
Abstract
Hepatocellular carcinoma is on the rise and occurs in 
the setting of chronic liver disease and cirrhosis. Though 
treatment modalities are available, mortality from this 
cancer remains high. Medical therapy with the utilization 
of biologic compounds such as the Food and Drug 
Administration approved sorafenib might be the only 
option that can increase survival. Immunotherapy, with 
modern pharmacologic developments, is a new frontier 
in cancer therapy and therefore the immunobiology 
of hepatocarcinogenesis is under investigation. This 
review will discuss current concepts of immunobiology 
in hepatocarcinogenesis along with current treatment 
modalities employing immunotherapy. The tumor 
microenvironment along with a variety of immune cells 
coexists and interplays to lead to tumorigenesis. Tumor 
infiltrating lymphocytes including CD8+ T cells, CD4+ 
T cells along with regulatory T cells, tumor associated 
macrophages, tumor associated neutrophils, myeloid 
derived suppressor cells, and natural killer cells interact 
to actively provide anti-tumor or pro-tumor effects. 
Furthermore, oncogenic pathways such as Raf/mitogen-
activated protein kinase/extracellular-signal-regulated 
kinase pathway, phosphatidyl-3-kinase/AKT/mammalian 
target or rapamycin, Wnt/β-catenin, nuclear factor-κB 
and signal transducers and activators of transcription 3 
may lead to activation and proliferation of tumor cells 
and are also considered cornerstones in tumorigenesis. 
Immunotherapy directed at this complex milieu of cells 
has been showned to be successful in cancer treatment. 
The use of vaccines, adoptive cell therapy and immune 
checkpoint inhibitor modulation are current options for 
therapy. Further translational research will shed light to 
concepts such as anti-tumor immunity which can add 
another alternative in the therapeutic armamentarium.
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Core tip: Hepatocellular carcinoma is on the rise and 
is associated with high mortality. Cancer immunology 
is an expanding field with promise. This review will 
summarize the current concepts in the immunobiology 
of hepatocarcinogenesis including the interplay of a 
variety of immune cells involved in anti-tumor and pro-
tumor effects. Oncogenic pathways currently known 
to effect hepatocarcinogenesis will also be discussed. 
Finally, currently tested and developed treatment 
modalities employing immunotherapy will be discussed 
with an outlook on future therapies. 

Patel P, Schutzer SE, Pyrsopoulos N. Immunobiology of hepato
carcinogenesis: Ways to go or almost there? World J Gastrointest 
Pathophysiol 2016; 7(3): 242-255  Available from: URL: http://
www.wjgnet.com/2150-5330/full/v7/i3/242.htm  DOI: http://
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INTRODUCTION 
Hepatocellular carcinoma (HCC) is a tumor of the 
hepatocytes that often occurs in the setting of chronic 
liver disease and cirrhosis[1]. In men, it is the fifth most 
commonly diagnosed cancer worldwide and the second 
leading cause of cancer mortality in the world with rising 
incidence[2,3]. The incidence of HCC varies throughout the 
world. The rates of liver cancer are highest in both East 
and South-East Asia as well as Northern and Western 
Africa[2]. The higher incidence of HCC in these areas 
could reflect the elevated prevalence of chronic hepatitis 
B virus (HBV) infection[4]. In contrast, in North America, 
Europe, and Japan, infection with hepatitis C virus 
(HCV) and use of alcohol are the main risk factors[5]. 
HBV and HCV account for one-third of infection-related 
cancer cases such as gastric, liver and cervical. Most 
of these cancers were liver in origin[6,7]. These chronic 
infections induce inflammation and over time can lead 
to liver fibrosis and subsequently cirrhosis. Cirrhosis 
is the formation of dysplastic nodules that predispose 
patients to hepatocarcinogenesis. It has been reported 
that cirrhosis is a major factor in hepatocarcinogenesis in 
patients with HCV. Though for hepatitis B and apparently 
for non-alcoholic steatohepatitis (NASH), cirrhosis is not 
a prerequisite[8]. 

The diagnosis of HCC is based on strict screening and 
surveillance protocols published by various liver societies 
such as the American Association for the Study of Liver 
Diseases (AASLD), European Association for the Study 
of the Liver (EASL), and the Asian Pacific Association for 
the Study of the Liver (APASL)[9-11]. If these practices are 
not followed patients typically present at the late stages 
of the disease and the therapeutic options available 

are rather limited. Grading and prognosis criteria such 
as the Barcelona Clinic Liver Cancer (BCLC) staging 
system help determine appropriate treatment options[12]. 
Resection and transplantation are cornerstones for 
curative management. Locoregional therapies including 
percutaneous ablation, radiofrequency ablation (RFA), 
trans-arterial chemo-embolization (TACE) and radiation 
therapy are available for those patients who aren’t suit
able for resection or transplantation[13,14]. 

HCC diagnosis has progressed but it remains a major 
cause of cancer mortality with median survival beyond 5 
years only if using better selection criteria and optimum 
treatment delivery[15]. Drug-based therapies that target 
tumor signaling pathways are being developed. Of these, 
sorafenib, a multi-targeted tyrosine kinase inhibitor is the 
only drug that has been Food and Drug Administration 
(FDA) approved that prolongs survival in patients with 
HCC[16]. 

Immunotherapy is an evolving frontier in cancer 
therapy and further research into the immunobiology 
of HCC might help develop targeted novel therapies in 
anticipation of improving mortality.

Tumor Microenvironment
Tumors acquire mutations in oncogenes and tumor 
suppressor genes which help promote tumorigenesis[17]. 
However, it is now becoming evident that the nonmalig
nant cells in the microenvironment of the tumor can 
aid and provide support to its malignant expression as 
well[17]. This tumor microenvironment is essential in 
cancer development and behavior. Chronic inflammation 
and a variety of host components including stromal cells, 
angiogenesis, and the inflammatory infiltrate produce an 
environment favorable for tumor growth[18-21]. 

Both the local and systemic environment are essential 
in tumorigenesis as they are involved in the production 
of a persistent inflammatory response to a myriad of 
stimuli[22]. This persistent inflammation might be induced 
by a chronic infection with viruses such as hepatitis B and 
C in the liver and fatty infiltration. This inflammation has 
been associated with cancer initiation[23]. 

Chronic viral hepatitis induces changes in the liver that 
can lead to hepatocarcinogenesis and ultimately HCC[24]. 
Chronic HCV for example can induce changes in lipid 
metabolism and gene expression and HBV is believed 
to alter the transcription of several genes that may lead 
to the development of HCC[25,26]. Chronic inflammation 
alone can lead to induction of hepatocarcinogenesis even 
if active viral hepatitis is not detected[27]. 

A variety of immune cells coexist and interplay in 
a complex cascade of pathways that ultimately lead to 
tumor carcinogenesis and proliferation. Below we discuss 
a few of those cells and their role in the formation of 
cancer and in particular hepatocarcinogenesis.

Tumor Infiltrating Lymphocytes
Tumor infiltrating lymphocytes (TIL) are a class of cells 
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that shape the tumor microenvironment and therefore 
effect carcinogenesis. Most cancers that express a 
high amount of CD8+ T cells usually portend a better 
prognosis[28,29] as opposed to tumors with increased 
expression of protumor cells such as regulatory T 
cells (Treg) which are usually associated with a worse 
prognosis[30-32]. Therefore, the balance between these 
counter-regulatory TILs is crucial to the determination of 
antitumor response. TILs interact with a variety of tumor-
associated antigens (TAAs) which are responsible for 
producing an immune response. A variety of TAAs are 
found in HCC. The major ones include oncofetal antigens 
such as α-fetoprotein (AFP) and glypican-3 (GPC-3) 
along with cancer antigens such as melanoma-associated 
antigen 1 (MAGEA), synovial sarcoma X breakpoint 2 
(SSX2), NY-ESO-1, and human telomerase-reverse 
transcriptase (hTERT)[33]. The breakdown in response to 
the above TAAs is responsible for hepatocarcinogenesis. 
The following cells are responsible for an effective anti-
tumor response but complex interplay amongst a variety 
of molecules can lead to pro-tumoral effects.

CD8+ T cells
CD8+ T cells are integral to antitumor immunity via direct 
antigen-specific cytotoxic targeting of tumors. Most 
tumors or their antigens are ingested by the host antigen 
presenting cell and are processed to produce peptides. 
These peptides are then displayed bound to class Ⅰ MHC 
molecules in order to be recognized by CD8+ T cells[34]. 
Studies have shown that an increased number of CD8+ T 
cells infiltrating cancer tissue is connected to a favorable 
prognosis in ovarian[29] and colorectal cancers[35]. 

In HCC, a similar association has been found with 
tumor penetration of predominantly CD8+ T cells[36]. 
These patients have a lower recurrence of cancer, bet
ter recurrence-free survival after liver resection and 
better overall prognosis[37,38]. These T cells contributed 

to an inflammatory microenvironment that significantly 
improved patient survival and therefore served an anti-
tumoral role in HCC. One mechanism of the cytotoxic 
effect on tumor cells was described in mice models of 
HCC in which IL-12 mediated activation of CD8+ T cells 
caused IFN-γ production and apoptosis of hepatoma 
cells[39]. 

Recent work by Flecken et al[40] has further elucidated 
CD8+ T cells that respond to specific TAAs in HCC that 
were mentioned earlier. Important findings from the 
study show that TAA-specific CD8+ T cell activity was 
detectable in more than 50% of HCC patients and was 
seen with even early stage disease. Furthermore, the 
presence of these TAA-specific CD8+ T cell responses was 
associated with an improved progression-free survival, 
once again confirming that the cytotoxic activity of 
these cells is important to anti-tumor immunity. Lastly, 
responses to multiple TAA’s showed a trend toward better 
progression-free survival, though a study with a larger 
cohort may be necessary to confirm this finding[40]. 

In contrast, dysfunction of CD8+ T cells in patients 
with HCC has also been seen[41]. Programmed death 
1 (PD-1) is a co-inhibitory molecule that is seen on 
activated T and B cells and is a pivotal molecule for T cell 
activity[42]. The ligand for PD-1 (PD-L1) is expressed on 
a variety of tumor cells and is responsible for delivering 
a signal for inhibition to PD-1 expressing T cells leading 
to suppression of the cytotoxic T cell response[43]. This 
inhibition leads to apoptosis and unresponsiveness of 
these T cells[44]. Studies have shown that the interaction 
of PD-1 and PD-L1 negatively regulate T cell function in 
tumors and ultimately may affect the aggressiveness 
of the tumor (Figure 1). In a cohort of HCC patients, it 
was demonstrated that there was a significant increase 
in peripheral and intratumor PD-1 expression on CD8+ T 
cells. The tumor cells were also rich in PD-L1 expression 
and therefore predicted a poorer outcome and early 
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Figure 1  Mechanisms leading to 
CD8+ T cell suppression. Failure of 
CD8+ T cells to kill tumor cells involves 
signals from multiple cells including 
MDSC, Treg, and TAMs. The interaction 
of PD-L1 with PD-1 on the CD8+ T cell 
causes suppression and decrease in its 
effector function leading to decreased 
tumor cell death. Furthermore, the 
Galectin-9 and TIM-3 interaction 
on MDSC’s and IL-10 secretion by 
Treg cause a similar effect. PD-1: 
Programmed death 1; IL: Interleukine; 
TAM: Tumor associated macrophages; 
MDSC: Myeloid derived suppressor 
cells; TIM-3: T-cell immunoglobulin 
and mucin-domain containing-3; Treg: 
Regulatory T cells.
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recurrence of HCC after liver resection due to the 
promotion of CD8+ T cell apoptosis[45]. 

CD4+ T cells
Better known as helper T cells, CD4+ T cells can differe
ntiate to subsets of cells via the expression of a variety of 
cytokines and transcription factors, namely TH1, TH2, TH17 
and Treg cells[46]. 

TH1 is responsible for antitumor response and differ
entiates from naive CD4+ T cells via signaling from IL-12 
and IFN-γ (mentioned above). IFN-γ exerts its antiviral, 
proinflammatory, and antitumor effects on cells by 
regulation of numerous genes and via specific interaction 
with the IFN-γ receptor on cell membranes[47]. This 
receptor has been shown to up-regulated in acute and 
chronic liver disease but diminished in cases of HCC[48]. 
Therefore, down-regulation or loss of the IFN-γ receptor 
on the surface of HCC cells may be another escape 
mechanism of host immune surveillance ultimately 
leading to HCC progression and metastasis[49]. 

TH2 polarization, on the other hand, has been sh
own to promote tumor formation and progression[50]. 
This process is coordinated by IL-4 signaling through 
STAT-6. These polarized cells secrete IL-4, IL-5 and IL-13 
and are associated with potent humoral immunity[50]. 
This polarization of CD4+ T cells to TH2 blocks the 
differentiation towards TH1 and therefore inhibits the 
antitumor response. These cells have also been shown to 
suppress the CD8+ T cell responses mentioned above[51]. 

TH17 differentiation is induced by the presence of 
IL-6 and transforming growth factor-b (TGF-b). The 
presence of these cytokines leads to expression of the 
transcription factor ROR-γt via activation of the signal 
transducers and activators of transcription 3 (STAT-3) 
signaling pathway[52]. These TH17 cells have potent pro-
inflammatory properties via the secretion of IL-17[53,54]. 
In mouse models, IL-17 has been found to promote 
tumor growth by amplifying angiogenesis and increasing 
the intra-tumoral burden of phagocytes[55,56]. TH17 cells 

have been seen in a myriad of cancers including HCC and 
have been shown to promote HCC growth[57,58] via the 
activation of the STAT-3 signaling pathway[59]. Increased 
levels of IL-17 producing cells in HCC patients was 
correlated with lower overall and disease-free survival[58]. 
Interestingly TH17 cells have been shown to increase in 
certain infections as well[60]. 

Treg are a subset of CD4+ T cells that suppress T-cell 
immunity[61]. A major Treg is CD4+CD25+ and it expresses 
the transcription factor FOXP3. It is activated by exposure 
to TGF-b in the periphery[62-64]. Another molecule commonly 
found on Treg is cytotoxic T-lymphocyte protein 4 (CTLA-4). 
This molecule binds its ligands CD80 and CD86 on the 
antigen-presenting cell (APC) membrane and thereby 
blocks any stimulatory effects from the CD28 protein[65]. 
CTLA-4 conveys inhibitory signals on T cells and is involved 
in inducing Treg cell activity[66]. These cells are capable of 
suppressing CD8+ T cells similar to the TH2 class of cells 
and have been found in high numbers in HCC[67]. Studies 
have also shown an increase proportion of Treg correlated 
adversely with clinical outcome amongst patients with 
HCC[68]. A recent study investigating the roles of Treg 
and CD8+ T cells in hepatocarcinogenesis showed that 
Treg increased in a stepwise fashion from patients with 
chronic viral hepatitis, pre-cirrhosis, and liver cirrhosis to 
precursor lesions of adenomatous hyperplasia and atypical 
adenomatous hyperplasia, early HCC and advanced 
HCC. Therefore, we can conclude that the number of Treg 
cells increases proportionally with progressive hepato
carcinogenesis[69]. The differentiation of naïve T cells can 
be visualized in Figure 2.

Tumor associated macrophages
Tumor associated macrophages (TAM) are a well-known 
entity of the inflammatory infiltrate in tumors and are 
key producers of chemokines and other mediators of 
inflammation. These chemokines participate in triggering 
and maintaining the inflammatory process in tumor 
cells[70]. Similar to T cells, TAMs have plasticity and are 
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therefore able to polarize to opposite phenotypes giving 
rise to M1 macrophages or M2 macrophages. The M1 
variety is classically involved in the Th1 response with 
signals from IFN-γ and produce effector molecules 
(reactive oxygen species) and cytokines [e.g., IL-1b, IL-6 
and tumor necrosis factor alpha (TNF-a)] to help provide 
anti-tumor immunity[71]. They also produce chemokines 
that attract Th1 lymphocytes in order to mount a more 
robust response[72]. However, once tumors are produced, 
the macrophages are transitioned to become protumoral 
and this is when the tumor microenvironment fosters 
change toward the opposite macrophage phenotype, M2, 
causing a Th2 response[73]. 

These M2 macrophages are activated by IL-4 and IL-13 
along with growth factors such as colony stimulating 
factor-1 (CSF-1) which inhibit the classical activation of 
the M1 macrophage. M2 macrophages suppress Th1 
adaptive immunity by averting anti-tumor immunity and 
therefore promote tumor growth and progression[74]. 
This tumor environment is represented by TGF-b1 and 
Arginase 1[75]. The current thinking is that tumors acquire 
mutations that subsequently lead to the production 
of these factors that help promote polarization of 
macrophages to stimulate tumor-producing cells. 

HCC TAMs are identified by immunohistochemistry as 
human leukocyte antigen (HLA)-DR+, CD163+, CD206+ 
and with the presence of elevated arginase activity. The 
number of TAMs found in these patients is positively 
correlated with poor prognosis[76]. 

The link between TAMs and HCC can be traced back 
to murine models[77]. In a Md2-knockout model, the mice 
automatically developed hepatitis and subsequent HCC. 
The TAMs produce TNF-a, activating nuclear factor kappa 
B (NF-κB) which has a protective role in hepatocytes 
by preventing apoptosis and in turn promoting tumor 
growth[78]. In another mouse model using the chemical 
carcinogen, diethylnitrosamine (DEN), hepatocyte pro
liferation was driven by TAM-derived TNF-a and IL-6 
leading to hepatocarcinogenesis[77]. In this same model, 
it was found that there is a gender disparity in the 
formation of HCC, with DEN-induced HCC of 100% in 
male mice and only 10% in female mice. It is believed 
that the estrogen levels in females play a critical role 
in inhibiting IL-6 production and therefore decreasing 
the activation of transcription factor, NF-kB[79]. This 
finding supports the possible use of estrogen therapy in 
decreasing the risk of hepatocarcinogenesis.

TAMs have also been implicated in angiogenesis 
as their density in microvessels has been shown to be 
elevated. They secrete growth factors such as TGF-b, 
vascular endothelial growth factor (VEGF), fibroblast 
growth factor, platelet-derived growth factor (PDGF), 
angiogenic factor thymidine phosphorylase, angiogenesis-
modulating enzyme cyclooxygenase-2 and matrix metallo
proteinases (MMPs), particularly MMP-9 and 12, which 
all promote angiogenesis[22]. MMP-9 overexpression is 
associated with increased invasiveness of HCC[80]. 

Furthermore, TAMs move to parts of the tumor that 
are hypoxic[81]. The hypoxia-induced factor 1a in TAMs is 

necessary for its activation and migration in vivo studies. 
The hypoxia stimulates TAM chemokine production (CCL2, 
CCL5, IL-8, CXCL10, CXCL12 and CXCL13) which aids 
angiogenesis and tumor progression[82]. 

In addition, it has been published that TAMs produce 
a variety of chemokines such as CCL17, CCL18, and 
CCL22, which all attract Treg and Th2 cells to the cancer 
site and therefore impede cytotoxic T cell activation 
(Figure 1)[83,84]. This might lead to the conclusion that 
a positive feedback loop exists between TAMs and Treg, 
which provides an added layer to the immunosuppressive 
effects of HCC.

Finally, in cases of HBV-associated HCC, TAMs have 
been shown to express high levels of galectin-9 especially 
on Kuppfer cells (KC)[85]. The ligand for galectin-9 is 
T-cell immunoglobulin and mucin-domain containing-3 
(TIM-3)[86]. High levels of TIM-3 have also been seen in 
HBV-associated HCC and are colocalized with galectin-9. 
When galectin-9 binds to TIM-3, it induces dormancy of 
these T cells and therefore effector T cell function. More 
importantly, blocking this pathway can recover the T cell 
function[85]. 

Similarly, TAMs decrease T cell function through the 
expression of the co-inhibitory molecule, PD-L1 (also 
known as B7-H1), which binds to PD-1 on T cells. This 
process reduces T cell effector function analogous to 
the galectin-9/Tim-3 pathway as mentioned above. 
Both IL-10 and TNF-a play a role in the induction of this 
PD-L1/PD-1 pathway in HCC (Figure 1)[76]. Likewise, 
blocking this pathway can help recover T cell function 
and its antitumor efficacy[87]. 

Therapy aimed at TAM reduction has been docu
mented. In particular, zoledronic acid or clodronate-
encapsulated liposomes (clodrolip), in combination with 
tyrosine kinase inhibitors such as sorafenib, has been 
shown to reduce tumor growth and angiogenesis further 
in mice compared to just sorafenib alone[88]. Therefore, 
additional therapies implementing depletion of TAMs may 
be a worthwhile avenue to explore.

Tumor associated neutrophils
Analogous to TAM, tumor associated neutrophils (TAN) have 
recently been described to contribute to carcinogenesis as 
well. They can produce both pro-tumoral as well as anti-
tumoral effects on cancer and can be manipulated toward 
distinct phenotypes via tumor signaling[89,90]. 

In a similar fashion to TAMs, TANs can be divided 
into two main subtypes, N1 (anti-tumoral) and N2 (pro-
tumoral). The plasticity of these subtypes depends on 
the presence of TGF-b. Neutrophils can be polarized by 
TGF-b to become the N2 phenotype while the inhibition 
of TGF-b along with increased IFN-b induces the N1 
phenotype[89,91]. 

The pro-tumoral functions of both TAM and TAN 
include extracellular matrix remodeling, cancer cell 
invasion, angiogenesis, lymphangiogenesis, metastasis 
and most importantly, the inhibition of anti-tumoral 
immune surveillance[92]. The anti-tumoral effects of TAM 
and TAN include direct cytotoxic activity against the 
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tumor cells and the production of a variety of mediators 
to recruit and activate the immune system. These 
mediators include cytokines, chemokines and growth 
factors[74,93]. 

In HCC murine models, TANs have been shown to 
mediate intratumoral infiltration of macrophages and 
Treg cells by secreting CCL2 and CCL17. This pathway 
stimulated neovascularization, enhanced HCC growth 
and metastasis and also contributed to sorafenib re
sistance. It has been suggested that the extent of TAN 
infiltration could be used as a biomarker in HCC and can 
predict responsiveness to sorafenib therapy and that TAN 
depletion can enhance sorafenib’s efficacy[94]. 

Myeloid derived suppressor cells
In addition to the above cells, cancer growth can also be 
attributed to myeloid derived suppressor cells (MDSC)[95]. 
These cells, though not extensively studied, have shared 
relationships with TAM and TAN in carcinogenesis. They 
represent a diverse mix of immature cells of myeloid 
origin that are able to lessen immune responses[96]. 

In HCC, MDSC (specifically the CD14+HLA-DR-/low 
phenotype) were seen in high numbers in the peripheral 
blood and were able to help the host evade the immune 
response against cancer by directly increasing arginase 
activity and directly suppressing the response of tumor-
specific CD4+ T cells. They were also seen to indirectly 
suppress T-cell function by inducing CD4+CD25+Foxp3+ 
Treg mentioned earlier[97]. Interestingly, in the presence 
of hypoxia or tumor-derived factors, MDSCs can differ
entiate toward immunosuppressive TAMs as well[98]. 

In a similar fashion to TAMs, MDSCs also express 
galectin-9 which binds to Tim-3 on T cells, thereby inducing 
senescence[99]. MDSCs also respond to liver macrophages 
and increase the levels of PD-L1, which as mentioned 
earlier reduces T cell effector function (Figure 1)[96]. MDSC 
have also been implicating in angiogenesis by producing 
high levels of MMP-9[100]. 

Natural killer cells
Natural killer (NK) cells are innate lymphoid cells that 
are the immune system’s first line of defense against 
infections and tumors[101]. They are essential in the  
liver’s immune function where they account for close to 
50% of liver lymphocytes[102]. Their anti-tumor response 
is by direct lysis of malignant cells[101]. They express 
a number of immune receptors (NKRs) that are able 
to recognize ligands on hepatocytes, stellate cells and 
Kupffer cells to maintain proper immune function[103,104]. 

MHC class Ⅰ-related chain A (MICA) is a ligand for 
NK cell stimulatory receptor NKG2D and is expressed in 
HCC[105]. The interaction of MICA and NKG2D serves as 
a pathway for immune surveillance in HCC. However, a 
soluble form of MICA (sMICA) has been shown to isolate 
NKG2D and inhibit its expression. These soluble forms 
are increased in a variety of tumors and may serve as a 
tumor evasion mechanism[106]. 

According to the frequency of CD56 expression (dim 

or bright) and the presence or absence of CD16, NK 
cells can be divided into two subsets: CD56brightCD16neg 
(produces cytokines) and CD56dimCD16pos (cytotoxic)[107]. 

The density of NK cells in the peripheral blood of 
patients with HCC positively correlated with survival and 
prognosis similar to many of the other cell lines already 
mentioned[108]. Specifically, peripheral CD56dimCD16pos NK 
subsets were dramatically reduced, which resulted in an 
increased ratio of CD56bright to CD56dim NK cells in HCC 
and therefore decreased cytotoxic capability. These cells 
exhibited poorer capacity to produce IFN-γ and kill target 
cells. This phenomenon was found to be associated with 
the increased CD4+CD25+ Treg in the tumor environment 
as mentioned earlier. Decreased functionality of these 
cells was shown to correlate with early development 
and recurrence of HCC as well[109]. Murine models of 
hepatoma revealed that activation of NK cells can lead 
to clearance of the hepatoma which suggests a possible 
immune target in patients with liver disease[110]. 

Sorafenib, as mentioned earlier, is the only mole
cularly-targeted drug shown to have survival benefit in 
patients with HCC[16]. Recently, it was found to initiate 
liver NK cell activation and induce the anti-tumor res
ponse of these cells by triggering TAMs and increasing 
IFN-g secretion[111]. The proteasome inhibitor, Bortezomib, 
has also been shown to stimulate cytotoxicity and IFN-g 
production of NK cells by increasing the expression of 
MICA/B on the cell surface of hepatoma cells.

A new class of agents that have shown positive 
results in a variety of malignancies including HCC are 
the histone deacetylase inhibitors (HDACi). HDACis, 
such as sodium valproate, promote MICA expression on 
hepatoma cells and coordinate NK cell-mediated lysis. 
This mechanism supports this type of therapy for future 
treatment of HCC[112]. 

The mechanisms of pro-tumoral and anti-tumoral 
effects in hepatocarcinogenesis of the above cell types 
are summarized in Table 1.

ONCOGENIC PATHWAYS
Multiple growth factor signaling cascades are deregulated 
in hepatocarcinogenesis. Activation of oncogenes see
ms to be a late event in human HCC[113]. The tumor 
microenvironment in concert with the presence of cirrhosis 
induces a selection to eliminate certain checkpoint genes. 
This may be an early event which leads to the activation 
of oncogenes and tumor growth[113]. Amongst the most 
frequently seen pathways, the following will be discussed: 
Raf/mitogen-activated protein kinase (MAPK)/extracellular-
signal-regulated kinase pathway (ERK), phosphatidyl-3-
kinase/AKT/mammalian target or rapamycin (PI3K/AKT/
MTOR), Wnt/β-catenin, NK-κB, and STAT-3.

Raf/MAPK/ERK
The Raf/MAPK/ERK plays an important role in tumor cell 
signaling and is involved in cell growth and differentiation. 
The pathway translates extracellular signals from tyrosine 
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kinase receptors, such as epidermal growth factor re
ceptor (EGFR), vascular endothelial growth factor receptor 
(VEGFR), insulin-like growth factor receptor (IGFR), c-Met, 
and platelet-derived growth factor receptor (PDGFR), 
and hepatocyte growth factor receptor (MET) to the 
nucleus via a series of phosphorylation events[114]. The 
GTPase, RAS, and the serine/threonine kinase (Raf) are 
key regulators in signal transduction in this pathway[115]. 
Increased activation of this pathway is well known in HCC 
and also positively correlates with disease severity[116,117]. 
The increased activity of this pathway in HCC can be 
explained by the down-regulation of the Raf kinase 
inhibitor which is a suppressor of the Raf/MAPK/ERK 
pathway[118]. Therefore, Raf kinase targeting for treatment 
of HCC is a promising approach. Sorafenib is one example 
of a drug with inhibitory effects on Raf-1 kinase and can 
halt tumor progression via its downstream effects using 
this mechanism[119]. 

PI3K/AKT/MTOR
Similar to the Raf/MAPK/ERK pathway, the PI3K/AKT/
mTOR pathway is a major intracellular signaling cascade 
that controls cell growth, proliferation, motility, survival, 
and apoptosis[120]. Activation of the AKT signaling pathway 
has been reported in over 40% of human HCC. This 
activation has prosurvival and growth-stimulatory effects 
by decreasing TGF-β-dependent apoptosis[121]. Evidence 
has demonstrated that the abnormal activation of this 
pathway occurs in patients with HCC. Furthermore, the 
expression of the mTOR downstream effector, p70s6k, is 
up-regulated in 45% of patients with HCC[122]. Therefore, 

this pathway is another important target for therapy.
Some of the inhibitors that have been studied targeting 

this pathway include sorafenib and PI-103 (a dual PI3K/
mTOR inhibitor) alone or in combination. This was found 
to significantly inhibit EGF-stimulated proliferation of 
HCC via the blockage of both the PI3K/AKT/mTOR and 
Ras/Raf/MAPK pathways[123]. Certain mTOR inhibitors 
such as everolimus have been tested against placebo as 
second-line agents in sorafenib-refractory or intolerant 
HCC patients. However, there was no difference in overall 
survival compared to the placebo group. In subgroup 
analysis, patients with HBV infection derived a significant 
benefit [hazard ratio (HR) = 0.64; 95%CI: 0.45-0.93] 
as compared to those with HCV infection (HR = 0.93; 
95%CI: 0.75-1.15)[124]. 
 
Wnt/β -catenin
The canonical Wnt (Wnt/β-catenin) pathway controls 
many processes, including cell fate determination, pro
liferation and stem cell maintenance. The pathway is 
activated by the binding of growth factors to the Frizzled 
(Fzd) receptors on the surface of target cells. This leads to 
activation of different signal transduction pathways further 
downstream[125]. Physiologically, β-catenin is involved in 
intercellular adhesion via interactions with E-cadherin 
and transmission of the proliferative signals of the Wnt 
pathway[126,127]. In the absence of the above, the β-catenin 
protein is rapidly phosphorylated by the destruction 
complex which consists of AXIN1, adenomatous polyposis 
coli (APC), glycogen synthase kinase-3β (GSK-3β), and 
casein kinase 1 (CK1) proteins[126,127]. This phosphorylation 
then leads to β-catenin becoming ready for proteolysis 
through the ubiquitin/proteasome system. Mechanisms 
that bypass this phosphorylation or mutations in the 
destruction complex lead to the translocation of the 
β-catenin to the cytoplasm and eventually the nucleus 
to interact with transcription factors. This translocation 
triggers activation of multiple genes involved in cell pro
liferation, survival and migration[128]. Aberrant activation 
of this pathway is observed in both murine and human 
studies of HCC[129,130]. 

In addition, the protein regulator of cytokinesis 1 (PRC1) 
is involved in cytokinesis and microtubule organization[131-133]. 
PRC1 has been shown to be upregulated in HCC and has 
an oncogenic function in promoting cancer, tumorigenesis, 
and metastasis. It is a direct Wnt signaling target and is 
necessary for Wnt signaling to mediate oncogenesis. PRC1 
also potentiates Wnt signaling by promoting membrane 
sequestration of the destruction complex, thereby reducing 
APC stability and promoting stabilization of β-catenin[134]. 

Therefore, there is mounting evidence that β-catenin 
is essential for tumor cell proliferation and survival. It 
is obvious that targeting the Wnt/β-catenin pathway 
may be an attractive option for therapy and is already 
being investigated. Therapeutic monoclonal antibodies 
are useful for targeting ligands or receptors. Wnt and 
Fzd proteins are prime targets for these antibodies. An 
anti-Wnt-1 antibody has been shown to inhibit β-catenin 
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Table 1  Immune cells involved in tumor response

Cell type Mechanism

Pro-tumor Anti-tumor

CD8+ T cells Exhaustion of CD8+ T cells Increased CD8+ T 
cells

Upregulation of PD-1
CD4+ T cells TH2 response TH1 response
TH17 cells IL-17 production via STAT-3
Treg cells Increased Treg

Impaired CD8+ T cells via 
CTLA-4

TAM M2 (Th2 response) M1 (Th1 response)
Increased galectin-9 via TIM-3

Expression of B7-H1
Induction of TH17

TAN N2 phenotype N1 phenotype
Angiogenesis via Treg

MDSC Induction of Treg and TAM
Suppress CD4+ T cells
Suppress NK activity

NK cells Increased CD56dimCD16pos Increased 
CD56brightCD16neg

Increased Treg

PD-1: Programmed death 1; IL: Interleukine; STAT-3: Signal transducers and 
activators of transcription 3; TAM: Tumor associated macrophages; MDSC: 
Myeloid derived suppressor cells; TAN: Tumor associated neutrophils; NK: 
Natural killer; Treg: Regulatory T cells.
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signaling and induce apoptosis and decrease tumor growth 
in HCC[135]. Furthermore, the Fzd receptor is another 
interesting target. A soluble Fzd peptide (sFZD-7) was 
shown to inhibit Wnt signaling and also sensitized the 
HCC to the traditional chemotherapeutic agent, do
xorubicin[136]. 

Axin, one of the components of the destruction complex 
mentioned earlier is another molecular target utilizing this 
pathway[137]. Adenovirus-mediated gene transfer of wild-
type Axin1 induced apoptosis in hepatocellular and colorectal 
cancer cells, once again confirming the importance of the 
destruction complex on the senescence of β-catenin[138]. 
Disruption of the actual β-catenin and transcription factor 
complex is a promising avenue of immunotherapeutics. 
However, the complexity of the transcriptional regulation of 
this pathway makes drug targeting a future endeavor[139]. 

NF-κB
Cancer, as mentioned previously, has been linked to both 
infection and inflammation and a variety of signaling 
pathways can lead to an inflammatory tumor microen
vironment. Toll-like receptors (TLR) are present on the cells 
of the innate immune system and are activated via their 
interaction with foreign cells such as pathogens[140]. This 
interaction triggers the production of a variety of cytokines 
and chemokines that begin the inflammatory cascade[141]. 
The pathway controlled by the transcription factor NF-
κB is essential for this to occur[142]. NF-κB is activated 
downstream in inflammatory cells via signals from TLR 
using the adaptor molecule myeloid differentiation primary 
response gene 88 (MyD88)[140] or other inflammatory 
cytokines such as TNF-a and IL-1b[142]. 

NF-κB’s ties to tumorigenesis has been reported 
using murine models. Ablation of the gene encoding for 
IκB kinase b-subunit (IKK-b) which is a kinase necessary 
for the activation of NF-κB in myeloid cells, resulted in 
a reduction of tumor size in mice with colitis-associated 
cancer[143]. Furthermore, deletion of the gene for this kinase 
in Kupffer cells and hepatocytes in models of HCC resulted 
in reduced tumor burden and resulted in less production 
of inflammatory cytokines such as TNF-a and IL-6 with 
DEN administration. However, deletion of the kinase gene 
in only the hepatocytes and not in Kupffer cells resulted 
in a marked increase in hepatocarcinogenesis[77]. These 
conflicting findings underscore the complex nature of the 
NF-κB signaling pathway and once again the importance of 
immune cells in tumorigenesis.

STAT-3
Lastly, another emerging pathway in hepatocarcinogenesis 
is the STAT-3 signaling pathway, which has been mentioned 
previously and will be briefly discussed here. The STAT-3 
is part of the transcription factor family and is involved 
in signal transduction via cytokines, growth factors, and 
oncoproteins. Once activated, STAT-3 translocates to the 
nucleus and binds to target genes that regulate a variety of 
cell activities including growth, differentiation, apoptosis, and 
angiogenesis[144-146]. Mostly, activated STAT-3 participates 

in carcinogenesis by either promoting angiogenesis or 
stimulating cellular proliferation[147]. Furthermore, the 
expression of activated STAT-3 was correlated with 
histological grading and intratumor microvessel density 
in more than 50% of patients with HCC in one study[148]. 
This highlights the potential importance of this pathway in 
tumorigenesis and progression.

It is clear that the inhibition of STAT-3 signaling could 
be vital in halting tumor growth[149]. This was proven 
in an experiment in which over-activated STAT-3 was 
blocked in human HCC cells. Results showed that the 
proliferation of HCC cells was suppressed dramatically 
and was associated with increased apoptosis and cell 
arrest[149]. Therefore, STAT-3 is an interesting target for 
HCC treatment and there is a current phase 1 clinical trial 
evaluating an inhibitor of STAT-3 in patients with HCC 
(NCT01839604).

ImmunotherapY
A better understanding of tumor immunobiology has led 
to unique avenues of targeted therapy. Below are some 
of the classes of therapies available in addition to ones 
mentioned earlier.

Vaccines
Vaccination to target TAAs such as AFP, GPC-3, NY-
ESO-1, MAGEA, SSX2, and hTERT is an evolving strategy 
in immunotherapy. Two peptide-derived vaccines have 
been developed and tested. One was a nonrandomized, 
open-label phase 1 clinical trial against GPC3 peptides, 
which proved to be safe and showed a measurable 
immune response with higher CTL activity. However, 
only one of the 33 patients treated had objective tumor 
response[150]. The second vaccine was with an hTERT-
derived peptide that revealed no signs of clinical or CTL 
activity[151]. 

Adoptive cell therapy
Adoptive cell therapy (ACT) involves the isolation and 
expansion of tumor-specific T cells to gain a greater 
number of cells than would be expected otherwise in an 
ex vivo fashion. These T cells are then infused into the 
patient in an attempt to boost the immune response 
against the tumor[152]. 

Autologous or allogeneic ex vivo expanded NK cells 
is an example of ACT. These NK cells can be expanded 
1600-fold using new technology and can be used for 
their cytotoxic effects against tumor targets[153]. A Phase 
Ⅱ clinical trial (NCT02008929) is underway to evaluate 
the efficacy and safety of MG4101 (ex vivo expanded 
allogeneic NK cells) as an adjuvant treatment of advanced 
HCC after curative liver resection and high risk of 
recurrence.

Cytokine-induced killer cells (CIK) therapy using ACT 
has seen great results in Asia. In two randomized trials 
using this technique in the adjuvant setting after liver 
resection, showed an increase in recurrence-free survival 
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but no difference in overall survival[154,155]. 
A study that compared CIK ACT with best supportive 

care after combined TACE and RFA showed a dramatic 
reduction in the 1-year recurrence rate in the CIK-
treated group (9% vs 30%)[156]. Furthermore, another 
randomized study of patients with a wide range of HCC 
tumor grades was treated with standard therapy or CIK 
in addition to standard therapy. There was an increase in 
overall survival and progression-free survival in the CIK-
treated group but no significant improvement in patients 
that had undergone surgery[157]. This may indicate that 
CIK therapy may be more useful for those with earlier 
stage disease.

Immune checkpoint inhibitors
Immune checkpoints are coinhibitory molecules that 
block the immune response to tumor cells and decrease 
the overactivation of T cells. Members of this group have 
been mentioned earlier and include CTLA-4, PD-1, and 
TIM-3. Two others that will not be discussed are LAG-3 
(lymphocyte activation gene-3 protein) and BTLA (B and 
T lymphocyte attenuator)[158,159]. 

Targeting these immune checkpoints has gained 
recent interest after three different checkpoint inhibitors 
were approved by the United States FDA to treat 
melanoma. These drugs include ipilimumab (anti-CTLA-4), 
pembrolizumab (anti-PD-1) and nivolumab (anti-PD-1) 
along with some others[160]. 

Anti-CTLA-4 mAbs 
Two anti-CTLA-4 monoclonal antibodies (mAbs) have 
been developed thus far for advanced cancer such as 
melanoma. Ipilimumab is an IgG1 anti-CTLA-4 human 
mAb with a half-life of 2 wk and has shown great efficacy 
in metastatic melanoma[161]. 

Tremelimumab is an anti-CTLA-4 mAb and is from the 
IgG2 subclass with a longer half-life of 22 d. In a phase Ⅲ 
trial, the primary end-point of progression-free survival in 
metastatic melanoma was not met[162]. However, its use 
in patients with HCC and chronic HCV infection yielded 
partial response rate in 17.6% of patients and control of 
their disease in 76.4% of patients, with a median time to 
cancer progression of 6.48 mo. Furthermore, a significant 
drop in HCV viral load was seen with treatment[163]. 

Anti-PD-1 mAbs
PD-1 is a strong inhibitor of T cell responses as mentioned 
earlier. Therefore, its blockade is an important target for 
therapy. Another mAb that has been tested is nivolumab, 
which is a human IgG4 anti-PD-1 mAb that has been 
investigated in a variety of solid tumors with positive 
results[164]. 

A multicenter phase Ⅰ/Ⅱ trial that studied nivolumab 
in advanced HCC patients with intolerance to sorafenib 
was started in 2012. Preliminary results show that the 
safety profile of the treatment was acceptable and 
durable responses were seen and overall survival at 6 
mo was 72%[165]. These results are promising and further 

assessment of immune checkpoint inhibitors as potential 
immunotherapy are being undertaken.

CONCLUSION
HCC is of increasing importance due to its rising inci
dence and mortality. Current therapeutic options are 
limited and therefore, other avenues are being pursued. 
The immunobiology of the tumor environment is trem
endously complicated but plays a pivotal role in the 
development of inflammation and hepatocarcinogenesis. 
The multitude of ways that cancer cells can evade the 
immune response makes it a very difficult disease to 
control. The interplay amongst immune cells and tumor 
microenvironment determines the ultimate outcomes of 
patients with cancer. 

Many of these cells have been well known for many 
years but their complex interactions are being discovered 
on a daily basis. Targeted therapy towards these important 
cells has become a fascinating topic that has fostered 
many studies on murine models and clinical trials on 
humans. The most critical aspect of immunotherapy will 
be to find the most appropriate patient population for 
treatment and testing. The advances thus far have proven 
to provide desirable results for hepatocarcinogenesis 
and will further solidify as active translational research 
improves. 

Not all tumors are identical and individualized treat
ment modalities along with the current standard of care 
may be the future of immunotherapy in patients with 
HCC. These newer treatment modalities include vaccines, 
monoclonal antibodies against immune checkpoint 
inhibitors as well as ACT amplifying TIL. Enhancing the 
natural anti-tumor response of the body along with 
breaking the barriers of immune tumor evasion may be 
among the keys to the future of cancer treatment.

In this review, we have highlighted the role of the 
immune system and immunomodulatory therapy against 
tumors, particularly hepatocarcinomas. It is probable that 
we will need to develop non-immune associated therapies 
that together will have the most impact in treating and 
repressing recurrence of even the seemingly cancer-
free state. This will likely be refined within the scope of 
precision medicine.
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