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Abstract
Machine learning (ML)- and deep learning (DL)-based imaging modalities have 
exhibited the capacity to handle extremely high dimensional data for a number of 
computer vision tasks. While these approaches have been applied to numerous 
data types, this capacity can be especially leveraged by application on histopatho-
logical images, which capture cellular and structural features with their high-
resolution, microscopic perspectives. Already, these methodologies have 
demonstrated promising performance in a variety of applications like disease 
classification, cancer grading, structure and cellular localizations, and prognostic 
predictions. A wide range of pathologies requiring histopathological evaluation 
exist in gastroenterology and hepatology, indicating these as disciplines highly 
targetable for integration of these technologies. Gastroenterologists have also 
already been primed to consider the impact of these algorithms, as development 
of real-time endoscopic video analysis software has been an active and popular 
field of research. This heightened clinical awareness will likely be important for 
future integration of these methods and to drive interdisciplinary collaborations 
on emerging studies. To provide an overview on the application of these method-
ologies for gastrointestinal and hepatological histopathological slides, this review 
will discuss general ML and DL concepts, introduce recent and emerging 
literature using these methods, and cover challenges moving forward to further 
advance the field.

Key Words: Artificial intelligence; Machine learning; Deep learning; Gastroenterology; 
Hepatology; Histopathology
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Core Tip: Machine learning- and deep learning-based imaging approaches have been 
increasingly applied to histopathological slides and hold much potential in areas 
spanning diagnosis, disease grading and characterizations, academic research, and 
clinical decision support mechanisms. As these studies have entered into translational 
applications, tracking the current state of these methodologies and the clinical areas in 
which impact is most likely is of high importance. This review will thus provide a 
background of major concepts and terminologies while highlighting emerging literature 
regarding histopathological applications of these techniques and challenges and 
opportunities moving forward.

Citation: Kobayashi S, Saltz JH, Yang VW. State of machine and deep learning in 
histopathological applications in digestive diseases. World J Gastroenterol 2021; 27(20): 2545-
2575
URL: https://www.wjgnet.com/1007-9327/full/v27/i20/2545.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i20.2545

INTRODUCTION
The past decade has seen the growing popularity of machine learning (ML) and deep 
learning (DL) applications across numerous domains, and the medical field has been 
no exception. A search for DL publications in the domains of Medical Informatics, 
Sensing, Bioinformatics, Imaging, and Public Health shows a 5-fold to 6-fold increase 
in publication counts from 2010-2015[1], and this trend continues today. Applications 
of DL in healthcare have been particularly wide ranged, covering proteomics, 
genomics and expression data, electronic health records for patient characterizations, 
as well as image analysis for histopathology, magnetic resonance images (MRI) scans, 
positron emission topography scans, computerized topography (CT) scans, and 
endoscopy videos. DL image analysis methodologies have the potential to automate 
and speed up pathologists’ tasks with high accuracy and precision. Recent applications 
have also illustrated the capacity for DL methodologies to extract information from 
histopathological images unseen to the human eye, such as expression data. 
Importantly, these ML and DL image analysis applications have the benefit of 
requiring no additional sample collection from patients, as inputs are typically 
biomedical images already collected within the clinical workflow.

The majority of ML and DL focus in the gastroenterology and hepatology 
communities has been in endoscopy, and this is highlighted by the recent 
Breakthrough Device Designation granted by the United States Food and Drug 
Administration (FDA) for a DL-based endoscopic, real-time diagnostic software for 
gastric cancer[2]. However, the application of ML and DL methodologies on histopath-
ological images is a blossoming field with significant potential for clinical impact. 
Imaging modalities like hematoxylin and eosin (HE)- or immunohistochemistry (IHC)-
stained slides, unlike others such as CT, MRIs, or endoscopies, provide microscopic 
perspectives into tissue sections, allowing for the algorithms to utilize cellular and 
nuclear features like shape, size, color, and texture. Hence, the goal of this review is: 
(1) To cover major terminology and trainable tasks by ML and DL; (2) To briefly 
review the history of digital pathology; (3) To provide an overview of the current ML 
and DL histopathological imaging-based approaches in gastroenterology and 
hepatology; and (4) To discuss challenges and opportunities moving forward.

ML AND DL OVERVIEW
The FDA defines ML as “an artificial intelligence technique that can be used to design 
and train software algorithms to learn from and act on data”[3], where artificial 
intelligence is the development of computer systems capable of tasks deemed to 
require human intelligence. ML involves representation of samples or inputs by a 
fixed, user-determined set of features, then the application of a classifier that can 

https://www.wjgnet.com/1007-9327/full/v27/i20/2545.htm
https://dx.doi.org/10.3748/wjg.v27.i20.2545
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distinguish and separate classes or types within the set of samples based off those 
selected features. There have historically been a range of popular ML techniques. Some 
examples include logic-based approaches, such as decision tree-based methods like 
Random Forest (RF) classifiers, statistic-based approaches, such as Bayesian networks 
or nearest neighbor algorithms, and support vector machines (SVMs), which aim to 
find optimal hyperplanes to separate classes on high dimensional data feature 
spaces[4]. DL represents a modern, specific subset of ML that uses deep neural 
network architectures for feature extraction and predictions. A schematic of a deep 
neural network is shown in Figure 1.

The general goal of a DL algorithm is to connect an input, such as an image, to a 
desired output. The hidden layers in the network act as feature extractors, and a final 
layer aggregates and utilizes these extracted features to generate the desired output. 
Specifically, deep neural networks have an input layer that is followed by successive 
hidden layers, each containing nodes. Starting at the input layer containing data, 
nodes in each hidden layer compute weighted sums from outputs in the previous 
layer. Within each node, these weighted sums are then passed into activation 
functions, which are critical for neural networks as they introduce non-linear 
transformations onto data. Each hidden layer thus introduces additional mathematical 
complexity in an effort to transform the input into new, informative representations 
within a new feature space. This process of defining representations for inputs in this 
new feature space is called embedding, and the representations are deemed 
informative when they can be effectively utilized by the final output layer in the 
network to carry out desired predictions. Some popular activation functions include 
the sigmoid, tanh, and Rectified Linear Unit functions.

To train the model, gradient descent, a popular optimization method, is utilized to 
minimize the “loss function”, which quantifies model performance. Specifically, 
gradient descent minimizes the “loss function” by adjusting algorithmic weights at 
layer nodes, which directly affect the weighted sum calculations. As a result, the 
embedding process is iteratively improved to gradually tune and train the model for 
the task at hand. More detail is provided in the Model Training and Gradient Descent 
subsection below.

Common trainable tasks
The three most common tasks for DL approaches in imaging applications is in classi-
fication, segmentation, and detection (Figure 2). Classification involves the prediction 
of a label for an input image, such as “Normal” vs “Cancer”. Segmentation involves 
the identification and localization of objects within a single image and outputs pixel-
level designation of classes. Therefore, output segmentation maps will commonly have 
objects in the image colored or shaded based on their predicted class type. Lastly, 
detection, which is not a focus in this review, involves the identification of object 
classes in an image with a bounding box placed around it, such as in facial detection.

Levels of supervision
An important aspect of these studies is image annotation of correct class labels. Due to 
the tremendous file size of these high-resolution images upon digitization of 
histological slides into whole-slide images (WSIs), analysis over an entire WSI at once 
is computationally infeasible. As such, WSIs are typically broken up into equally sized 
patches and require training patch-level models. Labeling therefore can occur at the 
level of the WSI and at the level of the patches.

When labelling the classes of individual patches from a WSI, this can be done in a 
fully supervised, weakly supervised, or unsupervised manner. This section will cover 
these levels of supervision in the context of classification tasks. An overview of these 
approaches is covered in Figure 3A.

The fully supervised approach involves dataset-wide annotation at the patch-level. 
For example, this may involve a dataset of patches extracted from WSIs with 
pathologist-annotated labels for each patch as “cancer” or “normal”. Thus, cancer 
positive WSIs will likely contain both types of patch classes. Though training 
iterations, the model will eventually learn to correctly predict the patch labels from 
just input patch images.

Weakly supervised methods concern annotations provided only at the WSI-level. 
Extracted patches from these WSIs are then run through algorithms that determine 
which patches were most important for the WSI-level label. Some possible approaches 
involve expectation-maximization methods[5] or multiple instance learning 
(MIL)[6-8]. In the context of the cancer positive WSIs, this would mean that the model 
eventually learns that the cancerous patches were most responsible for the WSI label, 
while healthy patches were not.
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Figure 1 Example of general deep neural network architecture. Circles indicate nodes. Lines indicate feeding of layer node outputs into next layer nodes.

Unsupervised methods require no annotations to generate patch classes. While WSI-
level labels may be provided, they are not utilized in patch class definition. These 
methods typically involve feature extraction from patches across the training dataset, 
followed by clustering approaches to define patch classes. For example, analysis of a 
dataset of cancer positive and negative WSIs may reveal dataset-wide patch-level 
classes for tumor, healthy, and fibrosis, although not all types may be present in each 
WSI. These approaches identify implicit patterns in the data to define these classes.

Fully supervised approaches require a tedious annotation process to provide correct 
output labels. As such, weakly supervised and unsupervised approaches hold the 
additional benefit of circumventing this labeling process and may be important in 
increasing throughput by decreasing annotation-related load. Another possible 
solution that is an active field of research is the generation of synthetic data that is 
indistinguishable from real world data. An example of this is general adversarial 
networks (GANs). GANs create synthetic data then have a ‘discriminator’ module that 
attempts to determine whether generated data is synthetic or real. The worse this 
discriminator performs, the better the GAN is at generating synthetic data. As such, 
computational approaches that effectively generate synthetic data across different 
classes may help develop labeled training datasets at high throughput.

Although the above methods discuss patch-level classifications, many biomedical 
imaging studies require a prediction at the WSI-level, such as a diagnosis. Often, this 
patch level information is aggregated by an additional classifier, and an overview of 
general approaches is provided in Figure 3B. This can be a ML classifier, such as an 
SVM or RF classifier that takes as input the relative counts of the different patch types 
per WSI to output a WSI-level prediction. This classifier can also be in the form of 
neural networks like recurrent neural networks (RNNs) and long short-term memory 
(LSTM) networks, covered later in this section, that take in variable length sequences 
of patches or patch representations as inputs to generate a WSI-level prediction. As the 
WSI-level label is typically clinically or biologically-informed, such as a diagnosis, 
prognosis, or grading, this part of the process typically receives supervision.

A variety of studies encompassing these approaches will be covered in this review 
in the two sections “Emulating the Pathologist” and “Beyond the Pathologist – 
Features Invisible to the Human Eye?”. A general diagrammatic overview of the 
approaches used in provided in Figure 4.

Model training and gradient descent
In practice, DL is performed in response to the quantification by a “loss function” of 
how well the neural network performed across the training dataset. As loss functions 
quantify model performance, they require knowledge of the correct output for each 
sample and are easiest to introduce with supervised learning concepts. For classi-
fication, the output involves patch-level labels, and, for segmentation, the output will 
be images of the same dimensions as the inputs, where object classes in the image are 
distinguished by pixel-level color designation of classes (e.g., shading cancerous areas 
with one color and shading healthy areas with another).

For classification, on each epoch, or iteration, of training, the algorithm attempts to 
predict the label of every image, then calculates, from the loss function, a scalar loss 
value that captures the degree to which the model-predicted output labels were 
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Figure 2 Common trainable tasks by deep learning. A: Classification involves designation of a class label to an image input. Image patches for the figure 
were taken from colorectal cancer and normal adjacent intestinal samples obtained via an IRB-approved protocol; B: Segmentation tasks output a mask with pixel-
level color designation of classes. Here, white indicates nuclei and black represents non-nuclear areas; C: Detection tasks generate bounding boxes with object 
classifications. Immunofluorescence images of mouse-derived organoids with manually inserted classifications and bounding boxes in yellow are included for 
illustrative purposes.

different from the correct, user-designated output labels across the dataset. A lower 
loss value would therefore indicate better performance of the model in predicting the 
correct image labels. As segmentation involves correct, human-designated outputs at 
the pixel-level, the loss function quantifies correct class predictions across every pixel 
in a segmentation map output.

Gradient descent is an optimization method that iteratively moves in the direction 
of the steepest slope to approach minimums and is utilized in DL to minimize the loss 
functions. Gradient descent starts from the loss function and propagates through 
previous layers to the first, identifying the gradients for each algorithmic weight at 
every network layer node, then incrementally adjusting these weights according to the 
gradients. This process occurs every epoch with the overall goal of improving model 
performance by minimizing the loss function. These weights affect the non-linear 
mathematical operations performed at each hidden layer node and thus serves as a 
way for the network to tweak these operations to eventually determine a feature space 
and sample representations most effective for the task at hand. As opposed to ML 
techniques that depend on human-designated features for classification, the DL-based 
sample representations can be interpreted as an extraction of features deemed best and 
driven by the neural network’s gradient descent optimization with respect to the loss 
function. This therefore introduces the common “black box” issue, where the 
meanings of these final representations, or extracted features, cannot be defined due to 
the high amount of mathematical complexity introduced onto the input image tensor 
by each of the layers in the network.
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Figure 3 General deep learning training and prediction approaches. A: Examples pipelines for fully supervised, weakly supervised, and unsupervised 
learning methods for training patch classifiers are shown; B: Two pipelines translating patch-level information into whole-slide image-level predictions are shown. The 
top approach utilizes a patch classifier trained by one of the approaches in (A). The bottom approach uses a convolutional neural network feature extractor to 
generate patch representations that are fed into a long short-term memory or recurrent neural network. H&E: Hematoxylin and eosin; WSI: Whole-slide image; CNN: 
Convolutional neural network; RNN: Recurrent neural network; LSTM: Long short-term memory; CAE: Convolutional autoencoder.

Although gradient descent and loss functions are covered here, these are basic 
descriptions. For instance, the introduction of more complex loss functions that 
incorporate different learning constraints, study of approaches to take in multimodal 
inputs, and the development of novel network layers are all examples of highly active 
fields of research that add complexity to these concepts. Additionally, subcategories of 
gradient descent exist based on batch size, the number of images inputted before 
updating weights, such as stochastic gradient descent and mini-batch gradient 
descent. Other optimization algorithms like Adam optimization exist as well. Finally, 
various hyperparameters that affect model learning typically need to be tested over a 
range of values and each can affect different portions of training. Some major 
hyperparameters include learning rate, momentum, batch size, and number of epochs. 
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Figure 4 General overview of approaches. Overview of general machine learning - and deep learning-based approaches covered in the sections of this 
review are presented here. Whole-slide image (WSI) hematoxylin and eosin and Synthetic immunofluorescence (IF) WSI images in the Synthetic 
immunohistochemistry/IF Generation pipeline. Citation: Burlingame EA, McDonnell M, Schau GF, Thibault G, Lanciault C, Morgan T, Johnson BE, Corless C, Gray 
JW, Chang YH. SHIFT: speedy histological-to-immunofluorescent translation of a tumor signature enabled by deep learning. Sci Rep 2020; 10: 17507. Copyright© 
The Authors 2020. Published by Springer Nature. TIL: Tumor-infiltrating lymphocyte; H. pylori: Helicobacter pylori; NASH CRN: Nonalcoholic Steatohepatitis Clinical 
Research Network; IHC: Immunohistochemistry; IF: Immunofluorescence; H&E: Hematoxylin and eosin; WSI: Whole-slide image; GAN: General adversarial network.

Many of the common alternatives and hyperparameters are covered in this review by 
Shrestha and Mahmood[9].

Imaging data and convolutional neural networks
For imaging data, a specific type of neural network, called convolutional neural 
networks (CNNs), need to be utilized as inputs are in the form of 3-dimensional 
matrices, or tensors. A key concept is that any image can be represented by its 
numerical, pixel intensity values. For example, a 224 × 224 pixels grayscale image will 
be a 224 × 224 tensor with all values on a range from 0-1. A 224 × 224 RGB image, 
however, will be a 224 × 224 × 3 tensor with all values on a range from 0-255, though 
values are typically normalized to a range from 0-1.
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To work with these tensors, convolutions need to be implemented in the form of 
convolutional network layers. Convolutions can be interpreted as the sliding of 
another tensor, or filter, typically of much smaller size than the input, over the input 
tensor. The filter slides from left to right of the input tensor, then moves down and 
repeats the process from left to right again. The mathematical operations can be 
considered as an expansion of the weighted sum and activation function approaches 
described earlier in this section. As the filter slides over the input, a weighted sum is 
calculated incorporating every cell overlap between the two tensors and generates a 
new output tensor that is then passed to an activation function. Like the layer nodes, 
convolution filters have weights that are trainable by gradient descent. Each hidden 
layer will perform similar operations on outputs from the previous layer but may have 
varying filter sizes or activation functions. Since the non-linearities introduced by the 
various layers sequentially add complexity, the earlier layers are believed to encode 
simpler features like edges, while the latter layers capture even more abstract features.

Analysis of images requires consideration of relationships between adjacent regions 
to capture spatial information. Though the weighted sum calculation in convolutions 
does account for neighboring pixels, the receptive fields are still quite small. Pooling 
layers are also carried out by filters and further aggregate local information from 
previous layers. The two major types are max and average pooling. For a 4 × 4 pooling 
filter, this would mean selecting the maximum value within the 4 × 4 receptive field in 
max pooling or averaging the 16 values for average pooling, as opposed to performing 
the weighted sum calculations that would occur in convolutions. Importantly, pooling 
layers do not have any trainable weights and represent fixed operations.

Convolutional layers typically reduce tensor height or width while increasing 
number of channel dimensions. Pooling layers do not affect channel dimensions but 
reduce tensor height and width. Thus, a series of convolutional and pooling layers will 
serve to reduce tensor height and width and increase channel dimensions relative to 
the original input.

The outputs of convolutional and pooling layers are often 3-dimensional and need 
to be flattened into a 1-dimensional vector towards the end of the network. The 
flattened 1-dimensional vectors then feed into a full-connected layer, a feed forward 
layer where nodes calculate weighted sums from the flattened vector input and pass 
values to an activation function. Finally, these outputs are utilized for the final classi-
fication layer, which typically uses a softmax activation function in classification tasks. 
The softmax layer will have the same number of nodes as the number of possible 
classes to predict. The outputs of this layer will sum up to 1 and can be interpreted as 
the relative probabilities for each class prediction with each class corresponding to one 
softmax node.

Common landmark neural network architectures
Although the focus of this review is not to delve deeply into the different types of 
neural network architectures, those that appear will be covered briefly here to provide 
background. An overview of the network structures is shown in Figure 5.

The visual geometry group (VGG)-16 and VGG-19 networks published by 
Simonyan and Zisserman[10] consist of sequences of convolutions and pooling 
operations followed by fully connected layers for a total of 16 or 19 layers, 
respectively. The authors incorporated very small 3 × 3 convolutional filters and 
demonstrated the capacity to create a network that had a lot of layers relative to other 
networks at time of publication.

The Inception network was initially published in 2015 by Szegedy et al[11], though 
several improved versions, such as the Inception-v3 used by some studies in this 
review, have since been developed. The major contribution of these networks is the 
introduction of the inception module that performs 1 × 1 convolutions, 3 × 3 
convolutions, 5 × 5 convolutions, and max pooling at the same layer. An n × n 
convolution refers to a convolutional layer with an n × n dimension filter. The general 
concept is that predicting the optimal convolution filter size may depend on the image 
at hand. Instead of selecting a single filter size, more may be learned by incorporating 
information from convolutions with different receptive fields along with max pooling.

He et al[12] introduced ResNets which contain a the residual block with a skip 
connection. Deep neural networks with many layers often experience the issue of 
vanishing or exploding gradients. With the high amount of mathematical complexity 
introduced by many layers, backprogating these gradients can approach local minima 
and maxima and impede training. Since calculated gradient values are used to update 
layer node weights, a value of zero means the weight barely shifts, while infinity 
causes too significant of a change. Without getting into much detail, these residual 
blocks allow for skipping of portions of the network where this occurs to allow for 
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Figure 5 Common landmark network architectures. Overviews of landmark network architectures utilized in this paper are presented. A: The visual 
geometry group network incorporates sequential convolutional and pooling layers into fully connected layers for classification; B: The inception block utilized in the 
inception networks incorporates convolutions with multiple filter sizes and max pooling onto inputs entering the same layer and concatenates to generate an output; C: 
The residual block used in ResNet networks incorporates a skip connection; D: Recurrent neural networks (RNNs) have repeating, sequential blocks that take 
previous block outputs as input. Predictions at each block are dependent on earlier block predictions; E: Long short-term memory network that also has a sequential 
format similar to RNN. The horizontal arrow at the top of the cell represents the memory component of these networks; F: Fully convolutional networks perform a 
series of convolution and pooling operations but have no fully-connected layer at the end. Instead, convolutional layers are added and deconvolution operations are 
performed to upsample and generate a segmentation map output of same dimensions as the input. Nuclear segmentation images are included for illustration 
purposes; G: U-Net exhibits a U-shape from the contraction path that does convolutions and pooling and from the decoder path that performs deconvolutions to 
upsample dimensions. Horizontal arrows show concatenation of feature maps from convolutional layers to corresponding deconvolution outputs. VGG: Visual 
geometry group.

continued training. This has allowed for networks like the ResNet-34 and ResNet-50, 
which have 34 and 50 layers, respectively, and for extraction of even higher 
dimensional features.

Though typically for sequential or temporal data, RNNs and LSTM networks are 
utilized by a few studies covered in this review. RNNs were developed earlier and 
process sequences of data. Each layer performs the same task; however, the decisions 
made at each layer is dependent on previous outputs. This capacity has been 
important for speech data as words typically have a relationship with the previous 
word in a sentence. LSTMs have similar use cases but with a superior ability to 
identify longer term dependencies and relationships than RNNs. In the context of this 
review, RNNs and LSTMs are useful in being able to take in a variable length 
sequences of inputs to provide one output. As WSIs are composed of varying numbers 
of patches, these networks are implemented to aggregate patch information into a 
WSI-level output. In these studies, patch sequences are typically shuffled to ensure 
input patch ordering has no effect on the output and focus on leveraging the capacity 
to take in variable length inputs as opposed to the temporal component. While not 
utilized in studies covered in this review, bidirectional encoder representations from 
transformers is a more modern technique that, instead of only reading sequences left-
to-right or right-to-left, considers bidirectional contexts when making predictions[13].

Segmentation tasks, which generate a segmentation map output of the same 
dimensions as the input, require specific types of networks. Long et al[14] introduced 
the fully convolutional network (FCN), which replaces the fully connected layers 
described earlier in the CNN description, with additional convolutional layers. 
Forgoing the flattening operation and fully connected layers maintains the spatial 
relationships in the 3-dimensional tensors. The FCN then performs deconvolutions, 
also known as transpose convolutions, which in practice perform the opposite function 
of convolutions. Deconvolutions increase the height and width dimensions of inputs, 
allowing for eventual generation of an output with the same dimensions as input. 
FCNs are able to generate probability heatmaps of possible segmentation classes.

Ronneberg et al[15] built upon the FCN by developing the U-Net, named due to its 
U-shaped network structure. U-Net has 4 convolutional layers to generate a bottleneck 
tensor, then 4 deconvolutional layers to up-sample the bottleneck tensor back to the 
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original input dimensions. Additionally, each deconvolutional layer receives input 
feature maps from the corresponding convolutional layer. As the convolutional layers 
occur earlier and encode spatial relationships more, concatenating these feature maps 
to the deconvolutional layer outputs helps the network with localization, which is 
important for segmentation tasks.

Quantitative performance metrics
Lastly, it is important to understand the quantitative metrics used to assess model 
performance. The most popular are accuracy, precision, recall, and F1 score. These 
metrics are all calculated based off the total number of true positives, true negatives, 
false positives, and false negatives, and their formulas are shown in Figure 6. Area 
under the curves (AUCs) are also a common metric and involve calculating this metric 
from a plot of sensitivity vs (1-specificity).

RISE OF DIGITAL PATHOLOGY
While ML and DL approaches have been applied to many input data types, the fields 
of computer vision and image analysis owe much of its popularity to the emergence of 
digital pathology. An early milestone for digital pathology was the development of 
software to view histology images, such as the Virtual Microscope developed from 
1996 to 1998 that had to take advantage of existing methods for handling satellite and 
earth science data[16]. The Virtual Microscope was further refined to allow for 
capabilities like data caching, support for simultaneous queries from multiple users, 
and precomputed image pyramids. Modern viewers have continued to grow 
capabilities and allow for collaborative, multi-user work on the same images, 
annotations, the ability to zoom and inspect WSIs, and construction of imaging 
datasets and cohorts.

At the time the Virtual Microscope was being developed, WSI scanners were not yet 
available, so histology sections had to be digitally tiled up before uploading into 
viewing systems. Today, many commercially available WSI scanners that can scan 
entire slides exist, and this issue can be avoided. Furthermore, there are now two FDA-
approved digital pathology platforms: the Phillips IntelliSite Pathology Solution[17] 
and the Sectra Digital Pathology Module[18].

Digital pathology comes with some clear benefits, including the ease of sample 
storage and access through software and the capacity to perform image analysis 
directly on digitized WSIs. However, the utilization of WSIs comes with its own set of 
quality concerns, which are covered nicely in the review by Kothari et al[19]. In brief, 
these methods can introduce image artifacts and batch effects. Image artifacts can 
occur both from scanning or preparation of samples. Some examples include blurring 
of tissue regions due to microscope autofocusing mechanisms, shadows in the image, 
pen marks from pathologists, or folding of tissue. In these cases, care needs to be taken 
to remove the artifacts, such as in the case of pen marks, or to filter out image areas 
with issues like blurring. Batch effects can occur due to the individual preparing the 
sample, the specific reagents used, the site of acquisition, or the microscope type. To 
address some of these concerns, studies frequently apply methods to normalize the 
color or pixel intensity values across their images. However, certain factors into batch 
effect exist that cannot be addressed computationally, such as varying patient 
population demographics based on location. As such, there is a strong need to 
incorporate multicenter data sources to develop more generalizable models, or a 
realization that certain models may only be used within specific demographics.

So long as these quality control concerns are recognized, however, digitized WSIs 
have the potential to be further adopted within practices. They are high-resolution 
gigapixel scale images that can be stored digitally and distributed for research. 
Furthermore, Al-Janabi et al[20] examined the feasibility of utilizing WSIs instead of 
classic light microscopy for diagnosis of gastrointestinal tract pathologies. For 100 
cases of biopsies and resections along the entire gastrointestinal tract that had been 
diagnosed by light microscopy a year earlier, the authors recruited the same 
pathologists to re-diagnose their own cases using digitized WSIs. The study showed a 
95% concordance between light microscopy- and WSI-based diagnoses with the 
discordant 5% of cases showing no clinical implications, highlighting the potential for 
the adoption of WSIs into the diagnostic workflow.

Finally, the growing popularity of DL imaging approaches owes itself to the 
development of computational hardware and software[21]. Graphical Processing Units 
(GPUs) were primarily used in the setting of video games, but their high capacities for 
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Figure 6 Quantitative performance metric equations. Quantitative metrics are based off of true positive, true negative, false positive, and false negative 
counts from results. Equations for precision, recall, F1 score, accuracy, and specificity. Precision is also known as the true positive rate, and recall is also known as 
sensitivity. TP: True positive; TN: True negative; FP: False positive; FN: False negative.

parallel computation were found to be ideal for DL methodologies. GPUs significantly 
increased DL model training speeds relative to Central Processing Units and played a 
strong part in the popularity growth of these methodologies. In addition, the DL 
community has been aided by the presence of open-source libraries for efficient DL 
GPU implementation. Some examples include PyTorch, Caffe, and Tensorflow. These 
libraries can easily load up and train major, landmark network architectures, simplify 
design of new networks relative to manual coding, and encourage cohesion amongst 
researchers by having standardized coding styles and pre-defined functions for 
common operations within each library. The emergence of digital pathology viewers, 
WSI scanners, GPUs, and open-source DL libraries has led to Pathomics, defined as the 
generation of quantitative imaging features to describe the diverse phenotypes found 
in tissue sample WSIs[22]. The foundations for DL-based imaging fields have thus 
been set and have welcomed a new influx of applications and studies within the 
biomedical disciplines.

EMULATING AND AUTOMATING THE PATHOLOGIST
One clear application of these ML- and DL-based methodologies is to replicate the 
tasks of pathologists. A well-trained model has the benefits of eliminating interob-
server variability amongst pathologists and of achieving a level of throughput 
impossible to humans. This section will cover research in classification for both cancer 
and non-cancer pathologies and in segmentation tasks aimed at the identification of 
structures or cell types within images.

Cancer classification
The most popular histopathological application of these methods in gastroenterology 
and hepatology occurs in the classification of cancers. The general concept is that if 
these classifications can be made with the human eye, then the models should be able 
to learn to make such distinctions themselves.

Colorectal: Thakur et al[23] recently published a comprehensive review of artificial 
intelligence applications in colorectal cancer pathology image analysis, but several 
papers will still be highlighted in this review.

In an earlier study, Yoon et al[24] trained a customized VGG-based network 
architecture on 28 normal and 29 colorectal cancer HE-stained slides that were tiled up 
into 256 × 256 pixel patches. After testing several, custom VGG-based networks, the 
best model had an accuracy of 93.5% with a sensitivity and specificity of about 95% 
and 93%, respectively, in determining if an image patch was cancer vs healthy. This 
study showed promise in the relatively simpler binary classification task of tumor vs 
normal.

In a study published since, Sena et al[25] took the classification task another step 
further to train a model to classify between normal mucosa, early neoplastic lesion, 
adenoma, and cancer in HE-stained samples. The authors used a custom network 
architecture similar to VGG with four sequential convolutional and pooling layers 
followed by dense layers. Even with this relatively simple network architecture, the 
model achieved about a 95% accuracy in predicting the exact label for its larger 
864x648 pixel patches across the four classes.
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While the above patch-level performances are encouraging, clinical diagnoses are 
typically at the slide level. To address this, researchers often train additional classifiers, 
in addition to the patch-level ones, that can make a prediction at the WSI-level by 
aggregating patch-level information. An example of this is the study by Iizuka 
et al[26], which initially trained the Inception-v3 network to classify between non-
neoplastic, adenoma, and adenocarcinoma for 512 × 512 pixel patches from HE-stained 
colorectal and gastric biopsy WSIs. The authors utilized the trained Inception-v3 
classifier as a feature extractor to generate 715-length feature vectors, the represent-
ations, for each patch. The sequence of feature vectors of every patch in a WSI are used 
as the input and the WSI-label as the output in training a subsequent RNN. Though 
RNNs are typically used in temporal data, they have the advantage of being able to 
take in variable length, sequential inputs in generating final output labels. This is an 
important feature considering that every WSI has a varying number of total patches 
sampled. The trained RNN can thus predict the WSI diagnosis by aggregating 
extracted feature vectors of all patches in that sample. The study achieved WSI-level 
prediction AUCs of up to 0.97 and 0.99 for gastric adenocarcinoma and adenoma, 
respectively, and 0.96 and 0.99 for colonic adenocarcinoma and adenoma, respectively. 
Of note, the gastric classifier model outperformed pathologists in classification 
accuracy when pathologists were given a 30 s time limit, which is the average amount 
of time the model takes per WSI. The gastric model achieved an accuracy of 95.6% 
compared to the 85.89% ± 1.401% (n = 23) for the pathologists.

Russakovsky et al[27] utilized the AlexNet architecture pretrained on ImageNet, a 
large collection of non-biomedical, natural images with 1000 classes, as a feature 
extractor for classification and patch-based segmentation tasks on brain and colorectal 
HE datasets[28]. To address the common lack of annotated training datasets for these 
DL methodologies, the authors took this approach to demonstrate the potential of 
CNNs pretrained on non-biomedical images as feature extractors in biomedical applic-
ations. For the classification task, CNN-extracted patch representations for each WSI 
were pooled and condensed by feature selection methods before input into a SVM 
classifier to generate a WSI prediction. In colorectal cancer classification, the network 
was trained for a binary classification task to recognize tumor vs normal, and a 
multiclass classification task to recognize between adenocarcinoma, mucinous 
carcinoma, serrated carcinoma, papillary carcinoma, cribriform comedo-type 
adenocarcinoma, and normal. SVM with these CNN features as inputs outperformed 
SVM with a set of manually extracted feature as inputs in both classification tasks, 
achieving a 98.0% accuracy in binary and 87.2% in multiclass classification compared 
to 90.1% and 75.75%, respectively. The segmentation task involved no feature pooling 
as a SVM was trained to utilize patch-level CNN features to generate a patch classi-
fication prediction. By utilizing overlapping patches, pixel-level class predictions can 
be designated based off an ensemble method aggregating overlapping patch 
predictions. Again, the SVM with CNN prediction inputs outperformed the SVM with 
manually extracted feature inputs, showing an overall accuracy of 93.2% compared to 
77.0%.

Although the above studies demonstrate the value of patch-level classifications in 
determining a WSI-level prediction, the annotations required for such a training 
dataset are highly time-consuming. Additionally, clinically archived tissue specimens 
are typically accompanied only by the WSI or patient-level diagnosis. MIL 
encompasses approaches to obtain insight into patches or patch-level features most 
critical for designation of the WSI-level label. MIL thus represents a possible way to 
generate effective patch classifier models utilizing only WSI-level annotations.

In MIL, each WSI is considered a bag in which multiple instances, or patches, are 
contained. If any one of these patches are positive for cancer presence, then the WSI 
can be determined to be cancer positive. While the instance-level patches have their 
own classes, these are unprovided or unknown. As such, the goal of MIL is to train an 
instance-level classifier based on the WSI-level labels to determine these unknown 
patch labels.

Xu et al[7] applied the MIL-Boost algorithm for HE colorectal slides for binary 
cancer vs non-cancer classification. In brief, the MIL-Boost algorithm trains the 
instance-level classifier by “boosting”. “Boosting” refers to the successive training of 
weak classifiers, where each classifier improves by adding weights to incorrect 
predictions made by the previous classifier. Here, weak classifier weights are 
iteratively updated by gradient descent on the bag-level classifier loss function. 
Backpropagation occurs along patch instances that most negatively affected the 
predicted bag-level cancer positivity relative to the true WSI-level label and adjusts 
algorithmic weights to reduce these errors on the next iteration of the weak, instance 
level classifiers. This process with weak classifiers is repeated until the loss function is 
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minimized and an effective instance-level classifier is developed. The authors 
demonstrated superior performance of this approach (96.30% accuracy) as opposed to 
a fully supervised, patch-annotated approach (95.40%) in the binary cancer vs normal 
classification task.

As patch instances make up a WSI bag, a MIL-type bag representation can be 
considered to be a collection of patch instance representations where positive instances 
are provided a higher weight. To this end, Ilse et al[6] utilized a CNN to extract patch 
feature representations, then incorporated an attention mechanism to output a 
weighted average of all instances in a bag. Notably, the attention mechanism weights 
are determined by a two-layer neural network, meaning they are trainable unlike 
conventional MIL pooling operators that calculate maxes and means. These weighted 
bag representations can also be used to identify the most important instances for the 
bag prediction. The authors utilized a published HE colorectal cancer dataset[29] with 
annotated nuclear patches for epithelial, inflammatory, fibroblast, and miscellaneous 
and formed the MIL problem so that a bag is considered positive if at least one 
epithelium-positive patch exists in a WSI. This MIL approach trained an epithelial 
patch classifier with an accuracy and F1 score of approximately 90% and AUC of 
96.8%. Furthermore, the authors could threshold for only instances with high weights, 
leading to the visualization of epithelial regions in the original HE WSI. Although the 
focus of this paper was on superior performance of the neural network tunable 
attention-mechanism relative to fixed alternatives, the final performance metrics lend 
support to the capacity of MIL approaches in training patch-level classifiers from WSI-
level annotations.

Another major part of the colorectal cancer field is in the histopathological 
evaluation of HE-stained polyps to determine cancerous potential. In 2017, Korbar 
et al[30,31] trained a ResNet-based network to detect between hyperplastic polyps, 
sessile serrated polyps, traditional serrated adenoma, tubular adenoma, and 
tubulovillous/villous adenoma. The authors trained a patch-based classifier, then 
designated WSI-level predictions according to the patch-level class prediction that was 
most prevalent in the sample, given that at least 5 patches outputted that 
prediction[31]. This model achieved a 93.0% overall accuracy [95% confidence interval 
(CI): 89.0-95.9]. In another study, the authors utilized the same network architecture to 
identify the 5 classes but focused on implementing Gradient-weighted Class 
Activation Mapping (Grad-CAM) approaches to address model interpretability[30]. 
Grad-CAM can backpropagate from a patch’s predicted class label to identify the 
regions in the input image that contributed most to the prediction. Though this was an 
early approach, the study showed promising potential for these Grad-CAM 
approaches to help identify regions of interests (ROIs) that were most influential in the 
patch-level polyp classification.

Esophageal: While different from Grad-CAM, Tomita et al[32] utilized a related 
concept in implementing attention-based mechanisms for weakly supervised training 
to detect 4 classes—normal, Barrett’s esophagus without dysplasia, Barrett’s 
esophagus with dysplasia, and esophageal adenocarcinoma—from HE-stained 
esophageal and gastroesophageal junction biopsies. The approach involved breaking 
up a WSI into patches, from which a CNN would extract features. Each WSI could 
then be represented as a feature map that is an aggregated patch grid of extracted 
feature vectors. These feature maps serve as inputs to the attention-based model, the 
goal of which is to identify the regions of the input feature maps most important for 
the output label classifications. Therefore, a concept is shared with Grad-CAM in 
identifying input image regions most influential to the class predictions. Unlike Grad-
CAM, the attention-based model will learn to add weights to influential areas in the 
feature map to aid in final model classification performance. Of note, this process is 
considered weakly supervised because image output labels are only provided at the 
WSI-level, as opposed to the patch-level, yet the most influential patch types can be 
distinguished. The model manages to learn on its own the most salient image features 
and regions that were most important for the WSI label. The approach here achieved 
an overall accuracy of 83.0% (95%CI: 80-86) in identifying the 4 classes, outperforming 
the supervised baseline with an overall accuracy of 76% (95%CI: 73-80) that depends 
upon extraction of patches from ROI tediously annotated by pathologists. It should be 
noted, however, that the model achieves an F1 score of 0.59 (95%CI: 0.52-0.66) and the 
supervised baseline an F1 score of 0.50 (95%CI: 0.43-0.56) possibly indicating a high 
rate of false positives and negatives.

Moving even further away from supervised learning, Sali et al[33] demonstrated 
superior performance of unsupervised approaches in classifying HE-stained WSIs to 
be dysplastic Barrett’s esophagus, non-dysplastic Barrett’s esophagus, and squamous 
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tissue relative to supervised methods. The supervised approach was analogous to 
Iizuka et al[26]. Training patches labeled by pathologists were used to train the model, 
then an SVM or RF classifier aggregated the patch-level information for the WSI-level 
prediction.

The unsupervised feature extraction approach involved a deep convolutional 
autoencoder (CAE). Deep CAEs are broken up into an encoder and decoder branch. 
The encoder branch typically applies a series of convolution and pooling operations to 
act as a feature extractor that outputs a bottleneck feature vector. The decoder branch 
upsamples back from the bottleneck feature vector and reproduces the original image. 
Here, the loss function minimizes the differences between the input image and 
reproduced version, thereby enforcing that the bottleneck feature vector is an effective 
representation of the input. A helpful analogy is when one zips files on the computer. 
The process compresses the original file to a smaller memory size (encoding), but then 
still allows one to re-generate the full-size, original file (decoding). As one knows the 
zipping mechanism works, he or she can confidently share zipped file versions to 
others, instead of the larger, original file.

Once the deep CAE is trained, it can be utilized as a feature extractor for all patches 
in one’s training dataset. Then, by performing clustering approaches, such as k-nearest 
neighbors (k-NN) or Gaussian mixture models (GMM), on all feature vector-
transformed patches, patch types or classes across the dataset can be defined. A SVM 
or RF classifier can be trained to predict the WSI class by using the relative proportions 
of the different patch class types in the sample. For WSI-level inference, the deep CAE 
extracts feature vectors from all patches in the WSI, bins and counts the number of 
patches per clustering-defined patch type, then utilizes the trained SVM or RF 
classifier to generate the WSI prediction. This process is called unsupervised because 
the different types of patches in the WSI are determined by the algorithm independent 
of any labelling. This is in contrast to the supervised approach, where a CNN was 
trained to classify between human-defined Barrett’s esophagus, non-dysplastic 
Barrett’s esophagus, and squamous tissue patch types. The unsupervised GMM 
method showed good performance with weighted averages for accuracy, AUC, F1, 
precision, and recall all above 90%. In contrast, the metrics for the supervised 
approaches ranged from 50%-80%.

Gastric: Though gastric pathologies and cancers will be covered further in other 
sections of this review, not a tremendous amount of literature exists regarding just 
classification of gastric cancers. Leon et al[34] demonstrated that, in gastric cancer 
classification, inputting image patches as a whole into a custom, Keras sequential 
model shows superior performance than utilizing nuclei extracted from these image 
patches as input. This may be explained by the fact that the whole image patch 
contains morphological features that might be important for classification, while the 
cell input approach sacrifices those portions of the image. The other major study to 
note is the one by Iizuka et al[26] mentioned earlier, which showed impressive 
performance in classifying gastric and colorectal adenomas and adenocarcinomas.

Liver: As in the mentioned studies by Iizuka et al[26] and Ilse et al[6], CNNs can be 
used to extract patch feature representations. These representations are 1-dimensional 
vectors comprised of numerical, float values, and higher values can be interpreted as 
features most important, or highly activated nodes, for the prediction at hand, while 
lower values may be interpreted as important for the other non-predicted class.

Since these feature values can be reflective of their relative importance in the 
predicted class, Sun et al[8] used a CNN to extract patch representations from HE-
stained WSIs, performed a pooling operation to aggregate patch features at the image 
level, then sorted the representations to organize activation values from high to low 
importance in terms of liver cancer prediction. The authors selected a range of top-k 
and bottom-k features from this sorted list to use in patch representations, driven by 
the idea that high activations should indicate features important for cancer classific-
ations, while the lower activations should correspond to normal. The variable length 
representations dependent on k were tested to generate condensed patch represent-
ations in training a binary cancer vs normal classifier. A value of 100 for k was deemed 
optimal, and the authors used the patch classifications to predict WSI cancer vs normal 
status. The approach achieved an accuracy of 98%, a recall of 1.0, and an F1 score of 
0.99.

In addition to the design of effective image classification algorithms, the 
incorporation of these methodologies into clinical workflow is important to consider. 
Kiani et al[35] trained a DenseNet CNN to classify between hepatocellular carcinoma 
and cholangiocarcinoma from HE image patches and developed a diagnostic support 
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tool that outputs predicted classes with probabilities and class activation maps 
(CAMs) to highlight areas of the input patch important for the prediction. The effects 
of the diagnostic support tool were analyzed and revealed that, while correct classifier 
predictions significantly improved accuracy, incorrect classifier predictions 
significantly decreased accuracy of diagnosing pathologists. Thus, this study 
highlights the important notion that the damaging effects of incorrect and misleading 
classifiers need to be strongly considered before clinical implementations.

Pancreatic neuroendocrine: IHC stains are another common technique applied to 
histopathological samples. The ability to detect specific antigens can be important for 
the characterization of certain cancer types. In pancreatic neoplasms, for example, the 
Ki67 stain is used to define proliferative rate and assign grades to pancreatic neuroen-
docrine tumors (NETs). However, this process is complicated by Ki67 stain positivity 
in both tumor and non-tumor regions. To address this issue, Niazi et al[36] trained an 
Inception-v3 network pretrained on ImageNet in a transfer learning setting to detect 
tumor and non-tumor regions on Ki67-stained pancreatic NET WSIs. As with Xu 
et al[28], the concept is that learned features from training on ImageNet should be 
beneficial within the biomedical setting. By freezing weights on all layers except for 
the final classification layer, the authors ensured that the feature extraction portion of 
the network remains unchanged. Training thus affects only the manner in which the 
classification layer utilizes patch representations instead of affecting the feature 
extraction itself. The trained model was used to create probability maps for tumor and 
non-tumor predictions for every pixel in the WSI, then thresholded by 0.5 to generate 
masks for each class. As each pixel in the image was then assigned to its most probable 
class, the output generated a segmentation map-type output that is shaded by 
predicted classes. In identifying tumor and non-tumor regions on a Ki67-stained IHC 
slide, the model showed about 96%-99% overall accuracy with 97.8% sensitivity and 
88.8% specificity.

Cancer lymphocyte interactions: In addition to the cancer itself, other cell types exist 
within the microenvironment. To address this, Saltz et al[37] trained a VGG-16 
network to identify tumor-infiltrating lymphocyte (TIL) containing patches across 13 
The Cancer Genome Atlas (TCGA) HE-stained tumor types. The study identified four 
types of TIL infiltration patterns: Brisk Diffuse, Brisk Band-like, Non-Brisk Multifocal, 
and Non-Brisk Focal. The study also found associations between TIL infiltration 
patterns, cancer type, inflammatory response subtype, and molecular cancer subtypes 
and supports the notion that spatial phenotypes have the exciting potential to correlate 
with molecular findings.

Cancer nuclei classification: Another avenue of classification tasks in cancer applic-
ations has been in the study of nuclei. Pathologists are able to utilize visual, nuclear 
information, such as aberrant chromatin structures, to identify cancerous cells. Thus, 
groups have worked on replication this task of nuclei classification.

Chang et al[38] extracted HE-stained nuclei, used immunofluorescence (IF) pan-
cytokeratin (panCK) stains aligned to the HE slide by image registration methods to 
label the HE-extracted nuclei as cancerous or non-cancerous, then trained a CNN to 
make these distinctions from just an HE input. The panCK-defined cancer positivity 
approach eliminated the need for tedious, pathologist annotations on the HE images 
and achieved a 91.3% accuracy with 89.9% sensitivity, 92.8% specificity, and 92.6% 
precision in classifying cancerous vs non-cancerous nuclei on the independent test set.

Sirinukunwattana et al[29] implemented a spatially constrained CNN to identify 
pixels most likely to represent the center of nuclei, then trained a subsequent CNN 
classifier to predict whether the nuclei came from an epithelial, inflammatory, 
fibroblast, or miscellaneous cell in colon cancer. The authors also implement a 
Neighboring Ensemble Predictor in the nuclei classifications, which, when predicting 
the class of a nuclei, incorporated the predictions from all neighboring patches. This 
approach achieved a weighted average F1 score of 0.784 and AUC of 0.917 in the 
nucleus classification tasks and a weighted average F1 score of 0.692 in the combined 
nucleus detection and classification tasks. In a follow up study since, Shapcott et al[39] 
utilized this nuclei classification algorithm to quantify the four cell types to correlate 
cellular proportions with different clinical variables in TCGA colorectal cancer 
patients. This led to findings such as samples with metastasis having more fibroblasts 
with fewer epithelial and inflammatory cells, samples with residual tumor having 
more fibroblasts and fewer epithelial and inflammatory cells, and that both venous 
and vascular invasion were associated with more fibroblasts.
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Non-cancer classification
Though much focus in image classification has been in cancers, other image classi-
fication applications exist and are highlighted here.

Celiac disease, environmental enteropathy, and nonspecific duodenitis: Wei et al[40] 
trained a ResNet-based model to classify between celiac disease, normal tissue, and 
nonspecific duodenitis on HE-stained WSIs with accuracies of 95.3%, 91.0%, and 
89.2%, respectively. This was a supervised, patch-based approach for training, and 
WSIs were predicted to be nonspecific duodenitis if more than 5 patches were 
classified as such or predicted to be the dominant patch class otherwise.

In a similar supervised fashion, Srivastava et al[41] trained a ResNet model on 
duodenal HE biopsies to classify between celiac disease, environmental enteropathy, 
and normal tissue. Patch classifications were aggregated for the WSI prediction and 
returned an overall 97.6% accuracy.

Sali et al[42] also trained a ResNet model, but for the task of Marsh Score-based 
grading of celiac disease severity using HE-stained duodenal biopsies. The authors 
utilized a CAE to generate patch representations, then performed a 2-class k-NN 
clustering to filter out useless, non-tissue containing patches. The tissue-containing 
patches were then used for supervised training of the ResNet model to recognize 
between Marsh scores of I, IIIa, IIIb, and IIIC. Again, patch predictions were 
aggregated for a WSI-level prediction. The model showed an accuracy and F1 score of 
around 80-90% for all classes and also implemented CAM approaches to localize 
certain cell subsets contributing to some of these Marsh Score categories.

In another study, Sali et al[43] took a novel, hierarchical approach towards training a 
VGG classifier to detect 7 classes: Duodenum-celiac disease, Duodenum-Environ-
mental enteropathy, Duodenum-normal, Ileum-Crohn’s, Ileum-normal, Esophagus-
eosinophilic esophagitis, and Esophagus-normal. In addition to having the classifier 
predict the disease type with the final classification layer, the approach incorporated 
another output branch in the VGG network to predict anatomic location. The loss 
function combined outputs of the two branches and enforced the network to learn 
both anatomic origin and specific disease type. Additionally, the anatomic origin 
branch occurs before the final classification layer, meaning that the network needs to 
correctly determine the anatomic origin first, before homing in on the specific 
diagnosis. Across all 7 classes, the model exhibited F1 scores ranging from 0.714 for 
Duodenum-normal to 0.950 for Duodenum- Environmental enteropathy.

Helicobacter pylori gastritis and reactive gastropathy: Similar to the other examples, 
these represent diagnoses that can be made from HE-stained specimens. Martin 
et al[44] trained the commercially available HALO-AI CNN to classify between Helico-
bacter pylori, reactive gastropathy, and normal in gastric biopsies. The model achieved 
sensitivity/specificity pairings of 73.7%/79.6%, 95.7%/100%, 100%/62.5% for normal, 
Helicobacter pylori, and reactive gastropathy, respectively.

Klein et al[45] developed a model that combines image processing techniques with 
DL. The authors utilized image processing techniques on both Giemsa- and HE-
stained slides to identify potential Helicobacter pylori regions, then had experts review 
these as being positive or negative for Helicobacter pylori presence. These could then be 
utilized as input-output pairs to train a VGG-style network. The main goal of this 
paper, however, was to create a clinical decision support system that utilized the 
trained model and directs pathologists to Helicobacter pylori hotspots using Grad-CAM-
style methodologies. Although this clinical decision support approach showed higher 
sensitivity than just microscopic diagnosis (100% vs 68.4%), specificity was lower than 
with just microscopic diagnosis (66.2% vs 92.6%).

Segmentation
Segmentation generally refers to operations that localize and detect cells and 
structures within a WSI. As pathologists can detect these objects within a sample, the 
goal is to train models to replicate these tasks.

The gland segmentation in colon histology images challenge contest challenge: A 
key contributor to the progression of computer vision disciplines has been the 
presence of challenges that provide a dataset and rank submitted models based off of 
performance-related quantitative metrics such as F1 scores or AUC values. One 
example of this is the gland segmentation in colon histology images challenge contest 
(GlaS) that was held in 2015[46]. These challenges help to stimulate computational 
disciplines. For one, the announcement of the challenge itself encourages researchers 
worldwide to address and tackle the problem. Compared to standalone papers, these 
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challenges also have the advantage of pitting the best models against each other to 
generate a clear benchmark for state-of-the-art performance.

Furthermore, even after completion of the challenge, groups will continue to 
optimize their algorithms and will have the ability to compare performance to 
previous high rankers in the challenge. Even since the GlaS challenge, numerous 
groups have continued to work on gland segmentation models by incorporating novel 
mechanisms. In 2016, Xu et al[47] added multichannel feature extractions for region 
and edge probability maps that were then fed into the final CNN for instance 
segmentation. Also in 2016, BenTaieb et al[48] applied topological and geometric loss 
functions into their FCN-based model. In 2019, Graham et al[49] introduced a new 
network component, the minimal information loss unit, that re-introduces resized 
versions of the original input image to combat the loss of information that 
accompanies downsampling from the successive convolution and max-pooling 
operations that occur in neural networks. Most recently in 2020, Zhao et al[50] 
incorporated spatial attention to weight important spatial locations and channel 
attention to weight important features to improve gland segmentation performance.

Non-colon gland segmentations: In general, segmentation methodologies require an 
additional step of development compared to classification tasks. For example, 
identifying glands in colonic mucosa is an important task but needs additional 
interpretation to be useful in the clinic. Some possibilities include quantifying the total 
number of glands or extracting shape-based glandular information to feed into a 
colorectal cancer classifier. Classification tasks like “Tumor” vs “Healthy”, on the other 
hand, often already have a clear path towards clinical integration within the 
pathologist diagnostic workflow.

Reflective of this, many histopathological segmentation studies in gastroenterology 
and hepatology tend to be focused on optimizing segmentation results themselves, as 
opposed to continuing onto the translational application. However, high performance 
segmentations are critical in developing the downstream, clinically impactful 
algorithms. While some studies have continued onto the next step, the next few years 
will likely see some more of these segmentation studies bridging into more transla-
tional studies.

To highlight some examples, Xiao et al[51] segment out liver portal area components 
for eventual hepatitis grading. Extraction of features from these segmented structures 
to train a classifier to grade hepatitis will likely be the next step of this process. Xu 
et al[52] used a patch-based segmentation approach to identify epithelial and stromal 
regions in HE-stained breast and epithelial growth factor receptor-stained colon cancer 
slides as tumor-stroma ratios are recognized to have prognostic value. Here, the next 
step would be to assess the impact of algorithm-derived epithelium and stroma ratios 
in patient prognosis or cancer classification. Similarly, to address the eventual use case 
of segmenting tumors to assess pre-surgical tumor burden, Wang et al[53] used 
multitask and ensemble learning techniques for pixel-wise HE hepatocellular 
carcinoma segmentation. For eventual use in computer-assisted diagnosis systems, 
Qaiser et al[54] develop a fast HE colorectal segmentation algorithm that defines 
persistent homology profiles to capture morphological differences between normal 
and cancer nuclei. The emergence of more directly translational follow up studies and 
validations should be exciting and will be important to monitor.

Moving downstream with segmentation outputs: Some studies have entered this 
second phase and will be highlighted in this section. Awan et al[55] utilized a modified 
version of U-Net to perform colon gland segmentation on HE-stained colorectal 
adenocarcinoma patches, then extracted quantitative measures of glandular aberrance 
to train a SVM classifier for normal vs tumor classification and for normal vs low grade 
vs high grade classification. Glandular aberrance correlated with tumor grade, and this 
method achieved an accuracy of 97% and 91% for the two-class and three-class classi-
fications, respectively. Thus, application of segmentation outputs in this manner can 
allow for the definition and extraction of novel quantitative features to aid in classi-
fication tasks and may provide a look into how these segmentation algorithms will be 
clinically implemented in the future.

Multiplex IHC (mIHC) involves concurrent histological staining of 6 cell markers or 
more, and Abousamra et al[56] developed an autoencoder-based color deconvolution 
algorithm to segment these different stains within a WSI. In a follow-up study, Fassler 
et al[57] utilized this algorithm on mIHC-stained pancreatic ductal adenocarcinoma 
(PDAC) WSIs to detect and perform spatial analyses on the cell types. Results 
indicated that CD16+ myeloid cells dominated the immune microenvironment and on 
average were of closer distance to tumor cells than CD3+, CD4+, CD8+, or CD20+ 
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lymphocyte populations. In contrast to the study by Awan et al[55] that used 
segmentation outputs to inform a clinical task, Fassler et al[57] targeted a research 
application. A pipeline to detect all cell types from mIHC-stained WSIs, quantify, and 
perform special statistics would serve a wide audience of basic and translational 
researchers, and, in elevating analytical capacities, may stimulate research output.

A popular translational application of segmentation outputs has been in the field of 
hepatic steatosis quantification, which is important in the assessment of patients with 
fatty liver disease or to assess donor liver-quality for transplantation. In an earlier 
study, Lee et al[58] demonstrated correlation of steatosis quantification by image 
processing methods on WSIs with MRI measurements, pathologist visual scoring, and 
several clinical parameters, serving to validate the potential of image feature extraction 
from WSIs for these applications.

Forlano et al[59] took a ML-based approach to quantify the four histological features 
used in the Nonalcoholic Steatohepatitis Clinical Research Network (NASH CRN) 
Scoring System, in an effort to automate the process and assess how their computa-
tionally extracted, quantitative histological metrics correlate with the semi-
quantitative, categorial metrics of the NASH CRN Scoring System. The authors used 
image processing techniques to segment out and calculate percentages of fat, inflam-
mation, ballooning, and collagen proportionate area, then fed the values into a binary 
logistic regression classifier to predict the presence of NASH. The authors argued that 
the traditional, semiquantitative approaches are outdated, due to their categorical 
nature and unavoidable interobserver variability, and demonstrated an AUC of 0.802 
for their pipeline’s capacity to predict NASH.

Sun et al[60] took a modified VGG-16 patch-based segmentation approach to 
quantify macrovesicular steatosis in HE-stained frozen, donor liver biopsies. The 
network was trained on patches extracted from WSIs with steatosis regions annotated 
by pathologists. As such, the final portion of their network could be trained against the 
pathologist-annotated steatosis maps to output pixel-wise steatosis prediction maps 
from HE patch inputs. Steatosis percent could then be calculated by summing steatosis 
probabilities from the predictions maps and dividing by total tissue area. Overall, the 
model had a sensitivity of 71.4% and specificity of 97.3% in predicting samples with 
over 30% steatosis, which is the threshold used by some centers for donor rejection.

Roy et al[61] trained a network to segment foreground steatosis droplet pixels from 
background, a network to recognize steatosis droplet boundaries, and a third neural 
network that took both of those outputs as input to generate the final segmentation 
map. Their segmentation results allowed for the calculation of steatosis pixel 
percentage (DSP%) and steatosis droplet count percentage (DSC%). DSC% most 
strongly correlated with histologically determined macrovesicular steatosis percentage 
(rho = 0.90, P < 0.001) and total steatosis percentage (rho = 0.90, P < 0.001). DSP% 
showed the best correlation with MRI fat quantification (rho = 0.85, P < 0.001).

Lastly, Salvi et al[62] gained the capacity to quantify both micro- and macrosteatosis 
on HE-stained liver WSIs. The algorithm achieved an overall accuracy of 97.27% on the 
test set for steatosis segmentation and showed the lowest average error of 1.07% when 
comparing automated steatosis quantification with manual quantification methods.

BEYOND THE PATHOLOGIST—FEATURES INVISIBLE TO THE HUMAN 
EYE ?
While the emulation and automation of pathologist tasks is a clear and exciting 
application of these methodologies, recent studies have shown that extraction of 
information that typically requires other sources of data or that are not obvious to the 
human eye are possible. This section will cover emerging research that utilizes 
histopathological specimens to extract such information.

Cancer survival and prognosis
Although pathologists and physicians can estimate cancer patient prognosis, these 
determinations often require more than microscopically examining a histological slide. 
For example, the tumor-node-metastasis (TNM) staging system, though informative, 
can require information like tumor size, typically gathered from CT scans, or nodal 
and distal metastases status, which is not evident from a single histopathological slide. 
In other cases, pathologists may perform genetic testing or IHC-staining for further 
molecular characterization and subtyping of cancers. Recent work shows that these 
ML- and DL-based methodologies may be able to learn to predict such information 
from just histopathological samples.



Kobayashi S et al. ML/DL in digestive diseases

WJG https://www.wjgnet.com 2564 May 28, 2021 Volume 27 Issue 20

Bychkov et al[63] developed an approach to predict 5-year survival from HE-stained 
tumor microarrays from colorectal cancer patients. As with Xu et al[28] and Niazi 
et al[36], the authors took the VGG-16 network pretrained on the ImageNet dataset[27] 
as a feature extractor. Each WSI’s collection of extracted patch features were then used 
to train a three-layer 1D LSTM network, since, similar to the RNN approach used by 
Iizuka et al[26], LSTM networks can take in a sequence of patch feature inputs. The 
LSTM model in this study was trained to generate a WSI-level 5-year prognosis 
probability. While the model’s capacity to predict disease-specific survival was not 
extremely high (AUC = 0.69), it outperformed histological grade (AUC = 0.57) and 
Visual Risk Score (AUC = 0.58).

Yue et al[64] incorporated an unsupervised patch clustering method to define patch 
types, trained a VGG-16 network to recognize the patch types, then implemented an 
SVM classifier to predict 5-year disease-specific survival. For the unsupervised patch 
clustering, patch features were extracted by a CNN and pooled, dimensionality 
reduction was performed by principal component analysis, and the k-means clustering 
was performed in this lower-dimensional feature space to define patch clusters. While 
the best performing model generated an accuracy and F1 score of 100%, the approach 
needs to be validated given the small dataset of 75 WSIs. However, this study is 
another example of how these unsupervised patch clustering methodologies might be 
effective in determining patch classes.

To generate a more interpretable model for colorectal cancer survival, Kather 
et al[65] developed a prognostically predictive “deep stromal score” that utilizes 
outputs from a CNN trained to recognize adipose, background (glass slide), colorectal 
adenocarcinoma epithelium, debris, lymphocyte, mucus, smooth muscle, normal colon 
mucosa, and cancer-associated stroma. The authors used their NCT-CRC-HE-100K 
dataset that contains 100000 image patches covering these nine tissue classes to train 
and compare several models in classification performance. The top performing VGG-
19 model was then applied to a held-out portion of their dataset. When fitting 
univariate Cox proportional hazard models to each of these 9 classes across the held-
out dataset, the authors found that higher activation of five of the nine classes 
correlated with poor survival, though three were not significant (NS): Adipose [hazard 
ratio (HR) = 1.150 (NS)]; debris [HR = 5.967 (P = 0.004)]; lymphocytes [HR = 1.226 
(NS)]; muscle [HR = 3.761 (P= 0.025)]; stroma [R = 1.154 (NS)] These five class 
activations were combined to form the prognostic deep stromal score and validated 
independently on colorectal adenocarcinoma cases from TCGA program. Multivariate 
analysis should that the deep stromal score was significant as a prognostic metric for 
overall survival [HR = 1.63 (P = 0.008)], disease-specific survival [HR = 2.29 (P = 
0.0004)], and relapse-free survival [HR = 1.92 (P = 0.0004)].

Focusing on Stage III colon cancer patients, Jiang et al[66] used the NCT-CRC-HE-
100K dataset generated by Kather et al[65] to train a classifier to determine the 
proportion of these tissue types in WSIs, then predict prognosis. Like Kather et al[65], 
the authors tested several networks on the classification task. They identified 
InceptionResNetV2 as their top performing model, which was utilized to extract 
proportions of the nine different tissue types from their own colorectal Stage III cancer 
dataset. The tissue proportions were fed into several ML classifiers, and the Gradient 
Boosting Decision Tree was identified as the top performer for prognostic predictions. 
On Stage III colorectal adenocarcinoma cases from TCGA, this top-performing 
approach correctly allocated patients into high- and low-risk recurrence groups to 
predict disease-free survival risk by both univariate and multivariate Cox regression 
analysis [univariate: HR = 4.324 (P = 0.004); multivariate: HR = 10.273 (P = 0.003)]. In 
addition, this approach also showed the capacity to predict overall survival risk on the 
TCGA dataset [univariate: HR = 5.766 (P = 0.000); multivariate: HR = 5.033 (P = 0.002)]. 
These results highlight a potential avenue for more interpretable ML- and DL-based 
algorithms and also are evidence of the importance of groups like Kather et al[65] 
making datasets publicly available to help advance the field as a whole.

For prediction of survival after hepatocellular carcinoma resection, Saillard et al[67] 
compared an weakly approach with and without an additional, supervised attention 
mechanism. In both approaches, a pre-trained CNN first extracts features from all 
patches in the WSI. For the weakly supervised approach (CHOWDER), these patch 
features are fed into the network along with WSI-level survival data to eventually 
determine the patches most influential to the survival outcome in an iterative learning 
process. For the approach with additional supervision (SCHOWDER), the weakly 
supervised mechanism in CHOWDER is further coupled by an attention mechanism 
that localizes to tumoral slide regions annotated by pathologists to identify the most 
influential patches. The SCHOWDER and CHOWDER surprisingly generated highly 
similar c-indices for survival prediction on the discovery set with 0.78 and 0.75, 
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respectively, further supporting the potential of these weakly supervised methodo-
logies to rival more supervised ones. As CHOWDER assigns risk scores to tiles, the 
authors could also re-extract then visually inspect types of tiles indicated to be most 
high and low risk. This involved tumor presence, macrotrabecular architectural 
tumoral pattern, and vascular spaces in the tumor as high-risk, and tumoral and non-
tumoral fibrosis and non-tumoral immune cells as low-risk.

Also in a weakly supervised fashion, Wulczyn et al[68] developed a DL system 
(DLS) to predict disease specific survival across 10 cancer types, including colon and 
stomach adenocarcinoma, from TCGA using only WSI-level survival data. Assuming 
the frequency of informative patches for cancer diagnosis on a slide is P, the 
probability of a randomly sampled patch being uninformative is 1-P. As such, as one 
samples n patches, the probability of not sampling any informative patches exponen-
tially approaches zero as (1-P)n. The authors leverage this property by randomly 
sampling multiple patches per slide, extracting features from each with CNNs that 
share weights, and performing average pooling of the extracted features. The outputs 
can then be fed into a fully-connected layer before the final logistic regression layer. 
Here, logistic regression is used as the authors found that discretizing time-to-event 
periods into specific intervals improved performance. In a combined cohort of all 10 
cancers, the DLS was significantly associated with disease specific survival [HR = 1.58 
(P < 0.0001)] after adjusting for cancer type, stage, age, and sex in multivariable Cox 
regression analysis. The DLS also outputs a risk score, allowing for stratification of 
stage II (P = 0025) and stage III (P < 0.001) patients. Finally, as with Saillard et al[67], 
high- and low-risk patches can be extracted and visualized for qualitative evaluation.

Although more of an intermediate endpoint, cancer metastasis is a specific event 
that correlates with reduced survival. Takamatsu et al[69] utilized image processing 
techniques to extract features from cytokeratin IHC-stained endoscopic resection 
samples and trained a RF ML classifier to predict lymph node metastasis. Their 
method demonstrated comparable performance to the predictive capacity of conven-
tional histological features extracted from HE-stained slides. On the cross-validation 
approach, the ML achieved an average AUC of 0.822, compared to 0.855 for the 
conventional method. Although ML performance was not superior, comparable results 
by these algorithms are accompanied with the additional benefit of reduced interob-
server variability. Furthermore, given the fact that the conventionally extracted HE 
features showed decent predictive power for lymph node metastasis, it will be 
interesting to see if a predictive classifier can be built off the HE images directly.

Circumventing staining methodologies
IF and IHC methods are often applied for further characterization of samples. 
However, these methodologies are time-consuming, can be costly, and require an 
unstained portion of the tissue. This section will thus focus on recent literature that 
trains using HE-stained images as input with output information that typically 
requires these additional staining techniques.

With the introduction of targeted molecular therapies for human epidermal growth 
factor receptor 2 (HER2) in gastric cancer, determining patient HER2 status has 
become increasingly important[70]. As this process requires IHC staining for HER2, 
automated extraction of such information from routinely collected HE samples has 
advantages in time, cost, and consistency. Sharma et al[71] utilized HER2 IHC-stained 
sections to define HER2 positive and negative regions on HE-stained sections from the 
same patient. HER2-stained IHC WSIs and HE-stained WSIs were aligned via semi-
atuomatic image-registration approaches to define HER2+ and HER2- tumor regions 
on the HE based off of corresponding IHC positivity. Training on just the HE patches, 
the authors trained a custom CNN with three sequential convolution and pooling 
layers to classify between HER2+ tumor (69.6% accuracy), HER2- tumor (58.1% 
accuracy), and non-tumor patches (82.0%). Although the performance was modest in 
predicting IHC-defined output labels from HE, this was one of the earliest studies 
exploring this type of multimodal approach and used a relatively simple network 
architecture.

IHC can also be applied to metastatic NET samples to identify primary sites of 
origin. Redemann et al[72] trained the commercially available HALO-AI CNN on HE-
stained samples of metastatic NET with known sites of origin to compare the 
algorithm’s capacity to make such predictions against IHC-based approaches. While 
the algorithm achieved a worse overall accuracy of 72% compared to 82% for IHC-
based diagnosis, the results are promising given the relatively comparable 
performance to the gold standard IHC approach and the author’s training of an off-
the-shelf, commercial algorithm. A comprehensive comparison of classification 
performance across multiple models may identify one with superior performance.
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Govind et al[73] developed a DL-based pipeline to automate gastrointestinal NET 
grading, which classically involves IHC detection of a Ki-67-positive tumor hotspot 
region, then manual counting to obtain the percentage of Ki-67-positive tumor cells. 
The authors trained one model to detect Ki-67 hotpots and calculate a Ki-67 index from 
those hotspots similar to pathologists’ workflow, and another model that generates Ki-
67 index-based heat maps to classify hot-spot-sized tiles in the WSI as background, 
non-tumor, G1 tumor, or G2 tumor. Importantly, both models used synaptophysin- 
and Ki-67-double-stained (DS) WSIs as input. As DS WSIs are not common in clinical 
practice, the authors computationally merged synaptophysin- and Ki-67-single-stained 
IHC WSIs to generate DS WSIs to be used for this study.

The first model, SKIE, detects synaptophysin-positive, Ki-67-dense hotspots from 
these DS WSIs and emulates current pathologist workflow by calculating Ki-67 indices 
that capture proportional Ki-67 tumor positivity within these hotspots. The second 
model, Deep-SKIE, was trained by extracting hot-spot sized patches, then assigning 
correct, output labels according to SKIE outputs on those patches. Specifically, the four 
classes were background (class 0: if the tile has > 70% background pixels), non-tumor 
(class 1: < 20% synaptophysin stain), tumor grade 1 (class 2: Ki-67 index < 3%) and 
tumor grade 2 (class 3: 3% < Ki-67 index < 20%). In predicting these hot-spot patch 
labels, Deep-SKIE trained on DS WSIs exhibited an overall accuracy of 90.98% 
compared to 84.84% when trained on SS WSIs, indicating that the additional 
information from multiple markers aids in classification performance.

The most interesting contribution of this paper with respect to this section, however, 
is the authors’ decision to train a cycle GAN to generate DS WSIs from SS WSI inputs. 
In brief, GANs attempt to generate synthetic imaging data that is indistinguishable 
from the real samples. There is typically a ‘discriminator’ module that attempts to 
correctly distinguish between the GAN-generated synthetic data and the real-world 
data. The worse your discriminator performs, the better your GAN is at generating 
synthetic data.

Here, the authors used a cycle GAN to generate synthetic DS WSIs from SS WSIs 
that are highly similar to the real DS WSIs already in the dataset. This approach has 
the ability to generate highly informative DS WSIs in the clinic without the required 
time and costs associated with additional stains. The authors showed that Deep-SKIE 
when trained on the GAN-generated DS WSIs showed an accuracy of 87.08% in 
predicting the four patch classes that was still significantly higher than 84.84% when 
trained on the SS WSIs.

IF staining is the other major staining technique. Unlike IHC, IF comes with an 
additional disadvantage regarding sample stability. As signal is carried by fluoro-
phores, signals are often lost within a week, and samples are thus typically imaged 
immediately after staining. As such, DL approaches outputting IF-related data is not 
only informative and cost-efficient but may simplify acquisition of such data.

Burlingame et al[74] developed an experimental protocol allowing for HE and 
panCK IF staining in the same section of tissue, then trained a conditional GAN to 
output virtual panCK IF WSIs from HE PDAC WSI inputs. Similar to the cycle GAN 
used by Govind et al[73], the conditional GAN here depends upon a discriminator 
attempting to distinguish between real and virtual IF WSIs. As the protocol allows for 
HE and panCK IF staining on the same tissue, the authors have HE-IF WSI input-
output pairs to train the conditional GAN. The virtual IF WSIs showed high similarity 
to the real IF WSIs in terms of structural similarity metrics, and the authors also 
present preliminary data on virtual IF generation for alpha-smooth muscle actin, a 
stromal marker.

This section has covered two categories of methodologies that circumvent the need 
for staining. The first category involves, directly from HE-stained inputs, the 
extraction of information that typically necessitates additional staining. These 
approaches may one day assist pathologists in quicker, cheaper molecular characteriz-
ations of patients. The second category involves the generation of synthetic staining 
outputs directly from HE inputs. These have the potential to complement the first 
category of these methods in outputting a virtual staining for pathologists to reference 
and may improve model interpretability. The other exciting avenue for this second 
category is research. Currently, many HE-stained imaging databases exist. A reliable 
methodology to generate high-quality, synthetic IF or IHC WSIs can augment these 
datasets for researchers worldwide. The addition of these new types of WSI data to 
existing datasets allows for the application of methods not previously utilized on these 
HE-only datasets. For example, synthetic IHC WSIs allow for segmentation 
approaches to identify cell types by marker positivity and allow for types of additional 
characterizations previously impossible with just the original HE WSIs.
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Prediction of expression and genomic data
A string of recent studies has begun to explore the capacity of these approaches in 
extracting genomic or expression data from histopathological samples. As molecular 
subtypes affect underlying biology, the concept is that morphological shifts occur in 
the image and can be detected by algorithms.

Mutational panels are commonly used to further subtype cancers in the clinic. A 
method to detect these mutations directly from HE will allow for rapid subtyping 
without the need for additional genetic testing. Chen et al[75] developed an Inception-
v3 model to detect hepatocellular carcinoma and predict mutational status for 
CTNNB1, FMN2, TP53, and ZFX4 from frozen sections stained by HE. The mutational 
status prediction model was trained on the ten most significantly mutated genes in 
liver cancers. To validate the model, patients were split into mutated and wild-type 
groups for all of the ten genes, then the mutation prediction probabilities were 
examined across these cohorts. The four mentioned genes showed significant 
differences between the mutated and wild-type cohorts, indicating the model’s ability 
to predict these mutations. As with the cancer classification tasks, mutational 
subtyping from HE has a clear path to clinical integration, and these results are 
encouraging in supporting the value of imaging-based molecular phenotypes.

The consensus molecular subtypes (CMS) transcriptionally distinguish four groups 
of colorectal cancer with different clinical behaviors and biology, so Sirinukunwattana 
et al[76] trained a model to designate image-based CMS (imCMS) classes to HE-stained 
slides. The authors used two resection cohorts (TCGA, FOCUS) and one biopsy cohort 
(GRAMPIAN), and patches were extracted from WSI regions annotated by 
pathologists to be tumor. The FOCUS dataset was used for training, as their associated 
transcriptional data could be utilized to provide CMS labels to the extracted tumoral 
patches. ImCMS predictions were thus CMS predictions made on a patch-level from 
histology, and WSI-level subtypes were assigned according to the most prevalent 
patch subtype prediction. On external validation, the trained model achieved a macro-
average classification AUC ranging from 0.80 to 0.83 across the TCGA and 
GRAMPIAN datasets.

Interestingly, to improve model generalizability, the authors implemented domain-
adversarial training. Similar to the GANs mentioned earlier, the goal is to reduce the 
discriminative ability of this domain-adversarial module in determining whether the 
input data came from the TCGA, FOCUS, or GRAMPIAN datasets. In practice, the 
network learns to identify input features important to determine imCMS, while 
lessening the importance of features that simply vary based off of dataset origin. This 
improved macro average AUCs in TCGA to 0.84 and in GRAMPIAN to 0.85.

This study by Sirinukunwattana et al[76] offered two additional novelties in CMS 
classification. First, patches with high prediction confidence for imCMS subtypes 
could be extracted to examine histological patterns. imCMS1 was associated with 
mucinous differentiation and lymphocytic infiltration, imCMS2 with cribriform 
growth patterns and comedo-like necrosis, imCMS3 with ectatic, mucin-filled 
glandular structures, and imCMS4 with prominent desmoplasia. Secondly, samples 
with tumoral heterogeneity are currently considered unclassifiable by CMS. The 
authors here compared agreement between the second most prominent CMS, 
determined transcriptionally, and the second most prominent imCMS, predicted 
through this pipeline. The authors noted a high degree of significant, cosine similarity 
between all four CMS-imCMS pairs. This ability to identify imCMS tumor hetero-
geneity may improve colorectal cancer classifications and is a nice example of how 
current molecular subtyping approaches may be augmented by improved spatial 
granularity.

Microsatellite instability (MSI) is another prognostic indicator in colorectal cancers 
that can be diagnosed via genetic analyses. Kather et al[77] thus trained a classifier to 
recognize MSI and microsatellite stability (MSS) from HE-stained TCGA slides. The 
approach involved training an initial ResNet-18 model to recognize tumor vs normal 
to eventually extract only tumor-containing patches from the WSIs. Patches were then 
assigned MSI or MSS labels based on the patient’s TCGA-recorded MSI status or as 
MSI-positive if patients have an unknown status but a mutation count over 1000. This 
labeled data was then used to train another ResNet-18 model to predict MSI and MSS. 
In external validation on colorectal cases, the model exhibited a patient-level AUC of 
0.84 (95%CI: 0.72-0.92). Interestingly, the gastric MSI-detection model achieved a lower 
AUC of 0.69 (95%CI: 0.52-0.82) on a Japanese cohort, likely reflective of the TCGA 
stomach adenocarcinoma training cohort being composed of 80% non-Asians and 
indicates the necessity of multi-center training data for more generalizable models. 
Finally, patient MSI-levels could be correlated with transcriptomic data. Higher MSI-
levels correlated with lymphocyte gene expression in gastric cancer and with PD-L1 
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expression and interferon- γ signal in colorectal cancer.
This model was further refined by Kather et al[78] in a follow-up study. Specifically, 

the authors trained the ShuffleNet network, a more lightweight architecture that 
performed comparably to the more complex ones. After validating on the capacity to 
classify MSI in colorectal cancer, the model was trained on other tasks and found to be 
able detect the mutation of at least one clinically actionable mutation in 13 of 14 
cancers from TCGA.

To take the next step of validation, Echle et al[79] applied this refined model to a 
multicenter dataset across Europe. This required the authors to form the MSIDETECT 
consortium and led to the generation of an 8000-patient dataset with molecular 
alterations. The algorithm was trained using data from multiple sources, including the 
TCGA, a German, a United Kingdom, and a Netherlands cohort. The study achieved 
an impressive AUC of 0.96 for detecting MSI in a large, international validation cohort 
and exemplifies the importance of multi-source training data. Compared to the study 
from[77], where authors showed an inability of the model trained on an 80% non-
Asian TCGA dataset to perform well on a Japanese dataset, this study improved 
model generalizability by incorporating a more global patient distribution during 
training.

While the above studies targeted a specific molecular phenotype in MSI, Schmauch 
et al[80] set to explore whether general RNA-sequencing expression could be inferred 
from HE-stained tumor WSIs. The authors extracted up to 8000 tissue-containing 
patches per WSI from all TCGA cancer types and utilized an ImageNet-pre-trained 
ResNet-50 to extract 2048-length feature vectors from each. By utilizing k-means 
clustering, the authors generated 100 supertiles per WSI from these patches on the 
basis of location. The supertile representation consisted of averaged values for all 
contained patches over the 2048 ResNet-50 features. For each slide, the feature-
extracted supertiles could be fed into another network where the output classification 
layer contains nodes corresponding to every gene. Thus, the inputs represent supertile 
feature vectors for every supertile in a WSI, and the network deconvolutes TCGA 
patient-level transcriptional levels across the WSI supertiles. The network is thus able 
to detect relationships between supertile features and WSI expression levels to identify 
the supertile-features most important for certain gene expressions. This is then 
translated into gene expression outputs at the supertile-level, which could be 
aggregated to generate gene expression heatmaps at the WSI-level.

Results were validated by comparing predicted expression of CD3 and CD20 with 
actual IHC-stained sections. For both markers, expression predicted by the model 
highly correlated with the percentage of cells positively stained in the IHC sections (P 
< 0.0001 for both). Furthermore, this predictive ability for expression data allowed the 
authors to implement lists of genes involved in major cancer pathways, including 
angiogenesis, hypoxia, deregulation of DNA repair, cell-cycling, B-cell responses, and 
T-cell responses for Gene Set Enrichment Analysis. The authors were able to assess the 
activation of these pathways across a wide range of cancers.

Finally, as MSI should be defined in part by some changes in expression levels, the 
authors tested whether the transcriptomic representations learned in their approach 
can improve the MSI detection performance relative to Kather et al[77]. When applied 
to HE-stained TCGA colorectal cancer slides, the model achieved a superior AUC of 
0.81 compared to 0.68 for the method by Kather et al[77] in predicting MSI. The 
takeaway message is that, since their model can generate transcriptomic represent-
ations to the level of predicting supertile-level, gene-specific expression data, using 
this model as a feature extractor will generate sets of feature inputs superior in the 
subsequent MSI vs MSS classification compared to simply inputting the patches 
themselves. A method to detect expression levels with a patch-level resolution can 
impact not only these sorts of expression-based molecular characterizations, but also 
serves to provide the research community with a powerful tool to further leverage 
existing HE WSI datasets.

The above studies all occurred within the last few years and represent a growing 
application of these approaches. Historically in public datasets like TCGA, WSIs have 
been underutilized relative to the genomic data. These recent advances demonstrate 
promise in proving direct connection of imaging features with underlying genomic 
and expression data. Furthermore, even with the gradual decrease in sequencing costs, 
finances still inhibit widespread adoption and availability of these technologies. Thus, 
these sorts of algorithms may eventually alter clinical landscapes by providing access 
to genomic and expression characterizations worldwide at a fraction of the cost.
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CHALLENGES MOVING FORWARD
Although the field is in an exciting, fast-moving period, several challenges exist 
moving forward. In terms of clinical integration, the highly discussed “black box” 
problem still persists. Deep neural networks and the representations they learn in 
making their predictions lack in interpretability. This issue is magnified in healthcare 
where discussion of clinical decisions between patient and physician is critical and is 
therefore a field of highly active research. For imaging-based studies, CAM visualiz-
ations like the one utilized by Kiani et al[35] can direct pathologists’ attention the 
image locations utilized for generating final predictions. In addition, the decision of 
Kiani et al[35] to output prediction probabilities and confidences for every possible 
class provided pathologists with more transparency. This allowed for a clinical 
decision support system that operated as a tool to help inform pathologists in their 
decisions and may be more easily integrable into the clinic than algorithms that simply 
generate a prediction. The study importantly identified, however, the detrimental 
effects on pathologist performance when the classifier outputs an incorrect prediction. 
Future care must be taken to fully consider the ramifications of incorrect predictions 
on patient care and to manage liability of pathologists in these situations.

Another general feature of ML- and DL-based algorithms as a whole is their highly 
specialized nature. As might be evident from this review, models are typically focused 
on specific pathologies within a specific organ site. For example, there is no current 
study that attempts to tackle classification of gastric carcinoma, nonspecific duodenitis, 
and Helicobacter pylori gastritis at once. As algorithms for specific pathologies get 
adopted into clinical care, the feasibility of this approach will likely be tested. Special 
care will likely need to be taken for cataloguing a wide range of models per healthcare 
system, keeping up with library updates and decisions to keep or update code with 
deprecated support of certain functions, and maintaining constant quality control 
mechanisms to ensure high model performance. Each of these will be amplified by the 
addition of more models into a healthcare system.

As many of these studies rely upon sample annotation for certain use cases, models 
often become highly specialized. However, more generalizable approaches may 
become necessary. Hosseini et al[81] addressed this issue by establishing an “Atlas of 
Digital Pathology” that contains around 18000 annotated images of different tissue 
types across the human body. The dataset contains images across three levels, with the 
top level addressing the general tissue types and subsequent levels addressing 
subtypes. An example from top to lowest level would be Epithelium - Simple 
Epithelium - Simple Squamous Epithelium. Using this Atlas of Digital Pathology, 
Chan et al[82] then trained a model that can segment out 31 of the tissue types in the 
database across over more than 10 organ types. The generalizability of the model may 
be attributed to the non-organ-specific nature of the tissue types in the Atlas of Digital 
Pathology.

Binder et al[83] developed a gland segmentation algorithm for colon adenocar-
cinoma and breast invasive cancer by utilizing stromal masks. Here, this may be due 
to stroma appearing more similar across breast and colon than the glands themselves. 
Analogous approaches leveraging shared features across organ sites may thus help for 
future multi-organ models.

These research fields are highly interdisciplinary, requiring collaboration between 
the more quantitative computer scientists and the more biological physicians and 
academics. While the strength of these fields derives from the complementary nature 
of the two sides’ highly specialized skillsets, efforts should be made to further increase 
their cohesion. To illustrate a difference between the two sides, physicians and 
academics may be surprised to find that a large number of high impact computational 
studies are in the forms of conference papers or open-access online publications. This 
is in contrast to biomedical conferences typically being restricted to abstracts, posters, 
and oral presentations, and the emphasis on peer-reviewed journals.

The computer vision challenges, such as the GlaS challenge[46], may represent an 
avenue to introduce more cohesion. As mentioned earlier, these challenges serve an 
important role of generating excitement for an application and leads to submissions of 
high performing models from a multitude of groups. At present, however, endpoints 
tend to be metrics like F1 score that focus on the computational performance for the 
task at hand. Introduction of challenges with more biomedical endpoints may invite 
design and competition of pipelines that incorporate these methodologies for more 
directly translational tasks. An example of this would be hepatic steatosis quanti-
fication. As opposed to having a challenge to only improve lipid droplet segmentation, 
a challenge that provides an HE dataset and evaluates submissions by ability to 
translate segmentation outputs into highly accurate steatosis quantification might fast 
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track the development of methods for specific clinical tasks. Furthermore, these sorts 
of challenges would require collaboration of computer scientists and physicians 
during submission, standardizing the concept of interdisciplinary workflows at a more 
preclinical point.

In a similar vein, Louis et al[84] argue the field of computational pathology faces an 
important need to “create a culture that considers the computer and computation as 
being as central to pathology as the microscope”. Integral to this, the authors posit, is 
the early exposure to computational concepts ideally during medical school. A certain 
level of computational awareness and literacy on the physicians’ side is integral to 
perpetuate excitement of these methodologies and for clinical integration. A similar 
need, however, exists on the computational side. Emerging computational scientists 
should be provided the opportunity and made aware of the various biomedical applic-
ations of their methodologies. This exposure benefits both sides by instilling 
experience of collaboration at an early stage, recognition of constraints on the other 
side, and a cultural adoption of the notion that the two sides should be integrated.

Overall, computational pathology is in an exciting time with rapid advancements. 
The imaging applications have advanced to the point of defining imaging phenotypes 
and correlating with some clinical variables. As covered in the NCI workshop report 
by Colen et al[85], the integration of imaging approaches with -omics information will 
be a powerful strategy to further characterize and direct clinical care but necessitates 
the definition of imaging standards. Though the workshop focused on radiological 
phenotypes, the ideas translate similarly to histopathology. Standardization of 
methods for data analysis, feature extraction, data integration, and data acquisition 
will likely be important for robust comparison of methodologies for clinical 
evaluation. These steps will allow for decreased uncertainties when comparing across 
different clinical sites and provide a confidence in the imaging phenotypes that will be 
necessary when beginning to correlate with other -omic phenotypes. While some 
studies in this review excitingly extracted -omic information directly from histopatho-
logical slides, future clinical decision support systems will likely still need to aggregate 
histopathological information with -omic data to a degree to inform users.

Lastly, these ML- and DL-based technologies are unique in their capacity to 
continuously learn in response to new data. The FDA has recognized this and 
published a discussion paper soliciting feedback for a potential premarket review 
approach for these technologies[86]. Specifically, the FDA has proposed a “Total 
Product Lifecycle Regulatory Approach” that covers not only premarket review and 
methods for transparent real-world monitoring upon rollout, but also required 
proposals for any anticipated changes and steps to be taken for model alterations. 
These changes include retraining based on new data, incorporation of new target 
demographics based on new data, increasing capability to different input types but 
with same intended use (being able to take in MRI in addition to CT for a particular 
diagnosis), or changing intended use (now able to diagnose an additional type of 
cancer). As indicated by the steps the FDA has already taken, these algorithms will 
need to be regulated in a unique way that maximizes the capacity for continued 
improvement.

In summary, these ML- and DL-based imaging methodologies are rapidly 
expanding and being increasingly applied in the biomedical domains. Even at this 
point in time, we are seeing studies that are focused on optimizing the computational 
tasks, on bridging into translational applications, and on integrating these technologies 
into clinical decision support tools. In addition to the exciting performance and 
potential over a wide range of topics, this field also represents an opportunity to 
further bring together computational scientists with their physician and academic 
counterparts. Future adoption of these technologies into the clinic will likely be 
accompanied by increased dependence of healthcare systems on computer scientists 
who can understand and manage the software and will hopefully encourage cultural 
standardization of these interdisciplinary workflows.

CONCLUSION
The application ML- and DL-based methodologies on histopathological slides in the 
context of gastroenterology and hepatology continues to rise. Though still largely 
preclinical, recent studies have exhibited the exciting performance of these models in 
classification and segmentation tasks and in the extraction of features unseen to the 
human eye, such as prognosis, information that typically necessitates additional stains, 
or genomic and expression data. The field is in a time rife with studies demonstrating 
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these potential applications, and the FDA has already taken steps to begin considering 
the adoption of these technologies into healthcare systems. As such, it will be of 
importance and interest to monitor not only the methodologies themselves, but the 
considerations necessary in developing clinical tools.
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