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Abstract
The receptor protein tyrosine kinase RON belongs to the c-MET proto-oncogene 
family. Research has shown that RON has a role in cancer pathogenesis, which 
places RON on the frontline of the development of novel cancer therapeutic 
strategies. Hepatobiliary and pancreatic (HBP) cancers have a poor prognosis, 
being reported as having higher rates of cancer-related death. Therefore, to 
combat these malignant diseases, the mechanism underlying the aberrant 
expression and signaling of RON in HBP cancer pathogenesis, and the 
development of RON as a drug target for therapeutic intervention should be 
investigated. Abnormal RON expression and signaling have been identified in 
HBP cancers, and also act as tumorigenic determinants for HBP cancer malignant 
behaviors. In addition, RON is emerging as an important mediator of the clinical 
prognosis of HBP cancers. Thus, not only is RON significant in HBP cancers, but 
also RON-targeted therapeutics could be developed to treat these cancers, for 
example, therapeutic monoclonal antibodies and small-molecule inhibitors. 
Among them, antibody-drug conjugates have become increasingly popular in 
current research and their potential as novel anti-cancer biotherapeutics will be 
determined in future clinical trials.
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Core Tip: The role of RON in cancer pathogenesis has received increasing research 
attention. Hepatobiliary and pancreatic (HBP) cancers have a poor prognosis, being 
reported as having higher rates of cancer-related death because of their high rates of 
recurrence, metastasis, and invasiveness, and their lack of sensitivity to chemotherapy. 
In this review, we discuss how RON functions in HBP cancer pathogenesis, as well as 
its potential role as a therapeutic target in HBP cancers.

Citation: Chen SL, Wang GP, Shi DR, Yao SH, Chen KD, Yao HP. RON in hepatobiliary and 
pancreatic cancers: Pathogenesis and potential therapeutic targets. World J Gastroenterol 2021; 
27(20): 2507-2520
URL: https://www.wjgnet.com/1007-9327/full/v27/i20/2507.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i20.2507

INTRODUCTION
RON receptor tyrosine kinase (RTK; also known as MST1R) was first identified in 1993 
in a cDNA library from human epithelial cells[1]. RON belongs to the family of c-MET 
proto-oncogenes[2]. This RTK family only has two members, RON and Met, which 
share only 34% overall homology; however, the tyrosine kinase region of the receptors 
is quite similar at 80% homology[3]. In 1994, a mouse cDNA was cloned that encoded 
a homolog of RON, which was termed stem cell-derived tyrosine kinase receptor[4]. 
RON is located at human chromosome 3p21 and this gene shows high conservation in 
different species, including xenopus, zebrafish, chicken, cats, human, and 
mouse[4-11]. The RON receptor is initially synthesized as a biologically inactive single-
chain precursor (pro-RON), then cleaved into a 145 kDa β-chain and a 35 kDa 
extracellular alpha chain, which are linked by a disulfide bond, forming the mature 
receptor. In 1994, the physiological ligand of RON was identified as macrophage-
stimulating protein (MSP) [also called hepatocyte growth factor (HGF)-like protein], 
establishing the MSP-RON signaling system[12-15]. MSP is a member of the 
plasminogen-related kringle protein family[16,17]. The human MSP gene is also 
located at chromosome 3p21 and is evolutionarily conserved in different species, 
similar to RON. The main source of MSP is hepatocytes and MSP circulates in the 
blood as pro-MSP, which is a biologically inactive single-chain precursor. After 
subsequent proteolytic conversion, the active mature MSP consists of the disulfide-
linked alpha subunit and β-chain. The RON receptor high affinity binding site is in the 
β-chain and RON activity is regulated by the alpha chain[18]. The binding of MSP to 
RON induces RON dimerization, which activates multiple downstream signaling 
pathways, leading to RON-mediated cell growth, survival, and invasiveness[19,20].

In the last two decades, increased research has focused on the tumorigenic and 
therapeutic roles of RON signaling. Although there have been few studies concerning 
pathology-related changes in MSP expression, numerous studies regarding aberrant 
RON activation in various types of tumors have been published, including RON 
protein overexpression[21-28], oncogenic variant generation[29-39], and persistent 
activation of downstream signaling pathways[21-39]. In addition, tumorigenic 
progression and malignancy are associated with functional crosstalk between 
signaling proteins and RON. In clinical application, increased RON expression can be 
used for prognostic evaluation of patient survival and disease progression. Hepato-
biliary and pancreatic (HBP) cancers have a poor outcome, with high rates of cancer-
related death because of their high incidences of recurrence, metastasis, and 
invasiveness, and their lack of sensitivity to chemotherapy[40]. Complete surgical 
resection remains the most effective treatment for HBP cancers[40]. Among these 
cancers, the 5-year survival rate of liver cancer is approximately 30%, whereas in 
biliary tract cancer and pancreatic cancer, it is less than 30% and less than 10%, 
respectively[41]. The high death rate of pancreatic cancer is caused by the lack of early 

http://creativecommons.org/Licenses/by-nc/4.0/
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diagnosis and effective treatment. In pancreatic cancer, most cases are diagnosed when 
the disease is already at an advanced stage, and only 20% or less of patients present 
with potentially curable localized tumors amenable to surgical extirpation[42]. Thus, 
the identification of a novel potential therapeutic strategy is urgently required. 
Growing evidence suggests a close relationship between HBP cancers and RON 
dysregulation[24,43,44]. Thus, the present review primarily focuses on the role of RON 
in the pathogenesis of cancer, especially HBP cancers. Moreover, we summarize the 
latest progress in the development of strategies targeting RON as potential HBP cancer 
therapy.

ROLES OF RON AND C-MET IN CARCINOGENESIS
RON and c-MET, both of which are members of the semaphorin family of 
transmembrane receptor tyrosine kinases, share similar structural and biochemical 
properties[45]. The proteins exist as heterodimers comprising extracellular and 
transmembrane chains that are linked by disulfide bonds. The RON and c-MET 
extracellular sequences possess very similar functional domains, including SEMA, 
which regulates phosphorylation, receptor dimerization, and ligand binding. RON 
and c-MET are activated by their respective ligands: MSP for RON and HGF for c-
MET. c-MET and HGF are expressed in a variety of cell and tissue types. Contra-
stingly, RON is restricted tightly to epithelial origin cells, whereas liver cells are the 
major source of its ligand, MSP[46]. Independent or ligand-dependent activation of 
RON and c-MET induces matrix invasion, cell migration, and cell proliferation, all of 
which are crucial for embryogenesis, wound healing, and tumorigenesis.

Increasing evidence has identified the role of RON and c-Met in the pathogenesis of 
cancer[47]. For example, c-MET and RON overexpression was observed in a variety of 
primary and metastatic tumors, leading to the activation of aberrant downstream 
signaling, which contributes to cancer development and progression. Moreover, 
clinical studies have validated that increased expression of RON and c-MET is a 
prognostic factor to predict the survival rate and disease progression in certain 
patients with cancer[48,49]. Moreover, activation of RON and c-MET promotes a 
cancer cell malignant phenotype. Increased RON and c-MET expression drives tumor 
cells to undergo epithelial to mesenchymal transition (EMT), which is characterized by 
epithelial feature loss and the gain of mesenchymal characteristics[12,50]. Increased c-
MET and RON expression also contributes to acquired chemoresistance[51]. Given the 
above role of the increased expression of c-MET and RON in cancer pathogenesis, 
targeting RON and c-MET represents a promising cancer therapy strategy.

RON ACTIVATION AND SIGNALING PATHWAY MECHANISMS
Epithelial cells in the skin, adrenal gland, bone, brain, kidney, gut, lung, and liver 
express low levels of RON[12]. The action of RON plays a key role in the motility of 
epithelial cells, enhancement of adhesion, sperm motility in the epididymis, and 
embryonic development, as well as the regulation of inflammatory responses[52]. 
Under physiological conditions, the main cause of RON activation is stimulation of its 
ligand, MSP[12]. Moreover, three other biochemical events activate RON in tumors: 
RON overexpression, generation of oncogenic RON variants, and RON transactivation 
(Figure 1). The RON receptor consists of three essential regions: The extracellular 
domain that recognizes its ligand, the transmembrane domain that anchors the 
receptor to the membrane, and the intracellular domain that exerts the kinase activity 
(Figure 1)[53]. The first step for the activation of RON is dimerization at the cell 
surface, which is caused by the binding of MSP to the extracellular domain containing 
the specific ligand-binding site, likely resulting in a conformational change in the RON 
receptor. This activation leads to autophosphorylation at two tyrosine residues 
(Tyr1238 and Tyr1239) located in the A-loop (Phe1227-Pro1250) of the kinase domain. 
Phosphorylation of these regulatory residues leads to tyrosine kinase function 
activation, inducing further phosphorylation of residues Tyr1353 and Tyr1360 located 
in the C-terminal docking site. This then recruits the cytoplasmic molecules growth 
factor receptor-bound protein 2 (GRB2) and Son of Sevenless. In addition, the 
ubiquitin ligase, casitas B-lineage lymphoma (CBL), binds to the docking site to act as 
a negative modulator.
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Figure 1 Mechanisms of RON activation and downstream signaling pathways. Classically, macrophage-stimulating protein (MSP) activates RON. In 
cancer, RON activation is induced by overexpression, splicing or truncation, and transactivation. The RON receptor consists of three regions including the 
extracellular domain, the transmembrane domain, as well as the intracellular domain. MSP binding to the extracellular domain leads to autophosphorylation of several 
tyrosine residues in the kinase activation loop or in the C-terminal tail, resulting in the activation of many biological activities, including increased proliferation/survival, 
motile-invasive activity, and chemoresistance. MSP: Macrophage-stimulating protein; SOS: Son of Sevenless; GRB2: Growth factor receptor-bound protein 2; CBL: 
Casitas B-lineage lymphoma; 14-3-3: Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein; PI-3K-AKT: Phosphatidylinositol-4,5-Bisphosphate 
3 kinase- protein kinase B; HIF: Hypoxia-inducible factor; RAS-MAPK: RAS-mitogen-activated protein kinase; ERK: Extracellular regulated kinase; RSK: Ribosomal 
protein S6 kinase; mTOR: Mechanistic target of rapamycin.

The interaction of RON with adaptor proteins, such as β-arrestin-1 and GRB2, 
represents the first step in the bridging of downstream signaling cascades and RON 
activation. Via its C-terminal docking site, RON interacts with a variety of cytoplasmic 
effector molecules, such as phospholipase C gamma, phosphatidylinositol-4,5-
Bisphosphate 3-kinase (PI-3 kinase), Src (SRC proto-oncogene, non-receptor tyrosine 
kinase), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein 
(14-3-3), CBL protooncogene (c-Cbl), heat shock protein family A (Hsp70) member 8 
(HSC70), integrin-β4, plectin, and protein phosphatase 1. The classical PI-3 kinase- 
protein kinase B (PI-3K-AKT) and RAS-mitogen-activated protein kinase (RAS-MAPK) 
pathways are triggered by the interaction of RON’s docking site with downstream 
signaling proteins. PI-3K-AKT and RAS-MAPK pathways mediate many biological 
activities, including increased proliferation and survival, EMT, motile-invasive 
activity, and chemoresistance. The signaling pathways of RON also play a part in 
regulating tumorigenic activity. Among them, PI-3K-AKT and RAS-MAPK pathway 
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coordinated activation plays a crucial role in EMT via increased cellular 
motility[15,22,54,55]. Studies using the MDCK cell model showed that EMT mediated 
by RON is associated with decreased E-Cadherin expression and unregulated 
vimentin expression, under mediation by RAS-MAPK signaling[56,57]. The major 
protein that links EMT to RON signaling is ribosomal protein S6 kinase-2, which is an 
intermediate in the MAPK pathway. RON-mediated PI-3K-AKT signaling is also 
involved in invasive growth, including increased epithelial cell matrix invasion, 
migration, and adhesion in vitro and distant metastasis and tumor cell invasion in vivo
[54,55].

ABERRANT RON SIGNALING AND EXPRESSION IN CANCER 
PATHOGENESIS
In general, normal epithelial cells, including those from the colon, lung, and breast, 
express low levels of RON; however, cells of a mesenchymal origin do not express 
RON[12,58]. RON activation in tumors is frequently the result of receptor overex-
pression, in contrast to classical MSP binding. Dysregulated RON activation and 
expression were detected in many types of cancers and have prognostic significance 
for patient survival. Results from the majority of published studies show that RON 
expression dysregulation is characterized mainly by elevated expression of wild-type 
RON and the production of active isoforms, ultimately leading to persistent activation 
of downstream signaling cascades[12]. There have been reports of RON amplification 
and point mutation; however, this kind of genetic alteration is observed rarely[26]. The 
relationships between cancer pathogenesis and dysregulated RON signaling and 
expression were proven via functional studies using immunohistochemical (IHC) 
staining of tumor specimens and cancer cell lines. The first report of wild-type RON 
overexpression in cancerous tissue was in primary breast cancer samples. Thereafter, 
IHC staining has further detected wild-type RON in thyroid, bladder, adrenal gland, 
head and neck, uterus, skin, lung, kidney, pancreatic, colorectal, and other tumors[59]. 
These findings are consistent with the results found in other cancers, such as human 
gliomas, melanoma, and Merkel cell carcinoma, suggesting that aberrant RON 
expression is also associated with both neurological and skin cancers[18]. In breast 
tissues, the expression of RON is relatively low in normal breast epithelial cells and 
even in cells from benign lesions (papilloma and adenoma), whereas its was highly 
expressed in 47% (35/75 cases) of histologically varied tumor specimens[25]. RON 
upregulation is associated strongly with its phosphorylation status and invasive 
activity, suggesting that dysregulated expression of RON functions in human breast 
carcinoma progression to invasive-metastatic phenotypes. Furthermore, in breast 
cancer unregulated RON expression was identified as an independent predictor of 
distant relapse[60]. By contrast, in certain tumors, such as hepatocellular carcinoma 
(HCC), the frequency of wild-type RON expression was relatively low[21]; however, 
its importance remains unknown, although this finding indicates that the wild-type 
RON is not expressed universally in different tumor types. Moreover, RON overex-
pression is related to oncogenic RON isoform production, for example RON△160, 
which comprises the deletion of exons 5 and 6, encoding 109 amino acids in the RON 
β-chain extracellular sequence[12]. RON variants are detected in primary cancer 
samples and cell lines relatively frequently, and are detected in 40% to 60% of cases. 
Cancer pathogenesis and clinical relevance are likely to be affected by the frequencies 
and levels of RON isoforms.

Increasing evidence has demonstrated the role of RON in regulating cancer cell 
invasiveness, which is related to the effects of RON activation on a variety of signaling 
mechanisms. The activation of complex downstream signaling networks including 
signal transducer and activator of transcription, β-catenin, JUN N-terminal kinase, 
MAPK, and PI3K/AKT pathways are key contributors to RON-mediated aggressive 
cancer phenotypes. In breast cancer, several signaling pathways that are vital for 
stemness, invasiveness, and proliferation are activated by RON. For example, the 
RON-cellular Abelson murine leukemia viral oncogene homolog (c-Abl)-proliferation 
cell nuclear antigen (PCNA) pathway was identified to contribute to RON-mediated 
cell growth in breast cancer. Dysregulated RON signaling results in c-Abl activation, 
consequently leading to PCNA phosphorylation[61]. Moreover, in breast cancer, RON 
signaling regulates the invasiveness of cancer cell via the activation of the DEK proto-
oncogene (DEK), a DNA-binding non-histone nuclear phosphoprotein that induces 
closed circular DNA to form positive supercoils[62]. This process appears to function 
via a paracrine and autocrine canonical β-catenin signaling loop, which ultimately 
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influences breast cancer stemness. In addition, RON-mediated PI3K-dependent 
upregulation of methyl-CpG binding domain 4, DNA glycosylase (MBD4) increases 
the invasive growth and metastasis of breast cancer cell via the reprogramming of the 
DNA methylation of specific target genes[63]. Clinical data indicated that in patients 
with breast cancer, poor prognosis is related to the RON-MBD4 epigenetic 
pathway[63].

RON RECEPTOR AND HEPATOBILIARY CANCERS
In 2030, it is estimated that more than 1 million people will die because of liver cancer 
worldwide[64]. Primary malignancies of the liver and adjacent biliary tract include 
HCC, intrahepatic and extrahepatic cholangiocarcinoma (CCA), and gallbladder 
cancer (GBC). Among them, HCC and intrahepatic CCA account for 85% and 10%, 
respectively[65]. Abnormal RON expression has been observed in HCC, which may be 
related to pathological conditions of this cancer[43]. In an HCC cell line study, RON 
was shown to be associated with oncogenic and invasive phenotypes (e.g., resistance to 
apoptosis, tumor cell migration, and tumor cell invasion) via AKT, c-Raf, and 
extracellular regulated kinase (ERK) signaling cascade modulation[66]. Clinically, 
RON and MET expression in patients with HCC after curative resection suggested no 
association of RON with overall survival and overall recurrence rates. However, 
patients with RON+/MET+ disease experienced higher overall recurrence rates 
compared with those displaying alternative expression patterns[67]. Similar to HCC, 
RON is emerging as an important mediator of CCA pathogenesis and clinical 
prognosis. Investigation of RON and MET expression in patients with perihilar CCA 
who underwent histologically curative resection revealed that patients with 
RON+/MET+ disease showed a worse overall survival rate than patients with other 
patterns[44]. In addition, in patients with extrahepatic CCA, the complete loss of MET, 
RON, or both (and their overexpression) was a factor for poor prognosis, likely due to 
the high rate of lymph-node metastasis[68]. Recently, Cheng and co-workers indicated 
that BMS-777607, a MET-RON dual inhibitor, inhibited HuCCT1 and KKU-100 human 
CCA cell growth, and decreased the growth of tumors in CCA rats. They further found 
that for patients with CCA who had previously undergone hepatectomies, upregu-
lation of RON and MET was a predictor of poor survival[69]. Taken together, these 
studies suggest that the aberrant RON expression found in human hepatobiliary 
cancer samples and cell lines is closely related to pathological conditions and clinical 
outcome.

RON RECEPTOR AND PANCREATIC CANCER
The majority of malignant neoplasms of the pancreas are adenocarcinomas, among 
which pancreatic ductal adenocarcinoma is the most common malignancy, repres-
enting an excess of 95% of all pancreatic malignancies[70]. Pancreatic cancer presents a 
substantial health problem and is associated with an extremely poor prognosis 
because of the non-specific symptoms in patients, its aggressive and remarkable 
resistance to most conventional treatment options, and the fact that it harbors multiple 
genetic and epigenetic alterations[42]. Therefore, novel therapies to treat pancreatic 
cancer are urgently required. In recent years, the function of RON in pancreatic cancer 
has been identified extensively in a variety of model systems, such as animal, cellular, 
and clinical settings. To date, researchers have reported that RON is expressed in 
various pancreatic cancer cell lines, such as CFPAC-1, ASPC-1, Hs766.T, L3.6pl, 
HPAFII, HPAC, Capan-2, and BXPC-3. However, MIA-PACA-2 cells show minimal 
RON expression[71]. The association of RON with Kras-driven pancreatic carcino-
genesis was investigated using genetically engineered mouse models. The results 
showed that overexpression of RON accelerated pancreatic intraepithelial neoplasia 
(PanIN) progression, enhanced acinar-ductal metaplasia, and promoted tumor 
progression towards invasive pancreatic cancer[72]. Moreover, the study proved that 
the initiation of PanIN was slowed by RON kinase domain genetic inactivation, 
resulting in smaller tumors, and eventually prolonging tumor-bearing mouse 
survival[72]. Great progress has been made in our understanding of the clinical 
relevance of RON in pancreatic cancer, which has focused mainly on RON expression 
status in pancreatic cancer samples and its possible utility as a prognostic biomarker 
for patient survival. IHC staining using anti-RON antibodies is a commonly used 
approach to evaluate RON expression in various experimental settings. Several studies 
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have identified positive sample rates in pancreatic cancer specimens such as 70%, 88%, 
96%, 80%, and 86%, respectively[21,73]. Meanwhile, in pancreatic cancer samples, high 
RON expression has been detected, whereas minimal levels were detected in their 
corresponding normal epithelial cells. Notably, during pancreatic cell tumorigenic 
progression, the frequency and level of RON expression increased[22,74]. Among 
human pancreatic tissue samples, RON expression was detected in 83% of metastatic 
lesions, 79% of primary lesions, and  93% of high-grade PanIN using immuno-
histochemistry, with low expression being detected in low-grade PanIN and normal 
ducts (18% and 6%, respectively), suggesting that RON might function in pancreatic 
carcinogenesis and metastatic progression[22]. Moreover, RON expression levels were 
significantly related to overall survival in patients with pancreatic cancer, indicating 
that RON could be an important indicator of prognosis in pancreatic cancer[75]. 
Conflicting results between RON expression and pancreatic cancer prognosis were 
found in an early study[76], thus more research is needed to determine the utility of 
RON as a prognostic biomarker in patients with pancreatic cancer.

Primary and metastatic pancreatic tumor specimens and high grade PanIN lesions 
show increased RON expression[22]. Accumulating evidence suggests that dysreg-
ulated RON signaling and activation might function in tumor formation and 
metastasis. Generally, activation of RON results in increased pancreatic cancer 
tumorigenic stemness, chemoresistance, survival capability, angiogenesis, and cell 
invasiveness[73]. Among them, invasiveness occurs via a phenotype resembling EMT. 
A study found that MSP treatment of the pancreatic cancer cell line L3.6pl resulted in 
increased cell invasion, cell migration, and ERK phosphorylation[24]. Activation of 
RON resulted in decreased levels of membrane-bound E-cadherin together with β-
catenin nuclear translocation, which resembled EMT. Treated L3.6pl cells acquired a 
spindle shape and lost their polarity, their intercellular separation increased, and more 
pseudopodia were formed[24]. Aberrant RON activation in collaboration with other 
growth factors, such as transforming growth factor-β, contributes to the phenotypic 
changes of pancreatic cancer cells towards EMT. Additionally, an investigation of 
RON signaling-mediated angiogenesis regulation in pancreatic cancer found that RON 
signaling leads to MAPK-mediated pancreatic cancer cell production of the well-
characterized angiogenic protein, vascular endothelial growth factor. RON activation 
also caused the promotion of microtubule formation[77]. Finally, the RON signaling 
pathway also plays a part in chemoresistance, which is associated with enhanced 
survival capability[51,78]. Short hairpin RNA (shRNA)-mediated silencing of RON 
expression in pancreatic cancer xenografts resulted in increased sensitivity to 
gemcitabine therapy and susceptibility to apoptosis[51]. In the light of the above 
findings, it is clear that RON signaling is crucial for pancreatic cancer formation and 
metastasis.

RON AS A THERAPEUTIC TARGET FOR HBP CANCERS
Based on the pathogenic role of RON in cancers, including HBP cancers, efforts have 
focused predominantly on establishing RON as a drug target for therapeutic 
intervention[73]. A variety of techniques were proposed to effectively block RON 
signaling and expression. One approach is to inhibit RON expression using gene 
silencing with small interfering RNAs (siRNAs). In pancreatic cancer xenografts, RON 
silencing caused growth inhibition by enhancing their apoptosis susceptibility and via 
sensitization to gemcitabine therapy[51]. Thus, delivery of RON-specific siRNAs could 
have therapeutic potential. In addition, small-molecule kinase inhibitors (SMKIs), 
which block the receptor tyrosine kinase domain either via non-competitive inhibition 
or via ATP competition, have been proposed[45]. The structural similarities between 
the kinase domains of MET and RON resulted in the development of selective small 
molecule inhibitors targeting both the RON and MET kinase domains, with slightly 
different IC50 values. As described above, BMS-777607, a MET-RON dual inhibitor, has 
shown its effects in inhibiting the growth of human intra-hepatic CCA cell lines and 
also decreasing tumor growth in intrahepatic CCA rats[69]. However, preclinical 
studies to prove RON as a drug target showed unsatisfactory results when using 
RON-specific SMKIs[46,79-81]. The first reason for the above result is that HBP cancer 
cell survival does not depend on RON signaling. Second, an SMKI that specifically 
inhibits only RON kinase activities is not available. Synthetic SMKIs, including 
Tivantinib, BMS-777607, INCB28060, Compound-1, and PHA665752, all recognize both 
RON and MET, with similar kinase-binding affinities[73]. Thus, the characterized 
SMKI RON or MET-specific inhibitors are actually multiple RTK inhibitors and the 



Chen SL et al. RON in hepatobiliary and pancreatic cancers

WJG https://www.wjgnet.com 2514 May 28, 2021 Volume 27 Issue 20

Table 1 Tyrosine kinase inhibitors and antibody drug conjugates specific to c-MET and RON

Therapeutic agents Manufacturer Target In vitro effects Effects in animal tumor models Clinical trial information Status Ref.

TKIs

Foretinib GlaxoSmithKline MET, RON, VEGFR2, 
and PDGFRβ

Inhibits MET and RON signaling and 
cell growth in various cancer cell 
lines

Attenuates MET- and RON-mediated 
tumor growth in mouse tumor 
xenograft models

Single agent and combination with erlotinib or 
lapatinib for various types of advanced cancers in 
Phase II/III clinical trials

Phase 
I/II/III

Eder et al[82]

MGCD265 MethylGene MET, RON, VEGFR1, 
VEGFR2, VEGFR3, and 
TIE2

Inhibits MET and RON signaling and 
cell growth in cancer cell lines

Attenuates MET- and RON-mediated 
tumor growth in mouse tumor 
xenograft models

Single agent and combination with erlotinib or 
docetaxel for   NSCLC in Phase II trials

Phase I/II Belalcazar et 
al[83]

BMS-777607 Bristol-Myers 
Squibb

RON and MET Inhibits MET and RON signaling, cell 
growth, and invasion in cancer cell 
lines

Inhibits MET- and RON-mediated 
tumor growth in mouse tumor 
xenograft models

Multiple ascending doses for metastatic cancers in 
Phase I trials

Phase I Sharma et al
[84]

MK-2461 Merck MET, RON, FLT1, FLT3, 
FGFR1, FGFR2, and 
FGFR3

Inhibits MET and RON signaling, cell 
growth, and migration in cancer cell 
lines

Inhibits MET- and RON-mediated 
tumor growth in mouse tumor 
xenograft models

Antitumor efficacy is under evaluation in Phase II 
trials

Phase I/II Pan et al[85]

MK-8033 Merck MET and RON Inhibits MET and RON signaling, cell 
growth, and migration in cancer cell 
lines

Causes tumor regression in mouse 
tumor xenograft models

Safety, tolerability, dose, clinical activity and 
pharmaco-dynamics are under evaluation in Phase I 
trials

Phase I Northrup et 
al[86]

PHA665752 Pfizer MET and RON NA NA NA Preclinical Comoglio et 
al[87]

INC280 Novartis MET NA NA NA Phase I/II Qin et al[88]

Tivantinib ArQule MET NA NA NA Phase II/III Rimassa et al
[89]

Antibody drug 
conjugates

Zt/g4-doxorubicin-
immuoliposome

TTUHSC RON Moderately activates RON signaling 
and strongly induces RON 
endocytosis

No effect as naked antibody but 
completely inhibits tumors used as 
ADCs

NA Preclinical Guin et al[90]

Zt/g4-maytansinoid 
conjugate

TTUHSC RON Moderately activates RON signaling 
and strongly induces RON 
endocytosis

No effect as naked antibody but 
completely inhibits tumors used as 
ADCs

NA Preclinical Feng et al[91]

Zt/g4-MMAE TTUHSC RON Moderately activates RON signaling 
and strongly induces RON 
endocytosis

No effect as naked antibody but 
completely inhibits tumors used as 
ADCs

NA Preclinical Yao et al[92]

H5B14-MMAE TTUHSC RON NA NA NA Preclinical Yao et al[59]

SHR-A1403 HengRui MET Highly potent: 0.02 to 1.5 nmol/L for 
cell proliferation

Xenografts and PDXs, MET over-
expressed and amplified

NA Phase I Yang et al
[93]
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TKIs: Tyrosine kinase inhibitors; VEGFR: Vascular endothelial growth factor receptor; PDGFR: Platelet-derived growth factor receptor; NSCLC: Non-small cell lung cancer; FGFR: Fibroblast growth factor receptor; ADC: Antibody-drug 
conjugate; MMAE: Monomethyl auristatin E; NA: Not available; PDX: Patient-derived xenografts.

development of SMKIs that exclusively target RON has been a challenge.
A more realistic approach is using anti-RON therapeutic monoclonal antibodies 

(TPABs) to treat HBP cancers. For instance, anti-RON antibody Zt/c9-directing 
doxorubicin-immunoliposomes was effective at killing purified pancreatic cancer stem 
cells in vitro. The underlying mechanism is that Zt/c9-directing doxorubicin-immunol-
iposomes specifically interact with pancreatic cancer stem cells and rapidly cause RON 
internalization, which leads to the uptake of liposome-coated Dox. In addition, 
preclinical models have been constructed using anti-RON TPABs, such as 7G8, 6D4, 
6E6, narnatumab (or IMC-RON8), Zt/f2, and IMC-41A10, which either block MSP 
binding by recognizing RON’s ligand-binding pocket or affect receptor dimerization 
by interacting with RON’s extracellular domain (e.g., SEMA), thereby attenuating 
signaling transduction[73]. However, previous studies concerning TPAB therapy 
revealed only partial inhibition of tumor growth, and there have been no reports of 
single anti-RON TPAB administration achieving complete inhibition. Thus, strategies 
to maximize anti-RON TPABs’ therapeutic activity have moved on to an exciting new 
area. Anticancer therapeutic agents comprising antibody-drug conjugates (ADCs) 
combine the specificity of antibodies with the high potency of cytotoxins to enhance 
cell killing[12]. To generate RON-targeted ADCs, the anti-RON monoclonal antibodies 
PCM5B14 and Zt/g4 were selected to prepare immunotoxins. To generate Zt/g4 and 
PCM5B14-based ADCs, cytotoxic payloads with different mechanisms of action were 
conjugated, including pyrrolobenzodiazepine, duocarmycin (DCM), monomethyl 
auristatin E, and maytansinoid derivative 1, forming for example, Zt/g4-MME and 
PCM5B14-DCM[59]. Preclinical studies identified Zt/g4- and PCM5B14-based ADCs 
as lead candidates for clinical development and increased the chance of their entering 
into clinical trials (Table 1).

CONCLUSION
RON was identified over two decades ago, and since then, accumulating evidence has 
indicating RON’s involvement in tumorigenesis, which has resulted in increased 
momentum for developing RON as a target for therapeutic drug intervention. As 
outlined in this review, the identification of dysregulated activation and expression of 
RON in various cancers has expanded our understanding of the mechanisms 
underlying cancer pathogenesis. Importantly, HBP cancers are characterized patholo-
gically by the dysregulated signaling and expression of RON, which also act as 
tumorigenic determinants for the malignant behavior of HBP cancers. Moreover, 
abnormal RON expression is important to determine the clinical outcome of patients 
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with HBP cancers. The growing knowledge concerning the crucial role of RON in HBP 
cancers can be translated into promising cancer therapeutic strategies. Consequently, a 
number of clinical trials are underway to assess SMKIs and TPABs targeting RON as a 
molecular target, some of which have shown promising results. Furthermore, 
PCM5B14- and Zt/g4-based ADCs, as anti-RON ADCs, are receiving increased 
research interest and the striking advances in exploiting anti-RON ADCs will 
hopefully translate into clinical treatments for patients with HBP cancer in the future.
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