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Abstract
Metabolic-associated fatty liver disease (MAFLD) refers to the build-up of fat in 
the liver associated with metabolic dysfunction and has been estimated to affect a 
quarter of the population worldwide. Although metabolism is highly influenced 
by the effects of sex hormones, studies of sex differences in the incidence and 
progression of MAFLD are scarce. Metabolomics represents a powerful approach 
to studying these differences and identifying potential biomarkers and putative 
mechanisms. First, metabolomics makes it possible to obtain the molecular 
phenotype of the individual at a given time. Second, metabolomics may be a 
helpful tool for classifying patients according to the severity of the disease and 
obtaining diagnostic biomarkers. Some studies demonstrate associations between 
circulating metabolites and early and established MAFLD, but little is known 
about how metabolites relate to and encompass sex differences in disease 
progression and risk management. In this review, we will discuss the epidemi-
ological metabolomic studies for sex differences in the development and pro-
gression of MAFLD, the role of metabolic profiles in understanding mechanisms 
and identifying sex-dependent biomarkers, and how this evidence may help in 
the future management of the disease.
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Core Tip: Metabolic-associated fatty liver disease (MAFLD) refers to the build-up of fat in the liver 
associated with metabolic dysfunction and has been estimated to affect a quarter of the population 
worldwide. Metabolomics represents a powerful approach to studying metabolic disease, including 
MAFLD, and to identify potential biomarkers and putative mechanisms. Some studies demonstrate associ-
ations between circulating metabolites and early and established MAFLD, but little is known about how 
metabolites relate to and encompass sex differences in disease progression and risk management. In this 
review, we will discuss the role of metabolic profiles in understanding mechanisms and identifying sex-
dependent biomarkers, and how this evidence may help in the future management of the disease.

Citation: Martin-Grau M, Monleon D. Sex dimorphism and metabolic profiles in management of metabolic-
associated fatty liver disease. World J Clin Cases 2023; 11(6): 1236-1244
URL: https://www.wjgnet.com/2307-8960/full/v11/i6/1236.htm
DOI: https://dx.doi.org/10.12998/wjcc.v11.i6.1236

INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) is a spectrum of liver diseases that occurs with different 
stages ranging from steatosis to cirrhosis or hepatocellular carcinoma. In 2020, the classical conception 
of NAFLD was revised and consequently, a new entity called metabolic-associated fatty liver disease 
(MAFLD) was defined. Unlike NAFLD, MAFLD does not exclude patients who consume alcohol or 
those who have other liver diseases. MAFLD prioritizes and values the metabolic involvement of the 
liver and the consequences of liver metabolism impairment on the progression of the disease[1]. At the 
clinical level, MAFLD seems more useful for the study of the advanced stages of the disease, since, by 
focusing on the metabolic dysfunction, MAFLD allows to include a greater number of patients and 
individuals at risk than the classic definition of NAFLD[2]. However, as expected for recently proposed 
definitions, the criteria for the use of MAFLD as a clinical entity is not unanimous and NAFLD is still 
the most used term[3]. Currently, the prevalence of NAFLD and MAFLD is continuously increasing in 
both adult and child populations due to the epidemics of obesity and type 2 diabetes mellitus. Although 
MAFLD and NAFLD share a large part of their clinical profile and produce similar long-term outcomes, 
the actual trend for increase mortality for both of them reflect different situations. Increased liver-related 
mortality among NAFLD patients seems driven by NAFLD-related liver complications and extra-
hepatic diseases such as cardiovascular disease, extra-hepatic cancers, or kidney diseases[4]. MAFLD 
patients show greater risk for all-cause mortality and an equal risk for cause-specific mortality 
comparing to NAFLD patients[5].

The prevalence of MAFLD is very high worldwide with numbers rapidly increasing in low- and 
mid—income countries. In adulthood, the average prevalence of MAFLD worldwide in 2015 was 25%, 
being higher in South America (31%) and the Middle East (32%)[6]. More recent studies show even 
higher rates of MAFLD with an estimated prevalence in adults as high as 30%, being even higher in the 
Middle East and North Africa (approximately 43%) followed by South America and Asia (approx-
imately 33%)[7]. The numbers at a young age are especially worrisome. In childhood, one of the greatest 
risk factors that contribute to the initiation and development of MAFLD is obesity. In overweight and 
obese children, the prevalence of MAFLD can reach up to 36%. Nevertheless, the worldwide prevalence 
of MAFLD among the general pediatric population is 8% with the highest rate in Central America and 
the Middle East[8,9].

The prevalence of MAFLD seems to differ among men and women even at young ages. The 
prevalence of MAFLD in the juvenile population is higher in men than in women both before and after 
puberty[8,10]. In the adult population, the prevalence of MAFLD is also higher in men than in pre-
menopausal women. However, the incidence in post-menopausal women increases markedly 
suggesting a potential role for sex hormones in the mechanisms of the disease[7,11].

The burden of the disease in the national health systems and the population is increasingly higher. 
Due to the increase in cases in children, the disease becomes chronic at a younger age. It is estimated 
that, in the coming decades, the incidence will continue increasing and so will the costs in health 
systems worldwide[7,9]. We herein review the influence of sex hormones on hepatic and mitochondrial 
metabolism and how sex hormones contribute to the development of MAFLD. It seems critical to 
identify new risk and early disease biomarkers, which include relevant biological factors like sex in the 
risk estimation, for a future better management of the disease. ´Therefore, we specifically focus on if the 
sex variable is currently considered when stratifying patients in metabolomics studies and if it is used to 
search new biomarkers based on metabolomics in the development of MAFLD.

https://www.wjgnet.com/2307-8960/full/v11/i6/1236.htm
https://dx.doi.org/10.12998/wjcc.v11.i6.1236
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SEX AND LIVER METABOLISM
The liver is an organ with a key role in the homeostasis of human metabolism. Due to the architecture of 
the hepatic lobules and the arrangement of the portal triad with respect to the hepatic vein, there is a 
metabolic zonation in the liver, which leads to a liver metabolism not exactly uniform within the hepatic 
lobule[12]. The liver is an organ with a high metabolic rate and, among other functions, is responsible 
for regulating lipid and carbohydrate metabolism in the body. Regarding lipid metabolism, circulating 
lipids enter the hepatocyte and can: (1) Be oxidized for energy, (2) be esterified and form very-low-
density lipoprotein (VLDL) particles, and (3) stored and stay in the hepatocyte. In addition, the 
hepatocyte can synthesize new lipids by de novo lipogenesis (DNL). Regarding carbohydrate 
metabolism, the liver can store sugars in the form of glycogen or synthesize de novo carbohydrates 
depending on the needs of the body. Both lipid and carbohydrate metabolism are coupled and highly 
regulated. When the homeostasis of metabolism is altered, lipids can accumulate pathologically in the 
organ causing stress and cell damage and sugars can remain circulating in the blood aggravating insulin 
resistance[13].

Sex hormones are steroid hormones derived from the cholesterol molecule. All sex hormones can 
bind to receptors in the liver cells. Based on their chemical structure, they are classified into three large 
groups: estrogens, androgens, and progestogens[14]. The liver is actively involved in the metabolism 
and interconversion of these sex hormones[15]. Estrogens, the main female sex hormone, are divided 
into estrone (E1), 17β-estradiol (E2) and estriol (E3), being E2 the main one. Like any steroid hormone, 
95% of estrogens travel through the bloodstream binding to steroid hormone-binding globulin. The 
remaining 5% circulates freely. Estrogens bind to its receptors, estrogen receptors (ERs), present in the 
cell nucleus. There are two types, ERα and ERβ, which are differentially expressed depending on tissue
[16,17]. In addition, there is a third type of receptor called the G-protein-coupled estrogen receptor, 
which is located on the plasma membrane and is also important in estrogen signaling and cell function
[18]. Androgens, the main male sex hormone, belong to a group of sex hormones that includes among 
others, testosterone, and dihydrotestosterone. These hormones bind to androgen receptors, located in 
the cell nucleus[14]. Finally, progesterone is a hormone released by the corpus luteum into the ovary. It 
is mainly responsible for the stimulation of the mammary glands, and the preparation and maintenance 
of pregnancy. Progesterone can bind to two nuclear progesterone receptors (PR), PR-A and PR-B, 
expressed primarily in areas of the brain. Other receptors for progesterone located on the plasma 
membrane have also been described[19]. In women, the ovaries are responsible for producing estrogens, 
progestogens and androgens, which can be aromatized and converted into estrogen. In men, Leydig 
cells present in the testicles produce testosterone, which can aromatize and become estrogen[17].

Hepatic metabolism is highly regulated and sex hormones have been shown to contribute 
significantly to this regulation. Up to 72% of the genes related to liver metabolism can be expressed 
differentially based on sex[20]. The effects of sex hormones on liver metabolism are summarized in 
Figure 1. Estrogens are directly related to a protective mechanism against liver fat accumulation by 
promoting lipolysis and inhibiting DNL. In addition, estrogens contribute to maintaining a hepatic 
cholesterol balance by promoting lipoprotein synthesis, the secretion of VLDL particles, increasing high-
density lipoprotein production and eliminating oxidized low-density lipoprotein. They also improve 
mitochondrial function, increase free fatty acid (FFA) oxidation, improve glucose tolerance as well as 
insulin sensitivity and decrease inflammatory processes in the liver[14,17,20,21]. Androgens also have 
some protective role against the development of hepatic steatosis. They can promote VLDL exocytosis, 
DNL inhibition, homeostasis of carbohydrate metabolism and mitochondrial beta-oxidation of FFA[14,
20]. The role of progesterone in fat liver metabolism and accumulation seems more diluted. Although 
this hormone is metabolized in the liver, the impact on woman liver health may be partially detrimental. 
High levels of progesterone in women are related to the development of insulin resistance and some 
liver damage[22]. Not only are the mechanisms explaining these effects unclear, but also, more investig-
ations are needed to confirm these observations.

There are certain situations in which the levels of sex hormones decrease both in men and women. 
This condition is known as hypogonadism and has been related to the development of MAFLD[21]. 
Menopause or estrogen hypogonadism, physiological conditions in which estrogen levels abruptly 
decrease, have a notable impact on women. Decreased estrogen levels in women can lead to increased 
hepatic steatosis by decreasing VLDL secretion and increasing DNL[14,20,23]. Decreased estrogen levels 
also encompass a decrease in the body's metabolic rate which contributes to weight gain and the 
development of obesity[16], factors that contribute to the incidence of insulin resistance and an 
increased risk of developing liver fibrosis[14,20]. Healthy women have higher levels of estrogen than 
androgens. However, this situation is reversed in polycystic ovary syndrome (PCOS). PCOS is one of 
the most common endocrinopathies associated with young women that is characterized by high levels 
of androgens, lack of ovulation and the presence of polycystic ovaries. Hyperandrogenism associated 
with PCOS doubles the risk of developing MAFLD, and increases the incidence of obesity, insulin 
resistance and metabolic syndrome, all related to MAFLD, compared to female controls[24-26]. In men, 
hypogonadism is a syndrome that is defined by decreased testosterone levels. Hypogonadism due to 
testosterone deficiency has also been shown to increase the risk of developing hepatic steatosis, obesity, 
and insulin resistance[24,27]. A recent meta-analysis revealed that total serum testosterone was 
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Figure 1 Effects of androgens and estrogens in liver metabolism. (+) means higher concentration and (–) less concentrations of specific sex hormone. (
↑) means an increase and (↓) a decrease in a specific hepatic function. DNL: De novo lipogenesis.

decreased in men with MAFLD vs men without MAFLD[28]. Decreased androgen levels in men leads to 
an increase in circulating triglycerides[23], a decrease in VLDL secretion, an increase in DNL, insulin 
resistance, and increased body weight[14,20], all of them related to MAFLD.

MITOCHONDRIAL METABOLISM, THE LIVER, AND SEX HORMONES
Mitochondria represent approximately 20% of the hepatocyte volume[29]. They carry out critical 
metabolic functions related to lipids, carbohydrates, and amino acids. The conversion of pyruvate to 
acetyl-CoA and its oxidation occurs through the tricarboxylic acid (TCA) cycle at the mitochondrial 
matrix. This cycle generates adenosine triphosphate (ATP), nicotinamide adenine dinucleotide, flavin 
adenine dinucleotide and other important metabolites such as citrate, succinate, malate, and 
oxaloacetate. Citrate, a precursor molecule of lipogenesis, is synthesized in the mitochondrial matrix 
and exported to the cytosol for the initiation of DNL. Succinate is transformed into fumarate by the 
electron transport chain (ETC) for cellular respiration and ATP production. Malate and oxaloacetate 
may initiate the process of gluconeogenesis for glucose synthesis. In turn, acetyl-CoA can be used for 
the synthesis of ketone bodies in a process known as ketogenesis. The beta-oxidation of fatty acids, 
which generates a large amount of acetyl-CoA, also takes place in the mitochondrial matrix. The acetyl-
CoA produced during beta-oxidation of fatty acids can also enter the TCA cycle or alternatively initiate 
ketogenesis[29,30]. On the other hand, the ETC is not perfect and during respiration free radicals can be 
produced. As a consequence, the mitochondria are the place in the cell where more reactive oxygen 
species (ROS) are produced. Under physiological conditions, antioxidant systems cope with the 
accumulation of ROS and decrease the number of toxic molecules. However, under pathological 
conditions, the accumulation of ROS can affect the integrity of DNA, both mitochondrial and nuclear. In 
addition, mitochondria are related to the production of S-adenosylmethionine, a methyl group donor 
molecule. This molecule can modulate gene expression by producing epigenetic changes in DNA. 
Finally, the mitochondria act as a sensor of cell viability, being related to processes of apoptosis and 
necrosis[30]. All these events and processes taking place at the mitochondria combined with the 
predominant role of mitochondria in liver metabolism places this organelle at the center of many 
mechanistic hypotheses about MAFLD pathogenesis[29].

Mitochondria are also regulated by sex hormones. Estrogens stimulate the expression of 
mitochondrial proteins encoded in nuclear DNA as ATP synthase-related proteins or ETC proteins. 
Estrogens offer protection against the degenerative effects of age by increasing antioxidant defenses, 
increasing ATP levels, decreasing lipoperoxidation, and decreasing levels of ROS. In addition, estrogens 
co-regulate the processes of mitochondrial fusion and fission, enhancing mitochondrial biogenesis and 
inhibiting mitophagy and apoptosis. Estrogens also promote mitochondrial DNA transcription and 
stimulate oxygen consumption[31-33]. Androgens, on the other hand, stimulate mitochondrial 
biogenesis by increasing mitochondrial content (mitochondrial DNA and mitochondrial proteins), 
inhibiting mitophagy, maintaining the integrity of ETC and protecting these organelles from the 
degenerative effects of age[32,34]. The impact of MAFLD in the interaction between sex hormones and 
mitochondria can be two-fold. First, MAFLD can alter sex hormone levels and consequently decrease 
the protective effect on the mitochondria (Figure 1). Second, the accumulation of FFA and sugars inside 
the hepatocyte can impact the metabolic functions in the mitochondrial matrix. The most dramatic 
consequences include alterations in the cell respiration pattern, with decreased ATP production and an 
overproduction of ROS. Beta-oxidation can also be hampered with FFA to be consumed by alternative 
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pathways in peroxisomes (beta-oxidation) or microsomes (omega-oxidation), which in turn can increase 
ROS and toxic intermediates (dicarboxylic acids) production. All these alterations produce ultra-
structural mitochondrial changes at different levels. Different studies report increased permeability of 
the outer and inner membranes, abnormal mitochondria shapes or deletion of mitochondrial DNA[35,
36]. All these facts suggest that the study of mitochondrial metabolism both in the cell and also by 
studying mitochondrial metabolism products in available biofluids (such as blood) may help in further 
investigating fatty liver disease mechanisms. The identification of early mitochondrial dysfunction, 
combined with other risk factors, like body mass index, sex, and age, may provide the basis for early 
detection and risk stratification in MAFLD management.

METABOLIC PROFILES TO CHARACTERIZE SEX DIMORPHISM IN MAFLD
Each molecule involved in the chemical reactions that take place in a living organism is called a 
metabolite. The set of metabolites involved in all the chemical reactions in a living organism is called the 
metabolome. Omics are a set of analytical sciences that are responsible for the study of a specific 
biological set. Currently, there are many types of omics, however, the big four omics are genomics, 
transcriptomics, proteomics, and metabolomics[37,38]. There are mainly two analytical techniques that 
allow detecting (qualitative analysis) and quantifying (quantitative analysis) metabolites in biological 
samples. These are Nuclear Magnetic Resonance (NMR) and Mass Spectroscopy (MS)[39,40]. With NMR 
and MS, the metabolites existing in a biological sample (serum, plasma, urine, faeces, cells, or tissue) at 
the time of measurement can be determined. Because the metabolome is at the end of the -omics 
cascade, metabolomics reflects changes that occur at the proteomic, transcriptomic, or genomic level. 
Consequently, interpretation of metabolite levels and metabolomic profile is highly complex. 
Subsequently metabolomics is more used for identifying relevant biomarkers and signatures and less 
used for providing mechanistic hints. Nevertheless, metabolomics can be a helpful tool in the study of 
diseases in which metabolic dysfunction is at the center of the pathogenesis, such as MAFLD[41,42].

The metabolome is sex-dependent since very early stages of life. In general, biological sex differences 
can be included into one of 3 groups: (1) Sex dimorphisms, in which some biological trait is only 
expressed in men or women; (2) Sex differences, in which a biological trait has a range of possibilities 
but is predominant in one sex with respect the other; and (3) Conditions in which there is no obvious 
difference between sexes for some biological trait but differences can show up under some conditions 
like stress, disease or some pharmacological treatments[43,44]. The extension of these three groups to 
metabolites as biological traits is straightforward. Metabolites, which are different between men and 
women only in MAFLD patients would fall within the third group and would represent ideal 
candidates for a stratified MAFLD risk model.

There are sex dimorphisms and sex differences in many metabolic processes of the organism, 
specifically of the liver, which are intrinsically related to many other differences detailed in the sections 
above, including sex hormones, and mitochondria function. Most metabolic pathologies, as MAFLD, 
affect differently men and women, with different risk factors, different disease progression and even 
difference prevalence under similar conditions[45]. The alteration of sex hormones, due to age or due to 
some pathological processes, and the development of MAFLD are strongly associated.  Figure 2 shows a 
simplified summary of these links (Figure 2). Although most, if not all, epidemiological studies have 
information about the sex of the participants, only in the last decades -omics studies have analyzed their 
data adjusting or stratifying by sex, and many suggested biomarkers are released with unisex models. 
Our knowledge about the influence of sex and sex hormones in metabolism strongly suggest that these 
analyses need to be stratified by sex (not just adjusted) for identifying sex-specific biomarkers and 
building sex-dependent risk models. Table 1 shows different studies which analyzed the metabolome 
and the metabolic changes happening in established NAFLD accounting for the metabolic differences 
between men and women. A recent study suggests that cardiovascular risk in NAFLD patients could be 
stratified according to levels of Trimethylamine-N-oxide (TMAO), which is a gut microbiota-derived 
metabolite associated to cardiovascular risk[46]. In another study, women exhibited lower levels of 
TMAO than men. In addition, obese patients at higher risk of NAFLD also showed higher levels of 
TMAO. However, the authors did not stratify women by pre- or post-menopause and estrogen 
influence in these levels and associated risk[47]. In a different research, serum metabolomic profiles 
were measured in a young cohort at two time-points, at approximately 10 years old (T1) and 16 years 
old (T2). There were metabolites significantly different between MAFLD and controls at both time 
points and different between boys and girls. All the metabolites were related to lipid, amino acid, and 
carbohydrate metabolism[48]. Branched-chain amino acids (BCCA) are critical switches between health 
and disease[49]. A recent study analyzed these metabolites in obese patients with different NAFLD 
severity. They concluded that there was a correlation between BCCA levels, sex, and the degree of 
MAFLD severity. In women, the concentration of BCCAs in plasma was lower than in men. However, 
the levels of BCCA in women sharply increase with disease progression from control to non-alcoholic 
steatohepatitis (NASH)-fibrosis, whereas in men a parallel decrease was observed. Interestingly, there 
was a strong association between circulating BCAA and liver fibrosis only present in women[50]. 
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Table 1 Studies related to “fatty liver disease”, “metabolomics” and “sex”

Ref. Cohort origin No. of 
patients Sex variable Platform used Different metabolites between 

sexes

Barrea et al[47],  
2018

Naples, Italy 137 59 men (43.1%) and 
78 women (56.9%)

HPLC-MS Serum TMAO

Perng et al[48], 2020 Exploring Perinatal 
Outcomes among Children 
(EPOCH), USA

395 199 boys (50.7%) 
and 196 girls 
(49.3%)

MS Lipid, amino acid, nucleotide and 
carbohydrates metabolism 
pathways 

Grzych et al[50], 
2020

Antwerp University 
Hospital (Belgium)

112 53 men (47.3%) and 
59 women (52.7%) 

MS Leucine, valine and isoleucine 
(BCAA)

Ioannou et al[51], 
2020

USA 57 51 men (89.5%) and 
6 women (10.5%)

LC-MS and NMR Mainly BCAA, lactate, TMAO, 
choline and creatinine

McGlinchey et al
[52], 2022

UK, France, Germany, 
Brazil and Italy

627 339 men (54%) and 
287 women (45%)

UHPLC coupled to 
QTOFMS, and GC 
coupled to QTOFMS

Serum lipids and polar metabolites 
(lactate, citrate, isoleucine, lysine, 
alanine, etc.)

BCAA: Branched chain amino acid; GC: Gas chromatography; HPLC-MS: High-performance liquid chromatography – mass spectroscopy; LC-MS: Liquid 
chromatography – mass spectrometry; MS: Mass spectroscopy; NMR: Nuclear magnetic resonance; QTOFMS: Quadrupole-time-of-flight mass 
spectrometry; TMAO: Trimethylamine-N-oxide; UHPLC: Ultrahigh-performance liquid chromatography.

Figure 2 The use of metabolomics in the context of metabolic-associated fatty liver disease and sex hormones. Liver metabolism is affected by 
sex hormone levels. It has been seen that, in metabolic-associated fatty liver disease (MAFLD) disease, there is a decrease in androgens and estrogens which 
influences liver metabolism. Metabolomics allows the measurement and study of metabolites in a biological sample (liver tissue, blood, urine, faeces, etc.). The 
application of metabolomics to men and women at different stages of the disease would provide great information for the search of biomarkers and the study of 
MAFLD.

Although liver disease can be diagnosed by noninvasive measurements, the gold standard still remains 
the liver biopsy. Biopsy-confirmed MAFLD classified by degree of severity in simple steatosis, early 
NASH, and advanced NASH was used to obtain metabolomic profiles of liver disease progression in 
another metabolomic study. Although the sample size was low and the power of the study was limited, 
the authors identify some differences between different degrees of severity which did not correlate with 
differences between sexes[51]. Finally, a larger study also analyzed serum metabolomics in 627 patients 
to classify them based on the degree of severity of the disease stratified by sex. The authors identified a 
set of common metabolic traits associated to liver disease severity regardless of sex and a different set of 
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metabolites that changed specifically in men or in women. In the fibrosis stage, men presented 5 sex-
specific metabolic differences whereas women show 17 sex-specific metabolic differences[52].

CONCLUSION
Metabolism is highly influenced by the effects of sex hormones. Specifically, hepatic metabolism and 
mitochondrial metabolism change depending on sex hormone levels. Recent studies show that 
individuals with altered estrogen or androgens levels have higher risk of developing fatty liver disease 
or progressing to more severe stages than those with normal levels. MAFLD is associated to metabolic 
alterations in liver and mitochondria. Among these, the identification of early mitochondrial 
dysfunction, combined with other risk factors, like body mass index, sex, and age, may provide the basis 
for early detection and risk stratification in MAFLD management. Because the metabolome is at the end 
of the -omics cascade, metabolomics reflects changes that occur at the proteomic, transcriptomic, or 
genomic level. Metabolomics is a helpful tool in the study of diseases in which metabolic dysfunction is 
at the center of the pathogenesis, such as MAFLD. In this review, we briefly explained the role of 
different metabolic compartments in the development of MAFLD and critically review current state-of-
the-art evidence from metabolomic studies on sex dependency of fatty liver disease. Not only are more 
studies needed to clarify the role of metabolites and their use as biomarkers, but also, it is vital that 
future research includes the sex variable.
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