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Abstract
The pathophysiology of depression has been tradi-
tionally attributed to a chemical imbalance and criti-
cal interactions between genetic and environmental 
risk factors, and antidepressant drugs suggested to 
act predominantly amplifying monoaminergic neuro-
transmission. This conceptualization may be currently 
considered reductive. The current literature about the 
pathophysiological mechanisms underlying depression, 
stress-related disorders and antidepressant treatment 
was examined. In order to provide a critical overview 
about neuroplasticity, depression and antidepressant 
drugs, a detailed Pubmed/Medline, Scopus, PsycLit, and 
PsycInfo search to identify all papers and book chapters 
during the period between 1980 and 2011 was per-
formed. Pathological stress and depression determine 
relevant brain changes such as loss of dendritic spines 
and synapses, dendritic atrophy as well as reduction 
of glial cells (both in number and size) in specific areas 
such as the hippocampus and prefrontal cortex. An in-
creased dendritic arborisation and synaptogenesis may 
instead be observed in the amygdala as a consequence 
of depression and stress-related disorders. While hip-
pocampal and prefrontal functioning was impaired, 
amygdala functioning was abnormally amplified. Most 

of molecular abnormalities and biological changes of 
aberrant neuroplasticity may be explained by the action 
of glutamate. Antidepressant treatment is associated 
with neurogenesis, gliogenesis, dendritic arborisation, 
new synapse formation and cell survival both in the 
hippocampus and prefrontal cortex. Antidepressants 
(ADs) induce neuroplasticity mechanisms reversing the 
pathological effects of depression and stress-related 
disorders. The neuroplasticity hypothesis may explain 
the therapeutic and prophylactic action of ADs repre-
senting a new innovative approach to the pathophysiol-
ogy of depression and stress-related disorders. 
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INTRODUCTION
Major depressive disorder (MDD) is a common and in-
validating mental illness affecting approximately 2.5% of  
the general population. MDD is one of  the leading cause 
of  disability and it has been suggested to become the 
second highest burden of  disease (measured in disability-
adjusted life years) by 2020[1]. MDD has negative social 
consequences in terms of  reduced employment and psy-
chosocial impairment[2]. The pathophysiology of  depres-
sion involves both external social stressors and internal 
genetic vulnerability.

REVIEW
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Among all biological theories postulated about MDD, 
an impairment of  neuroplasticity and cellular resilience 
has been suggested[3]. According to this theory, neural 
circuits and connections undergo lifelong modifications 
and reorganizations in response to external or internal 
environmental stimuli. Adult neurogenesis involves pre-
cursors of  cell proliferation, migration and differentiation 
mainly occurring in the dentate gyrus of  the hippocam-
pus[4]. Several neurotoxic agents such as chronic stress, 
excessive concentrations of  glutamate, biogenic amines 
and glucocorticoids may affect the morphology of  some 
neural cells such as hippocampal CA3 pyramidal neurons 
and pyramidal cells of  prefrontal cortex. Neural cells may 
react to chronic stress debranching apical dendrites or 
with spine loss and these changes are closely associated to 
daily periods of  resting and activity[5,6]. Interestingly, some 
antidepressants (ADs) may increase neurotrophin signal-
ling promoting neuronal and synaptic remodelling as well 
as the formation of  new neurons in the hippocampus and 
prefrontal cortex[3,7-11]. Modern ADs may act enhancing 
neuroplasticity mechanisms and renewing the impairment 
in neural circuits contributing to their normalization[3,12,13]. 
Although precise modifications induced at the synaptic 
level by ADs are still unclear, it’s well known that ADs 
may promote neuronal connectivity and strengthen specif-
ic synapses or normalize glutamatergic tone which is sup-
posed to be underlying major depression[14]. Pharmaco-
logical manipulation of  the glutamatergic system in animal 
models has been shown to reduce stress-induced morpho-
logical changes in the hippocampus[11,15,16] and some ADs 
have been reported to regulate glutamatergic transmission 
through the inhibition of  stress-induced morphological 
changes in both the hippocampus and amygdala[11]. 

LITERATURE REVIEW
In order to provide a critical overview about neuroplasticity, 
depression and ADs, a detailed Pubmed/Medline, Scopus, 
PsycLit, and PsycInfo search to identify all papers and book 
chapters during the period between 1980 and 2011 was 
performed. The search used the following terms: “Major 
Depression Episode” AND “Affective Disorders” AND 
“Neuroplasticity” OR “Neurogenesis” OR “Synaptic plas-
ticity” AND “ADs” OR “Antidepressant drugs” OR “Anti-
depressant medications” OR “Antidepressant agents” AND 
“Treatment” OR “Intervention” OR “Future implications”. 
Reference lists of  the articles were also manually checked 
for relevant studies. Included papers were restricted to those 
in English. Only those articles published in peer-reviewed 
journals were included. Where a title or abstract seemed to 
describe a study eligible for inclusion, the full article was 
obtained and examined to assess its relevance based on the 
inclusion criteria. Approximately 80 full-text articles met 
our inclusion criteria and were reviewed. Two independent 
researchers conducted a two-step literature search. Any 
discrepancies between the two reviewers who, blind to each 
other, examined the studies for the possible inclusion were 
resolved by consultations with a senior author.

NEUROPLASTICITY AND MAJOR 
DEPRESSION
Generally, resiliency is the ability to adapt and react to 
stressful life events and environmental situations. This 
ability is mediated by the involvement of  several brain 
areas such as the hippocampus, amygdala, and prefrontal 
cortex playing a key role in either cognitive and affec-
tive domains and requiring the involvement of  specific 
neurotransmitter molecules. Neuroplasticity is instead a 
general term indicating a neural framework in which all 
the different internal events at either the molecular and 
systemic levels produce neuronal modifications[14]. In the 
last decades, the view that the brain is a static structure in 
which electrical and chemical information are processed 
within a fixed system has been widely debated. Neural 
circuits, brain nuclei, neurons and synaptic connections 
undergo several lifelong modifications and relevant 
adaptations due to environmental stimuli through the 
neural plasticity mechanisms. Continuous modifications 
such as increased axonal growth and collateral sprouting 
determine the development of  new synapses and a retro-
grade elimination of  the pre-existing synapses as well as 
changes in the dendritic tree and spine density influenc-
ing the number of  post-synaptic sites[17,18]. Popov and Bo-
chorova[19] found that specific and multifaceted structural 
changes at synapse level may be induced by mossy fibres 
and hippocampal pyramidal neurons. Also, hippocampal 
CA3 pyramidal neurons undergo dendritic shrinkage af-
ter chronic stress induced by corticosterone[20-22]. 

Neurohistological changes associated with pathologi-
cal stress and antidepressant response are site-specific[23]. 
Reduced hippocampal volume is one of  the most com-
mon finding in depressed subjects and longer duration 
of  depressive episodes is known to be closely related to 
modifications in hippocampal volume[24,25]. It has been 
suggested that somatodendritic, axonal, synaptic and glial 
cell number changes are all involved in the inhibition of  
adult hippocampal neurogenesis. The reduction of  hip-
pocampal volume may be observed in post-mortem ani-
mal models of  either stress and major depression[13,26]. In 
animal models, stress-induced hippocampal neuropatho-
logical changes may be summarized as follows: loss of  
dendritic spines; decrease in the number and length of  
dendrites; loss of  synapses; loss of  glia and impairment 
of  neurogenesis[13,26-30]. The retraction of  dendrites and 
synapses determine a reduction of  connectivity, multiple 
impairments of  neurons associated with loss of  glia, 
consequent reduction of  neurotransmission, decreased 
neurogenesis[23]. Recent evidence[31] suggested that both 
hypercholesterolemia (no post-mortem neuronal loss was 
found in the brain tissue) and apoptosis (evident only in a 
small hippocampal area) have not been identified as pos-
sible neurotoxic agents. Additionally, Reif  et al[32] did not 
find in a small sample of  subjects evidence of  reduced 
neural stem cell proliferation possibly explaining the 
changes in neurogenesis of  depressed patients. 

Stress-induced neurohistological changes do not sim-
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ply interfere with hippocampal functioning but they also 
affect functioning of  other downstream areas. Several 
structural changes have been shown in the rat prefrontal 
cortex, a brain area in which a retraction of  dendrites and 
spine loss induced by chronic stress and associated with 
daily periods resting and activities have been described[5,6]. 
Post-mortem histopathological studies[33,34] have shown 
reduced neuronal density, smaller neuronal somata and 
a relevant reduction in prefrontal cortical thickness. A 
stress-induced inhibition of  cell proliferation and gliogen-
esis, specifically, a stress-induced dendritic reorganization 
in pyramidal neurons of  the medial prefrontal cortex has 
been commonly observed. In animal models, stress-in-
duced neurohistological changes in the prefrontal cortex 
determine loss of  dendritic spines, atrophy of  the den-
dritic tree, loss of  synapses, decreased number and size 
of  glia[13,26,28,30]. Post-mortem studies in depressed subjects 
have shown a decrease in neuronal and glial cells (both in 
number and size), and overall cortical thickness[26]. A glial 
cells loss was also found in limbic and extralimbic struc-
tures, prefrontal, orbitofrontal and cingulated cortices of  
depressed individuals. 

Moreover, structural modifications have been de-
scribed in the amygdala where an enhanced dendritic ar-
borisation (but not an increase in all classes of  amgdaloid 
neurons) has been shown by Vyas et al[35]. After chronic 
stress they observed an enhanced dendritic arborisation 
in the basolateral nucleus of  the amygdala and specifically 
in the pyramidal and excitatory projections of  the stellate 
neurons. Also in animal models, stress-induced neurohis-
tological changes in the amygdala include increased den-
dritic arborisation and synaptogenesis[13,30]. No alteration 
was reported in neuronal amygdalar number although a 
reduced number of  glial cells has been demonstrated in 
depressed patients[36]. Several studies[37,38] using MRI analy-
sis showed an altered amygdalar core. Overall, an increased 
amygdalar volume determining not only structural but 
also functional impairments has been described in either 
stressed animals and depressed subjects. Stress-induced 
neurohistological modifications in the amygdala were not 
reversed after some weeks but required longer periods[13]. 

In addition, chronic stress changes on dendrites 
and spines influence the expression of  several synaptic 
molecules resulting crucial for the information transfer 
between neurons. Cooper et al[39] showed that the expres-
sion of  M6a, particularly the splice variant M6a-Ib, a 
glycoprotein which appears located in the axonal plasma 
membrane of  glutamatergic neurons may be differently 
regulated by stress. Chronic stress may differently induce 
the expression of  M6a-Ib in a region-dependent man-
ner down-regulating M6a-Ib in the dentate gyrus granule 
neurons and CA3 pyramidal neurons and an up-regulat-
ing M6a-Ib in the medial prefrontal cortex. This different 
regulation of  targeted glycoproteins induced by chronic 
stress presumably leads to reduced axonal output in hip-
pocampal neurons also altering the integrity of  axons and 
the information transfer between neurons in different 
brain regions. Chronic stress may also affect neuron-glia 

communication inducing a remodelling of  hippocampal 
dendrites and an increased expression of  GLT-1 glial 
glutamate transporter in the dendate gyrus and CA3 hip-
pocampal neurons[16]. 

Therefore, both pathological stress and major depres-
sion result in abnormalities in neuroplasticity response 
characterized by altered increased activity in the amygdala 
and impaired hippocampal and prefrontal cortex func-
tioning[40]. The hippocampus is a key structure involved 
in learning and memory, the prefrontal cortex plays a key 
role in cognitive functions such as attention, concentra-
tion, learning and memory whereas the amygdala plays 
a fundamental role in social and emotional learning and, 
particularly, in emotions such as anxiety and fear.

NEUROPLASTICITY AND MODERN 
ANTIDEPRESSANT DRUGS
Several lines of  evidence demonstrate that some modern 
ADs may reverse neuroplasticity and neurogenesis modi-
fications induced by chronic stress[13]. In animal models, 
ADs may reverse and remodel many of  the stress-in-
duced neurohistological changes. It is possible to specu-
late that by reversing the neurohistological effects of  
stress in animal models, ADs may attenuate depression 
in human subjects. There is evidence that treatment with 
modern ADs significantly improves both hippocampal 
shrinkage[28,41] and functions (e.g., cognitive functions)[42]. 
Interestingly, Rocher et al[43] suggested that both tianepti-
ne and fluoxetine may reverse the inhibition of  long-term 
potentiation (an interesting prototype of  synaptic plastic-
ity) not only in the hippocampus but also in prefrontal 
cortex. Czeh et al[44] suggested that tianeptine may inhibit 
the stress-induced reduced number of  hippocampal as-
trocytes reversing morphological modifications observed 
in the somal volume. 

The exact mechanism underlying neuroplasticity 
dysfunctions is still unclear[45,46]. Evidence suggest a cen-
tral role of  both N-Methyl-D-aspartate (NMDA) and 
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 
(AMPA) glutamate receptors activation in inducing mor-
phological changes regulating neuroplasticity such as den-
dritic length and branching, spine density and volumes 
of  several brain regions, specifically in the hippocampal 
dentate gyrus[47,48]. Glutamate, in certain concentrations 
and presumably under the influence of  elevated gluco-
corticoids levels, mediates a structural remodelling of  
neurons leading to reversible modifications such as re-
duced neurogenesis, neuronal shrinkage and decreased 
growth[49]. Several authors[50,51] showed that the inhibition 
of  glutamate release by NMDA receptors prevents this 
remodelling. Of  particular interest is also the evidence 
suggesting that suicidal ideation in depressed subjects is 
associated with genes encoding ionotropic glutamate re-
ceptors[52].

Some ADs and electroconvulsive shock therapy may 
reverse reduced neurogenesis, neuronal shrinkage and de-
creased growth, modifying glutamate impairment in the an-
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terior cingulated of  depressed individuals[53]. Drugs having 
mood stabilization properties with additionally modulating 
glutamate release may mediate morphological plasticity ab-
normalities[11] and stress-induced morphological hippocam-
pal/amygdalar changes which are reduced by antidepressant 
manipulation[11,16]. Specifically, Malberg et al[54] found that 
tianeptine prevented the retraction of  apical dendrites of  
hippocampal CA3 pyramidal neurons and the increased 
granule cell proliferation. While tianeptine may prevent 
glutamate efflux in the basolateral nucleus of  the amygdala, 
this effect seem not to be induced with the administration 
of  fluoxetine. Reznikov et al[55] postulated that the impact 
of  ADs in mediating the stress-induced neuropathologi-
cal changes was quite specific. Interestingly, Emery et al[56] 
found that neural stem cells involved in the proliferation 
and differentiation of  adult new neurons extended axons 
to the CA3 region 2 wk after antidepressant administration 
explaining at least partially the delayed clinical improvement 
induced by ADs. 

However, what are the molecular mechanisms un-
derlying antidepressant regulation of  neuroplasticity and 
neurogenesis? Svenningsson et al[57] suggested that ADs 
may induce a phosphorilation of  AMPA receptors in 
two main sites of  the subunit GluR1: Ser831 which is 
phosphorilated by protein chinase C or CaMK-Ⅱ deter-
mining elevations in hippocampal currents[58] and Ser845 
which appears crucial for protein chinase A amplification 
of  peak current by GluR1 receptors[59]. Imipramine and 
fluoxetine act increasing the phosphorilation at Ser845 
on the subunit GluR1[60,61], while tianeptine may reverse 
stress-induced changes in glutamate receptors expres-
sion[16], impairment of  neurogenesis[44] and reduced 
stress-induced apoptosis in the hippocampus and tempo-
ral cortex[62]. Also, other mechanisms of  action have been 
hypothesized. ADs of  different classes act enhancing 
phosphorilation at the c-AMP regulatory element-binding 
protein (CREB)[63] and CaMK-Ⅱ[64] as well as electrocon-
vulsive shock therapy has been demonstrated to increase 
hippocampal CREB phosphorilation[65]. Specific neuro-
trophic factors such as brain-derived neurotrophic factor 
(BDNF) binding to tyrosine kinase (TrK) receptors may 
activate intracellular cascades involving cAMP-dependent 
protein kinase A (PKA), mitogen-activated protein kinase 
(MAPK), CaMK-Ⅱ and also transcription factors such 
as CREB. CREB is involved in the synthesis of  differ-
ent enzymes and proteins considered crucial in inducing 
structural changes underlying neuroplasticity. CREB and 
BDNF are some of  the most important effectors of  neu-
roplasticity[13,26]. Additionally, ADs may increase the ac-
tivity of  c-fos, a marker of  biochemical activity[66]; some 
ADs such as tianeptine may reduce c-fos levels reversing 
its previous stress-induced increase[67]. Tianeptine has 
been demonstrated to prevent impaired stress-induced 
amygdalar and prefrontal changes[50,68] also preventing the 
reduction of  length and branching of  apical dendrites 
of  the hippocampal CA3 neurons exposed to stress[21,50]. 
Rocher et al[43] suggested that fluoxetine possesses a simi-
lar slower activity blocking the effect of  stress in the 

prefrontal cortex. The final result of  all these intracellular 
signalling cascades is a stimulation of  neurogenesis in the 
dentate gyrus including an increase of  glial cells in the 
complexity of  dendritic branching as well as the forma-
tion of  new synaptic connections[69].

Also, agomelatine has been proposed to promote 
hippocampal neurogenesis under basal conditions[70,71]. 
Agomelatine has been found to selectively increase cell 
proliferation and neurogenesis in the ventral hippocam-
pus and to enhance the survival of  newly generated cells 
throughout the entire hippocampus in rats under either 
basal and stressful conditions[72,73]. Other evidence[74-76] 
suggested that agomelatine may stimulate adult neuro-
genesis in the hippocampal dentate gyrus reducing the 
increase of  glutamate release induced by acute stress in 
the prefrontal and frontal cortex[77]. 

Recently, Morley-Fletcher et al[78] found that both a 3- 
or 6-wk treatment with agomelatine (40-50 mg/kg daily) 
may reverse the reduced hippocampal levels of  phosphory-
lated CREB in adult prenatal restraint stress rats as well as 
the reduced hippocampal levels of  mGlu2/3 and mGlu5 
metabotropic glutamate receptors together with the re-
duced neurogenesis in the ventral hippocampus (this struc-
tucture is specifically involved in encoding memories asso-
ciated with stress and emotions). In addition, Dagyte et al[79] 
found that treatment with agomelatine normalized stress-
affected neuronal activity and promoted neurogenesis in 
the hippocampus of  rats exposed to chronic footshock 
stress. They suggested that chronic stress reduced c-Fos 
expression in the hippocampal dentate gyrus and that 
chronic agomelatine treatment reversed this effect nor-
malizing neuronal activity to basal levels with enhanced 
hippocampal cell proliferation and survival in chronically 
stressed rats. They also reported that chronic mild stress 
significantly decreased the newborn cell survival and 
doublecortin expression in the dentate gyrus but these 
changes can be reversed with agomelatine that completely 
normalized stress affected cell survival and partly reduced 
double cortin expression. AlAhmed and Herbert[74] found 
that agomelatine through an intact diurnal corticosterone 
rhythm may promote, presumably through its antago-
nism of  the 5HT2C receptor, progenitor cell mitosis in the 
dentate gyrus. More recently, Dagyte et al[76], found that 
chronic stress increased total SynI (a regulator of  synap-
tic transmission and plasticity) expression in all layers of  
the medial prefrontal cortex, whereas agomelatine treat-
ment administered for 3 wk eliminated some of  these 
effects. Chronic agomelatine administration reduced the 
fraction of  phosphorylated SynI in all layers of  the me-
dial prefrontal cortex as well as selectively in the outer 
and middle molecular layers of  the hippocampal dentate 
gyrus. 

Chronic agomelatine, but not fluoxetine, increased 
survival of  newly formed cells in the ventral part of  the 
hippocampus without changing their phenotypic differen-
tiation into neurons but promoting cell proliferation and 
BDNF messenger RNA (mRNA) expression. Molteni  
et al[80] showed that the expression of  BDNF mRNA lev-
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els in the prefrontal cortex may be up-regulated prevent-
ing the circadian down-regulation of  the neurotrophin 
after acute injection of  agomelatine presumably through 
functional interaction between melatonergic MT1/MT2 
and serotonergic 5-HT2C receptors. Additionally, Ca-
labrese et al[81], investigating the effects on mRNA and 
BDNF protein expression of  chronic agomelatine treat-
ment compared to those of  venlafaxine, found that only 
agomelatine produced major transcriptional changes in 
the hippocampus and increased levels of  BDNF in the 
hippocampus and prefrontal cortex. Considering the dif-
ferent effect on mRNA levels and the similar cumulative 
effects on BDNF levels in the hippocampus and prefron-
tal cortex, the authors suggested that different modula-
tory mechanisms were induced in the two brain regions 
by agomelatine. 

Additionally, recent studies have shown that glucocor-
ticoids are involved in the neurogenic action of  ADs[82,83]. 
The potential role of  glucocorticoids in antidepressant-
induced neurogenesis is consistent with the evidence that 
ADs regulate the function of  the glucocorticoid receptor 
(GR)[84-88]. In a recent study[88], it has been identified for 

the first time that antidepressant-induced changes in neu-
rogenesis are dependent on the GR. The antidepressant 
sertraline enhances neuronal differentiation and promotes 
neuronal maturation of  human hippocampal progeni-
tor cells through a GR-dependent mechanism associated 
with GR phosphorylation via protein chinase-A signalling. 
The authors concluded that this effect is observed only 
when sertraline is present during the proliferation phase, 
but suggested a complex regulation of  neurogenesis me-
diated by ADs, with different GR-dependent mechanisms 
leading to enhanced cell proliferation without changes in 
neuronal differentiation, or enhanced neuronal differen-
tiation in the presence of  decreased cell proliferation.

CLINICAL IMPLICATIONS AND FUTURE 
DIRECTIONS 
Pathological stress and major depression are associated 
with loss of  dendritic spines, dendritic atrophy and loss 
of  synapses, decrease of  glial cells (both in number and 
size) in the hippocampus and prefrontal cortex. Con-
sequently, the hippocampus, prefrontal cortex, and re-
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Figure 1  Proposed mechanisms leading to structural and functional modifications underlying pathological stress and major depression and the effect of 
antidepressant drugs on the most relevant stress-induced changes. 1Source: Modified by[28,81]; 2HPA: Hypotalamic pituitary axis.
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lated downstream structures resulted impaired non only 
structurally but also in functioning. Pathological stress is 
also associated with increased dendritic arborisation and 
formation of  new synapses in the amygdala showing an 
increased volume and an abnormal functioning. The site-
specific neurohistological changes explain most of  de-
pressive clinical correlates such as anhedonia, loss of  mo-
tivation, anxiety, fear, and other cognitive dysfunctions. 
During the last decades, the neurotrophic hypothesis of  
depression together with the demonstration of  ADs to 
reverse neuroplasticity and neurogenesis modifications 
induced by chronic stress emerged. Figure 1 summarized 
the most relevant structural and functional modifications 
of  neural circuits induced by pathological stress and de-
pression as well as modifications/adaptations induced by 
ADs. 

Actually, our knowledge do not allow to conclude 
whether neuroplasticity and neurogenesis modifications 
represent the cause or the result of  neuropathological 
processes related to major depression. Another criti-
cism is that the neurotrophic theory is not able alone to 
explain some experimental findings regarding why keta-
mine[89,90], scopolamine[91,92] and electroconvulsive shock 
therapy[93] exert antidepressant properties. Glutamate 
(NMDA and AMPA receptors activation) is thought 
to play a crucial role in morphological changes regulat-
ing neuroplasticity. Depressive illness and stress-related 
modifications may affect glutamate receptors and the 
glutamatergic neurotransmitter system; these altera-
tions, however, may be reversed by the administration of  
modern ADs. As suggested by Kasper and McEwen[15], 
ADs may reverse structural and functional modifications 
underlying depression promoting neuroplasticity mecha-
nisms and presumably with the final result to prevent the 
illness progression. 

Overall, ADs may reverse the stress-induced loss of  
neuronal cells by reducing the retraction of  hippocampal 
neurons (neuroplasticity) or increasing cell survival and 
functions (neurogenesis). Also, ADs may reverse the 
structural and functional consequences of  stress in a site-
specific manner in both the hippocampus and prefrontal 
cortex, but not in the amygdala. This presumably explains 
why, although most of  depressive clinical manifestations 
may be reversed with the administration of  ADs, the vul-
nerability to stress instead remains[94] providing a rationale 
for the required maintenance of  antidepressant therapy 
after the successful initial treatment of  depression. Future 
longitudinal studies including larger samples of  subjects 
should deeply investigate the potential of  ADs as long-
term modulators of  neuroplasticity and neurogenesis 
mechanisms, allowing a more detailed understanding of  
the pathophysiology of  major depression.
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