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Abstract
Cancer cells are widely known to be protected from 
apoptosis, a phenomenon that is a major hurdle to 
successful anticancer therapy. Over-expression of 
several anti-apoptotic proteins, or mutations in pro-
apoptotic factors, has been recognized to confer such 
resistance. Development of new experimental strate-
gies, such as in silico  modeling of biological pathways, 
can increase our understanding of how abnormal regu-
lation of apoptotic pathway in cancer cells can lead to 
tumour chemoresistance. Monte Carlo simulations are 
in particular well suited to study inherent variability, 
such as spatial heterogeneity and cell-to-cell variations 
in signaling reactions. Using this approach, often in 
combination with experimental validation of the com-
putational model, we observed that large cell-to-cell 
variability could explain the kinetics of apoptosis, which 
depends on the type of pathway and the strength of 
stress stimuli. Most importantly, Monte Carlo simu-
lations of apoptotic signaling provides unexpected 
insights into the mechanisms of fractional cell killing 
induced by apoptosis-inducing agents, showing that 
not only variation in protein levels, but also inherent 
stochastic variability in signaling reactions, can lead to 

survival of a fraction of treated cancer cells.
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INTRODUCTION
Induction of  apoptosis by chemotherapeutics is considered 
as one of  the major anti-cancer effects leading to inhibition 
of  tumour growth. Over the past years our understand-
ing of  signaling pathways associated with induction of  
apoptosis, and knowledge on executioners of  apoptosis, 
has substantially increased. Recently, cell-to-cell stochastic 
variability has become central to apoptotic cell death signal-
ing[1-6]. Computational models are well suited to provide 
mechanistic insight into the system level regulations of  
apoptosis signaling and its large cellular variability. Studies 
that are possible using in silico approaches might be inacces-
sible by other techniques. Recent novel findings in the area 
of  apoptotic cell death signaling can have far-reaching im-
plications in cancer biology and therapy. Our computational 
efforts, in synergy with parallel biological experiments, at-
tempt to explore some of  the fundamental issues in cancer 
biology within this new paradigm of  apoptosis signaling. 
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DEVELOPING COMPUTATIONAL 
MODELS OF CELL DEATH SIGNALING 
FOR NORMAL AND CANCER CELLS
Monte Carlo models are generally suitable for simulating 
inherent stochasticity of  signaling reactions in complex 
signaling pathways[1,7]. Our recent work has elucidated that 
cell-to-cell stochastic variability is a fundamental character-
istic of  apoptosis signaling and a significant part of  such 
variability can arise due to inherent stochastic fluctuations 
of  chemical reactions[1,6,8,9]. Even when the intrinsic sto-
chastic variability is not dominant, Monte Carlo models 
have the advantage over ordinary differential equation 
(ODE) based models, as they can simulate spatial hetero-
geneity in an explicit manner. Examples of  such spatial 
localizations in apoptosis signaling include translocation 
of  activated Bax molecules onto mitochondrial outer 
membrane, release of  cytochrome c from mitochondria 
to cytosol and redistribution of  Apaf-1 in the cytosol, all 
of  which depend on the cell type and the level of  Bcl-2 
proteins[10,11]. In addition, we could easily incorporate 
realistic variations in (1) protein concentrations that may 
arise from stochastic gene regulations[3,12-15]; and (2) reac-
tion rate constants, for example, due to variations in pH 
in the cytosolic environment. In our initial studies we 
grouped functionally redundant proteins so that a single 
representative protein simulates all proteins of  similar 
function that are possibly expressed within a given cell 
type. For example, apoptotic inhibitor Bcl-2 captured the 
effect of  all the inhibitory Bcl-2 like proteins[1,9]. In the fu-
ture we plan to simulate a more cell-type-specific signaling 
network of  apoptosis, the results of  which can be readily 
compared with data obtained from parallel biological ex-
periments for specific cell types. Such an expanded signal-
ing network will often involve signaling species with low 
concentrations at initial time, or dynamically generate a 
few molecules due to specific inhibitory reactions, leading 
to inherent stochastic fluctuations that can be best studied 
using stochastic approaches. 

DIFFERENTIAL SIGNALING THROUGH 
EXTRINSIC AND INTRINSIC PATHWAYS 
OF APOPTOSIS
Apoptosis is regulated through two distinct signaling 
pathways that are joined in a global loop structure as both 
pathways converge on activation of  effector Caspase-3[10]. 
The extrinsic (also called the type 1) pathway directly ac-
tivates Caspase-3 by enzymatic reactions catalyzed by ac-
tivated Caspase-8 molecules. The intrinsic (also called the 
type 2) pathway is regulated by mitochondrial cytochrome 
c release and apoptosome formation. We can assume that 
three local signaling modules coordinate apoptosis in the 
type 2 pathway (Figure 1). Cell death can be induced by 
an apoptotic stimulus acting at any of  the three different 
signaling modules (or right before them) of  the apoptotic 
pathway (Figure 1): (1) death ligand binding and Caspase-8 

activation; (2) Bax activation by BH3 only proteins; and 
(3) Ca2+ release that activates only the post-mitochondrial 
events. Our initial studies showed that, for the case of  
Caspase-8-mediated apoptosis, concentration of  active 
Caspase-8 decides between the two pathways of  apopto-
sis. Membrane reorganization, such as clustering of  death 
receptors in raft signaling domains, determines the level of  
Caspase-8 activation in a cell type specific manner[16]. For 
large concentrations of  Caspase-8, direct Caspase-3 activa-
tion occurs in a fast (minutes) deterministic manner. Such 
rapid activation of  apoptosis has been observed in vari-
ous cell types due to Fas ligand binding to Fas receptor[17]. 
Decrease in the strength of  an apoptotic stimulus begins 
to activate the intrinsic pathway (Figure 2), as the rate con-
stant for Caspase-8-Bid interaction is higher than that for 
Caspase-8-Capsase 3 association[1,18]. 

LARGE CELL-TO-CELL VARIABILITY 
THROUGH THE INTRINSIC 
(MITOCHONDRIAL) PATHWAY CAN 
EXPLAIN SLOW APOPTOSIS
We observe slow apoptosis (hours) when low concentra-
tions of  Caspase-8 are used in our simulations. We also 
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Figure 1  Schematic representation of the apoptosis signaling pathway that 
indicates existence of three distinct signaling modules in the apoptotic 
intrinsic pathway. Apoptosis can be activated at various locations in the intrinsic 
pathway. We also show some of the targets of cancer drugs. 
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find large cell-to-cell stochastic variability in the case of  
slow apoptosis. Similar signaling behavior is observed, ir-
respective of  the Caspase-8 concentration used, when we 
set the kinetic constants for the type 1 pathway to zero, 
confirming that slow apoptosis is a characteristic of  the 
intrinsic pathway of  apoptosis signaling. Such a study of  
pure type 2 apoptosis can be carried out in silico in a clean 
manner but will be difficult to achieve in biological experi-
ments. When we perturbed the intrinsic apoptotic pathway 
downstream of  Caspase-8 activation, we kept observing 
slow apoptosis with large cell-to-cell variability. Our results 
seem to explain very slow (1-100 h) apoptosis observed 
experimentally under a variety of  conditions, for various 
types of  cells and apoptotic stimuli, including under oxida-
tive stress[2-6,9,10,19,20]. Additional variations in protein con-
centrations in our simulations act in tandem with intrinsic 
stochasticity of  signaling reactions to enhance cell-to-cell 
variability in apoptosis. Caspase-3 activation occurs in an 
all-or-none (digital) manner for single cells implicating sig-
naling amplification of  a weak stimulus through the intrin-
sic pathway. However, the information of  strength of  the 
stimulus is contained in the time-to-death and its cell-to-
cell variability. Large cell-to-cell variability with all-or-none 
type Caspase-3 activation, as observed in our simulations, 
resulted in bimodal probability distributions for Caspase-3 
activation that are thought to be characteristic of  apopto-
sis signaling through the intrinsic pathway[1]. Later experi-
ments confirmed existence of  such bimodal probability 
distributions in Caspase-3 activation[2,3,6,9].

MINIMAL MODEL OF A SIGNALING 
NETWORK DEMONSTRATES CELL-TO-
CELL VARIABILITY IN APOPTOSIS IN A 
CELL-TYPE INDEPENDENT MANNER 
In parallel, we derived a minimal model of  a signaling 
network that is designed to sense an external stimulus 
and respond to it in an adaptive manner[8]. This minimal 
network is derived based on some simple assumptions on 

its signaling response without any prior knowledge of  the 
apoptotic pathway. A three-step fast-slow-fast pathway in 
the minimal network was shown to be sufficient to gener-
ate large cell-to-cell variability as observed in our Monte 
Carlo simulations of  the intrinsic pathway of  apoptosis[1]. 
This minimal network also captures the change from rapid 
deterministic to slow stochastic signaling as the strength 
of  the stimuli is varied, and a quantitative estimation of  
the threshold stimulus is obtained. This could be poten-
tially important if  one wants to engineer cancer cells to 
convert from type 2 to type 1 for fast apoptotic activation. 
The crucial slow reaction in the intermediate step of  the 
minimal network can mimic the slow activation of  Bax or 
the apoptosome formation in apoptosis signaling. Thus, 
we can infer that some of  the pertinent qualitative features 
of  apoptosis signaling, as observed in our Monte Carlo 
simulations, are cell type independent. Such a conclu-
sion is significant given the fact that cellular protein levels 
and even the type of  molecules present in the apoptotic 
pathways vary significantly among cell types[3,10,12]. Cancer 
cells are known to over-express a variety of  apoptotic 
inhibitors, which confer them unusual resistance to apop-
tosis[21-24]. The level of  over-expression varies significantly 
among cancer sub-types and even among patients having 
similar sub-types[25,26]. 

HOW APOPTOTIC INHIBITORS PROVIDE 
PROTECTION TO CANCER CELLS: 
IMPLICATIONS FOR CANCER THERAPY 
In a recent study, we have shown that over-expression of  
Bcl-2 like proteins can slow down apoptosis and increase 
cell-to-cell stochastic variability[9]. A high Bcl-2 level allows 
activation of  only a few Bax molecules under apoptotic 
stimuli and thus dynamically generates mechanisms for 
stochastic fluctuations caused by small number of  mol-
ecules. Interestingly, cancer cells are often primed for death 
by increasing the levels of  apoptotic BH3 proteins. How-
ever, in such cells, apoptosis is kept in check by continuous 
inhibition by anti-apoptotic Bcl-2-like proteins[22-24]. Bcl-2 
binds with several pro-apoptotic molecules creating a local 
loop structure (signaling module 2) in the intrinsic pathway 
that leads to non-linear and stochastic effects in its inhibi-
tory action. Our simulations demonstrate that, beyond a 
threshold level, Bcl-2 imparts a strong inhibitory effect 
on apoptosis and thus can explain apoptosis resistance of  
cancer cells. For normal cells, having over-expressed Bcl-2 
proteins, prolonged time-to-death might provide an op-
portunity for a particularly slow cell to acquire tumor initi-
ating features. Behavior similar to tBid-Bcl-2-Bax signaling 
(in module 2) might be observed downstream of  mito-
chondria (in signaling module 3) where higher Apaf-1 level 
might make cancer cells prone to apoptotic death, although 
such an effect can be abolished by the dominant effect of  
increased X-linked inhibitor of  apoptosis protein (XIAP) 
levels[27]. XIAP also has multiple binding partners in a lo-
cal loop network structure and contributes to generation 
of  highly non-linear and stochastic signaling. Hence, pre- 
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Figure 2  Time course of caspase-3 activation for low concentrations of 
caspase-8 (< 5 nmol). Data is shown for five individual cells. Arrows indicates 
switch to the intrinsic pathway of apoptosis at the level of single cells.
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and post- mitochondrial events in the intrinsic pathway are 
heavily regulated by two different loop network structures 
in two distinct signaling modules (Figure 1). Computa-
tional models are well-suited to elucidate mechanisms of  
non-linear and stochastic signaling through those signaling 
modules. As a result, such models can help design optimal 
strategies to perturb those signaling modules by making 
use of  the inherent apoptotic vulnerability of  cancer cells. 
Initial simulations show increased cell death only for can-
cer cells over-expressing BH3 protein Bid (unpublished 
observations), under a single agent treatment scenario, 
such as under the action of  Bcl-2 inhibitor HA14-1[28-30]. 
Our computational studies can clarify the basis of  such 
inherent vulnerability of  cancer cells for all three signal-
ing modules (Figure 1). However, targeting only a single 
module (Figure 1), for example ligation of  death receptors 
at the signaling module 1, will provide an opportunity for a 
significant number of  cells to escape death. Such fractional 
killing of  cancer cells occurs not only due to cellular varia-
tions in protein levels but also from inherent stochastic 
variability in signaling reactions[9]. Computational modeling 
was well-suited to establish that inherent stochastic vari-
ability by itself, even when all the other cellular parameters 
remain identical, can generate large cell-to-cell variability, 
comparable to that observed in apoptosis activation ex-
periments[9]. Such large cell-to-cell variability in time-to-
death provides an opportunity for opposing growth signals 
to up-regulate downstream apoptotic inhibitors such as 
XIAP. This is particularly relevant as apoptosis activation 
under chemotherapeutic treatment can be slow enough 
to allow synthesis of  inhibitor proteins of  varying con-
centrations through stochastic gene regulations. Targeting 
multiple signaling modules simultaneously, using combined 
treatments, can be effective in reducing stochastic effects 
and fractional killing of  cancer cells. Computational studies 
can provide us with a range of  concentrations for optimal 
induction of  apoptosis in a combined treatment scenario 
and can guide the design of  biological experiments. We are 
currently exploring the combined effect of  HA14-1, an in-
hibitor of  Bcl-2[28-30], and embelin[27], an inhibitor of  XIAP, 
that can induce apoptotic collapse in cancer cells. 
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