely elucidated. Peroxisome proliferator-activated receptors constitute an important signaling pathway that 
partially explains the vasodilating effect of prostacyclin, along with its cytoprotective properties[95,96]. The effects of 
treprostinil on angiogenesis have also been reported, including the vascular endothelial growth factor (VEGF)/NADPH 
oxidase 4 signaling pathway. In vitro treprostinil administration enhanced VEGF-A synthesis by mesenchymal stem cells, 
resulting in activation of vessel-forming ability[97].

Experimental orthotopic liver transplantation in rats with subcutaneous treprostinil administration at a dose of 100 ng/
kg/min showed very encouraging results[98]. Specifically, treprostinil increased liver blood flow during the reperfusion 
phase while supporting the balance within the vasculature by increasing intracellular cyclic adenosine monophosphate 
(cAMP) levels. Furthermore, inhibition of platelet aggregation and proinflammatory cytokine production in the early 
posttransplantation period protected the liver graft against hepatic ischemia-reperfusion injury. Additionally, Hou et al
[99] demonstrated that treprostinil improves renal and hepatic function, diminishes hepatic oxidative stress and lipid 
peroxidation and reduces hepatic TLR9, which is located in endosomes and triggers the inflammatory response by 
recognizing PAMPs and DAMPs[100]. Another recent study suggested that the presence of Gs-coupled prostanoid 
receptors in liver sinusoidal endothelial cells was responsible for the beneficial effect of prostaglandins. In fact, 
treprostinil binds and activates EP2, EP4, and IP receptors, resulting in attenuation of ischemia-induced hepatic cell injury
[101].

Mitochondrial dysfunction during hepatic ischemia-reperfusion leads to increased DNA fragmentation and induction 
of programmed cell apoptosis. To maintain mitochondrial homeostasis and mediate acute cell injury, a complex 
fundamental process, named mitochondrial biogenesis, typically occurs in response to postischemic cellular stress. 
Induction of mitochondrial biogenesis is mediated by upregulation of the transcription factor peroxisome proliferator-
activated receptor gamma coactivator 1-alpha (PGC-1α), which is considered to be the master regulator for the process 
and has been found to be significantly decreased in ischemia-reperfusion injury[99,102-104]. Treprostinil upregulates Pgc-
1α mRNA expression, thus securing mitochondrial biogenesis and improving mitochondrial dynamics. Additionally, 
treprostinil inhibits hepatic apoptosis by suppressing the release of mitochondrial cytochrome c and caspase-3 activation. 
In general, treprostinil restores ATP production, which ameliorates hepatic mitochondrial injury and preserves cellular 
energy balance[99,105,106].

Several studies have shown that hepatic ischemia-reperfusion injury may cause a reduction in hepatic cytochrome P450 
(CYP) levels and/or changes in enzyme activity amplitude. CYP has a broad range of functions, including drug 
metabolism and clearance and detoxification of pharmaceutical substances. The excessive cytokine release and systemic 
inflammatory response during ischemia-reperfusion injury have been associated with reduced microsomal drug 
metabolism, which can cause dose-dependent drug toxicity[107-109]. Treprostinil administration improved CYP mRNA 
expression in liver grafts after clinically relevant rat liver transplantation. In addition, treprostinil restored CYP protein 
expression and improved its activity in liver grafts[110]. The results showed that extended hepatic ischemia-reperfusion 
injury impaired CYP450 protein expression for at least 48 h post-transplantation, while treprostinil administration 
improved the protein expression of the three major CYP450 enzymes (CYP3A2, CYP2C11, and CYP2E1) in the liver graft 
and promoted CYP450-mediated drug metabolism[110].

Isolated rat liver perfusion is a widely performed ex vivo experimental model and represents a suitable tool for 
studying various pathological conditions, such as hepatic ischemia-reperfusion injury[111]. A recent study performed on 
isolated rat livers demonstrated the effect of postischemic hepatic injury on the expression of basolateral (uptake) and 
apical (efflux) hepatic drug transporters, which was significantly altered[112]. Importantly, treprostinil administration at 
a dose of 20 ng/mL during preservation and/or reperfusion reduced the ischemia-reperfusion-mediated effects on the 
expression of the Slc10a1/Ntcp and Slc22a1/Oct1 drug uptake transporters, similar to the expression of the apical efflux 
drug transporter P-gp (Mdr1a, Abcb1a). Although these findings illustrated improved liver function due to treprostinil 
supplementation, deeper knowledge is needed to determine the effect of the particular synthetic prostacyclin on the 
expression of drug-metabolizing enzymes and the regulation of drug transporters[113].
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Table 2 Treprostinil mechanisms of action

Effect Mechanism of action Cellular response

Vessel tone cAMP increased. Endothelin 1 decreased. Potassium decreased Vasodilation. Improvement of microcirculation 
dysfunction

Antiproliferative PPARs increased. cAMP increased. VEGF-A increased Angiogenesis. Regulation of vascular 
homeostasis

Antithrombotic Thromboxane A2 decreased. PDGF decreased Inhibition of platelets aggregation. Platelets 
adherence decreased

Anti-inflammatory P38 and JNK cascades decreased. IL-1, IL-6, TNF-α decreased. IL-10 
increased. Reactive oxygen species decreased. TLR 9 decreased

Attenuation of inflammatory cascade. 
Apoptosis rate increased

Energy balance Pgc-1α mRNA expression decreased. Cytochrome c decreased. Caspase 3 
activation decreased

ATP production increased. Mitochondrial 
biogenesis increased

cAMP: Cyclic adenosine monophosphate; PPARs: Peroxisome proliferator-activated receptors; VEGF: Vascular endothelial-derived growth factor; JNK: c-
Jun N-terminal kinase; IL: Interleukin; TNF: Tumor necrosis factor; TLR: Toll-like-receptor; ATP: Adenosine triphosphate.

Figure 2  The chemical structure of prostaglandin I2 and prostacyclin analogue treprostinil.

Liver graft injury post-transplantation frequently presents with elevated bilirubin and amino-transaminase serum 
levels during the first 24 h following transplantation. Many studies support the hypothesis of hepatic ischemia-
reperfusion syndrome as the leading cause of initial poor graft dysfunction and primary graft nonfunction[114-117]. 
However, no pharmacological options are currently approved for the prevention of hepatic ischemia-reperfusion injury 
following transplantation. A prospective, pilot, single-center, open-label, nonrandomized, dose-escalation phase I/II 
study in liver transplant patients investigated the efficacy of intravenous treprostinil administration in the prevention of 
hepatic ischemia-reperfusion with some encouraging results[118]. A small group of patients who underwent liver 
transplantation and received perioperative intravenous treprostinil at a dose of 5 ng/kg/min followed by postoperative 
contentious infusion at a dose of 2.5-5 ng/kg/min for approximately 5 d showed improved liver function and 100% graft 
and recipient survival at six months[118]. Preliminary observations indicated a rapid reduction in transaminase plasma 
levels, improvement in hepatobiliary excretory function and prevention of the occurrence of acute kidney failure. 
Furthermore, stable hemodynamic parameters in the patients with treprostinil administration during the study period 
were achieved, since the mean pulmonary arterial pressure, systemic blood pressure, and cardiac index values remained 
within the normal range.

The initial phase of hepatic injury is characterized by ATP depletion, mitochondrial dysfunction and reactive oxygen 
species accumulation, followed by a systemic sterile inflammatory response. In general, oxidative and inflammatory 
pathways have been shown to play an important role in remote organ functional changes in a state of hepatic ischemia-
reperfusion injury. Although myocardial impairment is documented mostly as a subclinical event, the general clinical 
status of remote organ damage in the postreperfusion phase can directly affect overall survival rates. Additionally, while 
a hypothesis of myocardial injury in the setting of hepatic ischemia-reperfusion has already been reported, the 
consequences of the particular issue remain unclear[116-118].

Over the last few years, treprostinil has become one of the key therapeutic options for the treatment of patients with 
pulmonary arterial hypertension[119]. Along with its beneficial influence on pulmonary vascular smooth muscle prolif-
eration, vasoconstriction and pulmonary vascular remodeling, treprostinil also shows a direct favorable effect on cardiac 
function[120,121]. Experimental treprostinil administration increased stroke volume and cardiac output, leading to a 
stable hemodynamic state and improved cardiovascular endurance[121-123]. In addition, a broad reduction in reactive 
oxygen species accumulation and lipid peroxidation and a decrease in cytokine and chemokine mRNA levels during 



Mouratidou C et al. Hepatic ischemia-reperfusion syndrome and treprostinil

WJGS https://www.wjgnet.com 1865 September 27, 2023 Volume 15 Issue 9

ischemia-reperfusion may protect the myocardium from postreperfusion injury. However, there are several reports of 
beneficial effects of prostacyclin analogs on the attenuation of myocardial ischemia-reperfusion injury via vasodilation, 
inhibition of platelet accumulation and anti-inflammation[124,125]. Finally, the acceleration of mitochondrial recovery 
due to reduced mitochondrial-mediated cell apoptosis supports the hypothesis of treprostinil-mediated organ protection 
against ischemia-reperfusion injury[104]. Although currently available data are not sufficient, there are several 
indications of the beneficial effect of treprostinil on remote organ damage in the course of hepatic ischemia-reperfusion 
syndrome. Recent studies with subcutaneous treprostinil administration in experimental hepatic ischemia-reperfusion 
models have shown very encouraging results. Furthermore, patients with pulmonary arterial hypertension treated with 
treprostinil demonstrated an improved hemodynamic state and stable cardiac parameters[123].

CONCLUSION
Hepatic ischemia-reperfusion syndrome is a major complication of liver surgery, including partial liver resection and 
liver transplantation, liver trauma, resuscitation and other clinical entities. The pathophysiological mechanisms of hepatic 
ischemia-reperfusion are not responsible for liver damage alone but also occur as a complex systemic process with a 
direct impact on the function of multiple tissues and organs. Moreover, in some cases, postreperfusion systemic injury 
can lead to systemic inflammatory response syndrome and/or multiorgan dysfunction syndrome, both of which have a 
high incidence of mortality and morbidity. Thus, therapeutic strategies, including advanced surgical techniques and 
pharmacological inhibitors, should be studied intensively to improve the outcome of these patients. Treprostinil is a 
relatively new, FDA-approved stable prostacyclin analog with potent anti-inflammatory, antifibrotic, vasodilating, antire-
modeling and antiapoptotic activities. According to current knowledge, there is a positive correlation between treprostinil 
supplementation and the attenuation of liver ischemia-reperfusion injury. Such information may be also useful in 
determining the favorable effect of treprostinil on remote organ damage. Although treprostinil administration holds great 
promise for attenuating myocardial injury in the course of hepatic ischemia-reperfusion injury, further research is 
warranted.
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