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Abstract
Hepatitis C virus (HCV) is responsible for no less than 71 million people chroni-
cally infected and is one of the most frequent indications for liver transplanta-tion 
worldwide. Despite direct-acting antiviral therapies fuel optimism in controlling 
HCV infections, there are several obstacles regarding treatment accessibility and 
reinfection continues to remain a possibility. Indeed, the majority of new HCV 
infections in developed countries occur in people who inject drugs and are more 
plausible to get reinfected. To achieve global epidemic control of this virus the 
development of an effective prophylactic or therapeutic vaccine becomes a must. 
The coronavirus disease 19 (COVID-19) pandemic led to auspicious vaccine 
development against severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2) virus, which has renewed interest on fighting HCV epidemic with 
vaccination. The aim of this review is to highlight the current situation of HCV 
vaccine candidates designed to prevent and/or to reduce HCV infectious cases 
and their complications. We will emphasize on some of the crossroads 
encountered during vaccine development against this insidious virus, together 
with some key aspects of HCV immunology which have, so far, ham-pered the 
progress in this area. The main focus will be on nucleic acid-based as well as 
recombinant viral vector-based vaccine candidates as the most novel vaccine 
approaches, some of which have been recently and successfully employed for 
SARS-CoV-2 vaccines. Finally, some ideas will be presented on which methods to 
explore for the design of live-attenuated vaccines against HCV.
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Core Tip: Hepatitis C virus (HCV) remains a global health burden despite the 
successful introduction of direct-acting antiviral therapies. In order to achieve global 
control of HCV epidemic a vaccine is necessary. Its development has faced many 
hurdles, reason why it is still elusive. Herein, we describe all the challenges during 
HCV vaccine research, focusing on HCV immunology and emphasizing on current 
vaccine candidates, particularly nucleic acid-based as well as recombinant vector-based 
vaccines. We also highlight the impact of severe acute respiratory syndrome 
coronavirus-2 vaccine race on the renewed interest on HCV vaccine production. 
Finally, we present ideas on live-attenuated vaccine approaches against HCV.

Citation: Echeverría N, Comas V, Aldunate F, Perbolianachis P, Moreno P, Cristina J. In the era 
of rapid mRNA-based vaccines: Why is there no effective hepatitis C virus vaccine yet? World 
J Hepatol 2021; 13(10): 1234-1268
URL: https://www.wjgnet.com/1948-5182/full/v13/i10/1234.htm
DOI: https://dx.doi.org/10.4254/wjh.v13.i10.1234

INTRODUCTION
Hepatitis C virus infection and the need for a vaccine
Hepatitis C virus (HCV), discovered in 1989[1], represents an important health 
burden. In 2015, the World Health Organization (WHO) estimated that there were at 
least 71 million people chronically infected with HCV, which represents a global 
prevalence of approximately 1%[2]. Additionally, around 400000 deaths occurred from 
infection complications.

Infections with HCV cause both acute as well as chronic liver disease in 60%-80% of 
the cases. Chronicity is associated with the development of cirrhosis (15%-30%) and 
hepatocellular carcinoma (HCC)[3]. Liver damage resulting from this infection makes 
it one of the most frequent indications for liver transplantation worldwide[4-8].

The problem of HCV infections worldwide has led the WHO to propose the 
elimination of viral hepatitis as a public health burden by 2030[2]. However, in order 
to achieve this goal, big scale interventions are needed, such as screening testing, 
effective treatment and hopefully vaccination, the latter still non-existing for HCV.

Access to widely available screening tests is uncommon and is hindered by 
economic reasons, particularly given the fact that new HCV infections are mainly 
asymptomatic[9]. This leads to an underestimation of the disease prevalence and does 
not contribute to the eradication goal. Concerning treatment, the development of 
interferon-free (IFN-free) regimens based in direct-acting antivirals (DAAs) has 
revolutionized HCV therapy. These antivirals have significantly increased response 
rates (up to 98%) and greatly reduced treatment duration to only 8-12 wk of oral 
treatment. DAAs have generated optimism on the global control front, and some 
consider that this pathogen can now be effectively controlled solely by means of 
antiviral therapy[10,11]. However, there are some limitations and obstacles to keep the 
virus in check, in particular, the cost and practical aspects of treatment access, which is 
uneven among different countries and leaves underdeveloped regions without 
treatment[11]. Additionally, resistance to DAAs emerged concomitantly with their 
development and implementation. Resistance-associated substitutions have been 
detected both before as well as during and after treatment with DAAs[12]. Another 
interesting aspect to consider is that eliminating HCV infection with DAAs does not 
eradicate the risk of developing liver cancer. Also, protective immunity is usually 
insufficient after natural or treatment-induced viral clearance, thus, the possibility of 
reinfection remains[13]. Together, these facts make HCV elimination in high-risk 
groups a very challenging task and the need for an effective prophylactic vaccine 
remains the greatest uncovered medical problem in the hepatitis C field[14]. Vacci-
nation against HCV infection would reduce public healthcare resources by avoiding 
expensive DAA-based regimens or medical treatments for any liver or metabolic 

http://creativecommons.org/Licenses/by-nc/4.0/
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complications derived from long-term infections[15-17], especially in low- or middle-
income countries, where HCV prevalence is still moderate-high and access to 
diagnosis and treatment uneven and costly[18].

Proper immune responses are able to clear HCV acute infections, preventing the 
progression to chronicity (in 20%-40% of infected individuals). This fact suggests that 
vaccination could be a reasonable goal[19] provided we grasp a better understanding 
of immune responses against HCV in order to develop different vaccine candidates 
that allow for appropriate protection.

Global epidemic control will only be possible if the number of new HCV infections 
is reduced alongside with an increased number of cured patients[11,14]. However, a 
recent report showed that almost 60% of 91 surveyed countries had, in 2016, higher 
rates of infection than cures, making the goal of HCV elimination as a health burden 
by 2030, difficult to achieve[20].

For all the reasons previously mentioned, safe and effective prophylactic and/or 
therapeutic vaccines are necessary for the global control of HCV epidemic[11,21-24]. 
Indeed, no infectious disease has been controlled and eradicated with antimicrobial 
treatment, while it has in fact been possible by vaccination[10]. Furthermore, effective 
vaccination strategies widely available have been the only unfailing method to keep 
viral transmission at bay by providing herd immunity[25]. Modelling studies have 
indicated that, even with the introduction of new DAA treatments, only a quasi-
eradication of HCV would be possible[26,27], highlighting the need for a vaccine 
against HCV.

Two extraordinary and unique situations that took place during this last year have 
fueled optimism on vaccine development against HCV. First, the Nobel Prize in Phy-
siology or Medicine 2020 for the discovery of HCV which was awarded last October
[28]. Three distinguished researchers, Harvey J. Alter, Michael Houghton and Charles 
M. Rice, received the prize for their contribution in identifying the etiological agent of 
the hepatitis formerly known as non-A non-B, and enabling the development of 
screening tests and antiviral drugs for its treatment. All of them expressed their hopes 
for a future vaccine against hepatitis C in their Nobel lectures, and Charles M. Rice 
specifically stated that he hoped we can learn from all the efforts that are being put 
into developing coronavirus disease 19 (COVID-19) vaccines[29]. This last state-ment 
refers to the second event from last year that has renewed interest on HCV vaccines: 
The COVID-19 pandemic and the remarkable development of several vac-cines to fight 
it. In the same line, in June 2020, the National Institutes of Health (NIH) opened a 
grant opportunity for the design of vaccines against HCV assigning USD 8 million to 
this aim[30].

This review focuses on different vaccine candidates designed to prevent or diminish 
HCV infection cases, and summarizes all the pitfalls encountered during vaccine 
development against this virus, including some key aspects of HCV immunology. We 
make special emphasis on nucleic acid-based vaccines as well as recombinant viral 
vectors and provide information on severe acute respiratory syndrome coronavirus-2 
(SARS-CoV-2) vaccines as examples of approaches that might be important in HCV 
vaccine development.

Prophylactic vs therapeutic vaccines
Vaccine candidates with two different goals have been considered to control HCV 
epidemic: Prophylactic and therapeutic (primary and secondary prevention, 
respectively). The most widespread use of vaccination has always been to prevent a 
particular disease (prophylactic vaccination)[31] by building immunity in an indi-
vidual prior to the first encounter with the pathogen, and thus becoming immune to a 
particular illness. On the other hand, therapeutic vaccination is meant to induce 
immune responses against a disease that is already in course in a given individual[32].

As we will later discuss in detail, the challenges for designing an effective prophy-
lactic vaccine are vast (HCV variability and diversity, limited animal models and a 
complex immunological response). Many preventive vaccines against other viral patho
-gens are able to induce neutralizing antibodies (nAbs) that correlate with protection, 
which seems to be difficult to achieve for HCV[14]. Nevertheless, even a low efficacy 
prophylactic vaccine might be useful to decrease the epidemic impact in high-risk 
populations by reducing the number of new infections[33-35].

Therapeutic vaccines against HCV have great potential to aid in controlling chronic 
infections by increasing curing rates or reducing therapy duration[36]. In this new 
DAA era, sustained virological response (SVR) rates are extremely high (above 98%) 
and treatment duration has already been shortened compared to classic dual therapy 
(pegylated IFN-α plus ribavirin). However, there are difficult to treat patients (with 
active HCC or severe liver decompensation, those experiencing multiple DAA 
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treatment failures, or those infected with HCV genotype 3)[37] for which this 
therapeutic approach would be beneficial. These vaccines would boost HCV-specific T 
cell responses and would help in three different ways: (1) Preventing viral relapse if 
therapeutic vaccines were to be administered in conjunction with DAA therapy; (2) 
Maximizing early viral clearance and thus increasing SVR rates by first employing a 
therapeutic vaccine followed by the antiviral treatment; and (3) Producing partial 
control of HCV infection just by means of therapeutic immunization and thus redu-
cing viral load[38]. Despite promising results in decreasing viral titers, rebounds have 
been observed, most likely due, either to immune escape or the inability of properly 
inhibiting viral replication or eliminating most of HCV-infected hepatocytes[21].

Expected outcome of effective vaccine candidates 
In general, effective vaccine candidates should stimulate generation of nAbs and a 
proper cellular immune response. In order to design vaccines that elicit protective 
immunity against HCV, it is of utmost importance to consider the virus tropism 
(mainly hepatocytes), transmission route (parenteral transmission through contam-
inated blood) and pathogenesis[39].

A vaccine that induces immune responses similar to those produced by individuals 
which have successfully cleared the virus after an acute HCV infection, might prove 
valuable[19]. As we will discuss in the next section, vigorous responses of broadly 
cross-reactive CD4+, CD8+ T cells to conserved epitopes[40-42], as well as nAbs contri-
bute to HCV spontaneous clearance[43,44].

ADAPTIVE IMMUNE RESPONSE IN HCV INFECTION
Approximately 20%–40% of HCV-infected patients clear the virus spontaneously, 
while the rest develop a persistent infection that will result in severe fibrosis, cirrhosis 
and HCC[3,45]. Thus, it is essential to understand the immune protection induced 
during acute infections in patients that achieved spontaneous viral clearance in order 
to determine the immune parameters that a successful vaccine has to reach.

Multiple evidences in human and animal models have demonstrated the undoubted 
association of spontaneous viral clearance with a broad, sustained HCV-specific T cell-
mediated immunity (CMI) to conserved HCV non-structural proteins[46,47] and nAb 
targeting conserved regions of viral envelope glycoproteins E1E2[48].

As will be detailed below, both arms of the immune response are primed during 
HCV infection, but the characteristics vary depending on whether an acute infection is 
spontaneously resolved or if it evolves to chronicity.

Cellular immune protection
While HCV-specific CD8+ T cells are the main effector cells, the outcome of infection 
depends on eliciting efficient virus-specific CD4+ T cell responses[49]. These cells are 
the central regulators of adaptative immunity providing help for priming CD8+ T cell 
response as well as antibody response during viral infections. The breadth of the T cell 
response is a key determinant to spontaneously clear HCV. High numbers of CD4+ 
and CD8+ T cells targeting different epitopes were observed in individuals who 
resolved acute infections in comparison to those who evolve to chronicity[42,50,51]. 
These cells are multi-specifically targeting both structural and non-structural HCV 
proteins[46,52,53]. However, CD8+ T cells targeting non-structural proteins are 
immunodominant and associate with spontaneous clearance[54].

The strength of the CMI is also important for HCV infection outcome. Indeed, a 
robust HCV-specific CD8+ T cell response is associated with the resolution of acute 
HCV infection[55]. In an acute infection, cytotoxic T lymphocytes (CTLs) have cyto-
lytic and noncytolytic functions which mediate viral eradication[56]. They traffic from 
the lymph nodes to the liver, where they recognize HCV-antigenic peptides loaded on 
human leukocyte antigen class I in infected hepatocytes. These infected cells can be 
lysed through the action of perforins and granzymes, or, killed via Fas/FasL 
interactions that activate the caspase cascade and end up in the apoptosis of the target 
cell. The noncytolytic function occurs without destroying infected cells, where viral 
replication is inhibited by cytokines released by CTLs which generate an antiviral 
environment.

Broad specific CD4+ T cells are detected during the acute phase regardless of the 
final outcome. However, these cells undergo an early decrease in frequency and 
breadth in persistent HCV infection compared to patients who clear the infection 
spontaneously[57]. Thus, spontaneous resolution is associated with a CD4+ T cell 



Echeverría N et al. Vaccine candidates against HCV

WJH https://www.wjgnet.com 1238 October 27, 2021 Volume 13 Issue 10

response significatively stronger in comparison to persistently, or chronically infected 
individuals[58,59].

In chronic infections, the limited functionality of specific CD4+ T cells due to the 
lack of proliferative capacity and cytokines production[59-61] leads to a dysregulated 
CD8+ T cell response which facilitates the emergence of escape viral variants[62]. 
Dysfunctional CD8+ T cells are unable to control the viral load and become exhausted 
because of the persistent exposure to HCV epitopes which have not mutated[63]. Thus, 
these exhausted T cells undergo a progressive loss of their cytotoxic activity, prolif-
erative capacity and proinflammatory cytokines production[64,65]. However, it is of 
note, that the cytolytic activity, and in particular the Fas/FasL dependent function, are 
associated with HCV immunopathology. Fas expression is up-regulated in hepa-
tocytes of an infected liver whereas FasL is expressed in CTLs. This leads to liver 
damage by apoptosis of both infected and bystander hepatocytes, and subsequent liver 
fibrosis development[66].

Humoral immune protection
During acute HCV infection antibodies are produced and target epitopes in both 
structural and non-structural proteins, however, the envelope glycoproteins E1 and E2 
are the main targets of the humoral immune response. Located at the N-terminal end 
of E2, the hypervariable region 1 (HVR1) is an immunodominant motif[67], which is 
the most variable region of the HCV genome[68]. Mutation in neutralizing epitopes 
allow the virus to escape from isolate-specific nAbs[69-71].

Early studies reported that nAbs developed against HCV target the HVR1 region of 
E2, however these nAbs were isolate-specific[67,69]. Thus, diverse studies have 
identified monoclonal antibodies (mAbs) that target conserved sites across multiple 
HCV genotypes located on either linear[72,73] or conformational[74,75] epitopes on E2 
ectodomain.

Analyzing sera from different patients who were infected with the same HCV 
isolate showed that 43% of those who resolved their infections had nAbs against the 
main HVR1 variant, whereas these antibodies were present only in 13% of patients 
who evolved to chronicity[76]. Interestingly, plasma isolated from HCV-infected 
patients immediately prior to clearance has a better capacity to neutralize HCV strains 
from different genotypes compared to acute infection plasma from patients who 
subsequently evolve to persistence[77,78]. Furthermore, analysis from patients who 
cleared HCV infection showed detectable level of nAbs at earlier time points in 
comparison with acute infections that proceed to chronicity[79]. Chronic infections 
have been associated with a delayed cross-reactive nAbs response[43,77,78,80]. 
Although cross-reactive nAbs elicited during chronicity are not able to clear the 
infection, these have been associated with reduced liver fibrosis[81].

Despite the high genetic diversity of HCV, it was possible to isolate broadly neutra-
lizing human Abs (bNAbs) from HCV-infected individuals, capable of neutralizing 
diverse HCV genotypes targeting relatively conserved regions on envelope 
glycoproteins[48,75,82]. These bNAbs have shown to be protective against infection in 
animal models of HCV[75] and are capable of abrogating established HCV infection in 
a humanized transgenic mouse model[48]. These findings underscore the protective 
role of the antibody response.

Evidence of protective immunity against HCV reinfection
The resolution of the initial HCV infection does not lead to sterilizing immunity so 
patients who previously controlled the primary HCV infection can be infected again
[83]. However, differential rates of reinfection and/or chronicity have been reported 
among people who inject drugs (PWIDs) with the same risk of exposure, being 
reduced in people previously infected in comparison with people without previous 
infection[84]. Resolution is achieved in about 80% of HCV-reinfected patients[85].

Reinfection was characterized by a significant reduction in duration and magnitude 
of viremia compared with the primary infection and it was also shown to protect 
against persistence[85]. Moreover, clearance of reinfection was associated with an 
earlier and higher frequency of broadened T cells secreting IFN-γ as compared to 
primary infection[86-89] and an early induction of nAbs[85,90].

Long-lived memory HCV-specific CD4+ and CD8+ T cells are detected in the 
peripheral blood in humans following spontaneous resolution of the primary infection 
for up to 20 years[89,91]. CD4+ T cell depletion before reinfection leads to viral 
persistence even in the presence of functional CD8+ T cells which evidences the 
protective role of memory T cells upon re-exposure to HCV. While CD8+ T cells are 
the main effector cells in viral control, CD4+ T cells are essential for CD8+ T cell 
function and prevent viral escape within epitopes targeted by CD8+ T cells.
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CHALLENGES FOR DEVELOPING ANTI-HCV VACCINES
A number of difficulties have hindered the development of vaccines against HCV 
throughout the years (Figure 1). Despite all the knowledge acquired on the biology of 
this virus in recent years, a full understanding of key aspects of its pathogenesis and 
the host’s immune response remains elusive. Taking into account the correlate of 
protection, an effective vaccine needs to be able to prime both arms of the adaptative 
immune response. Thus, vaccination has to induce an early and sustained expansion of 
specific CD4+ and CD8+ T cell response. Alongside cellular immunity, cross-reactive 
nAbs need to be elicited to provide protection against different variants and geno-
types.

In this section we will go over the most important challenges on the design and 
validation of an effective vaccine against HCV.

Lack of economic incentive
Despite the fact that vaccines are great tools to prevent diseases, usually they are not 
as profitable as are drugs and other health services, and therefore investing in vaccine 
development is less appealing for the pharmaceutical industry[92]. Additionally, the 
development of vaccines with two different aims (prophylactic and therapeutic) would 
probably be expensive, and including prime/boost vaccination strategies may result 
impractical[19]. On another front, most newly infected individuals are PWID which 
mainly belong to populations with limited financial resources. This represents another 
discouraging aspect for companies interested in vaccine development[19].

From an economic perspective, though, there is well-reported evidence that 
vaccines are, in the long run, the most cost-effective public health measure after access 
to clean water[93,94]. A vaccine to fight HCV will, most likely, not be an exception.

Viral genetic diversity and variability
HCV is an enveloped virus with a single-stranded positive RNA genome which has a 
single open reading frame (ORF) flanked by non-coding regions at both ends (5’ and 
3’). For these features, it is classified as the prototype member of the Hepacivirus 
genus within the Flaviviridae family[95]. The ORF codes for a polyprotein of around 
3000 amino acids which is co- and post-translationally processed into three structural 
(core, E1, E2) and seven non-structural proteins (p7, NS2, NS3, NS4A, NS4B, NS5A, 
NS5B)[96].

Mutation is a key mechanism contributing to HCV genetic diversity and it is mainly 
driven by the error prone NS5B RNA-dependent RNA-polymerase[97]. HCV has an 
approximate mutation rate of 10-5 mutations/nucleotide/replicative cycle[98,99], a 
characteristic which together with big population sizes, short generation times, and 
high replication rates generates the intra-host circulation of a complex population of 
closely related genome variants, usually termed as viral quasispecies[100,101]. Of 
utmost importance is the N-terminus of the envelope protein E2[67]. It contains the 
HVR1 region of about 30 amino acids which exhibits a huge variation among different 
isolates, and it is the most variable region of the entire HCV genome[68]. Even though 
most HCV-infected individuals develop nAbs against the virus, this high variability 
represents a problem as it allows the virus to escape immunologic surveillance and 
prevents the development of vaccines that induce cross-reactive nAbs[21]. Thus, a 
major challenge for the development of a broadly reactive vaccine for the control of 
HCV infection is identifying conserved neutralizing epitopes outside of HVR1.

Notably, mutations within HVR1 have also been associated with resistance to cross-
neutralizing antibody response even if their epitopes are conserved, which highlights 
again the difficulties in achieving HCV neutralization as HCV could persist even in the 
presence of an antibody response to conserved epitopes[102,103]. This finding sugge-
sts that the neutralizing capacity of an antibody should not only consider the degree of 
conservation of its epitope.

Mutation rates coupled with the selective pressure exerted by the host’s immune 
system has steered HCV diversification into 8 genotypes and 90 subtypes[104,105]. 
HCV strains from different genotypes differ by 30% in their nucleotide positions 
within the coding region, whereas subtypes exhibit 15% nucleotide variation[106]. 
Genotypes 1 and 3 are the most prevalent worldwide (accounting for 49.1% and 17.9% 
of diagnosed cases, respectively), and are most frequently found in developed 
countries[107].

The quasispecies dynamic as well as the resulting viral diversity confers HCV an 
amazing ability to adapt which in turn implies the possibility to escape from different 
therapeutic or preventive approaches such as antiviral drugs or vaccines[108-112]. 
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Figure 1 Challenges in hepatitis C virus vaccine research. Graphical representation of all the hurdles yet to be overcome in order to develop effective 
vaccines against hepatitis C virus. Image created with BioRender.com. HCV: Hepatitis C virus. HVR1: Hypervariable region 1.

Thus, T cell-based vaccines intended to induce broadly reactive immune responses by 
targeting more conserved regions/proteins of the virus are desirable if the aim is to 
protect against new infections and/or persistence[11,21].

Viral strategies to evade neutralization by antibodies
Viral entry to host cells and viral interactions with different host factors could theoret-
ically be blocked by nAbs targeting HCV envelope glycoproteins E1 and E2. However, 
the virus has evolved several mechanisms which affect the host´s ability to neutralize 
the virus. One of the mechanisms has been described extensively above (genetic 
diversity, particularly in HVR1 region), yet there are a number of other strategies 
employed by this virus to evade neutralization: (1) Glycosylation of structural 
proteins; (2) Cell-to-cell transmission; (3) Interfering antibodies; (4) Association with 
lipoproteins; (5) Antibody decoy; (6) Flexible conformational epitopes; and (7) 
Enhancing of viral entry.

Glycosylation of structural proteins: This feature reduces their immunogenicity as 
they are recognized as selfstructures. This is an important mechanism used by HCV to 
escape host humoral immune response. Glycans act by masking antigenic sites 
targeted by nAbs, interfering sterically with antibody neutralization[113]. Indeed, the 
deletion of N-glycans leads to an increase in E1E2 immunogenicity and can induce a 
more potent antibody response against HCV[114-116]. Glycan shift is another 
mechanism to induce neutralization resistance through glycosylation. Single point 
mutations which result in deleting a glyco-sylation site or generating a new 
glycosylation site in another part of the protein could facilitate viral resistance to 
neutralization. It has been reported that a new glycosylation site arose after incubating 
for 5 d a cell-culture derived HCV with nAbs obtained from mice. As a result, those 
broadly nAbs showed a decrease in their efficacy[117].

Cell-to-cell transmission: It is another mechanism for viral dissemination, which 
avoids the extracellular compartment and favors escaping host humoral immune 
responses[118,119].

Interfering antibodies: When non-nAb bind to sequences in the C-terminal region of 
HVR1, they disrupt the recognition of conserved epitopes by antibodies with neutra-
lizing capability. Indeed, the remotion of interfering antibodies in chronic patients and 
vaccinated chimpanzees increases virus susceptibility to neutralization highlighting 
the role of interfering antibody in viral escape[120]. Similarly, when HVR1 was 
removed, enhanced and broad cross-neutralizing activity was observed[121,122].

Association with lipoproteins: HCV circulates in the blood in association with trigly-
ceride-rich lipoproteins and low-density lipoproteins forming hybrid lipoviral 
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particles, which are a hallmark of infectious HCV particles. Several host-derived 
factors play a role in evading antibody neutralization. Lipoproteins such as apolipo-
protein E contribute to humoral immune escape by hiding relevant neutralization 
epitopes in E2 protein, preventing them to be exposed during HCV assembly and 
maturation, hence, abrogating antibody neutralization[123,124].

Antibody decoy: Interestingly, in vitro studies have reported that HCV-infected cells 
release E2-containing exosomes that act as antibody bait making HCV virions less 
susceptible to neutralization[125].

Flexible conformational epitopes: The capacity of some conserved neutralizing epito-
pes in E2 to adopt different conformations when complexed with diverse antibodi-es 
contributes to evade neutralization by antibodies. This conformational flexibility must 
be taken into account during vaccine design[126].

Enhancing of viral entry: It has been shown that host mutations that alter the 
interaction of serum components like high-density lipoprotein with scavenger receptor 
BI enhance viral entry to the cell[127]. This, in turn, protects the virus against humoral 
response as the time window in which nAbs can bind and act is reduced[128,129]. 
Fofana et al[130] (2012) also showed that mutations in the E2 glycoprotein, conferred 
viral escape to humoral responses by altering the use of the T cell receptor CD81[130].

Despite these challenges, it has been possible to isolate broadly cross-neutralizing 
mAbs with the ability to block HCV infection of various genotypes and thus, protect 
against heterologous viral infection[75,131-134]. These findings suggest that a prophy-
lactic vaccine against HCV may indeed be achievable.

The elucidation of the crystal structure of E2 has provided a better insight into 
different antigenic domains and regions that allow a rational vaccine design. A study 
showed that epitopes within E2, exhibiting moderate or conserved variability, were 
efficiently targeted by bNAbs[135,136]. Unfortunately, despite the relative conser-
vation of some bNAbs epitopes, escape mutations have been identified[137,138].

Escape mechanisms from T cell responses: Viral escape and T cell exhaustion
Several studies have evidenced the key role of cellular immunity in the clearance of 
infection. An effective vaccine has to induce a rapid recall of the memory T cell respon-
ses that is associated with reduced viraemia and a higher likelihood of spontaneous 
resolution. However, the virus has developed different mechanisms to lead to an 
inefficient cellular response even when re-exposed with homologous virus: (1) Viral 
escape T cell recognition; and (2) T cell exhaustion.

(1) Escape mutations within major histocompatibility (MHC) class I-restricted HCV 
epitopes represent the main mechanism used by HCV to evade CTL responses and 
thus it is associated with persistence. Unlike CD8+ epitopes, escape mutations within 
targeted CD4+ T cell epitopes are not common, suggesting that CD4+ T cells failure 
mechanisms cannot be completely explained by viral escape[139]. Escape mutations 
occur early in infection and they are rare during long-term chronic infection, possibly 
due to the lack of T cell-mediated selective pressure[140]. Interestingly, escape variants 
show an impaired replicative fitness[141,142] and this contributes to limiting the 
variability within some epitopes[143,144]. As a consequence, the ideal target for T cell-
based vaccines are conserved epitopes less likely to mutate because of viral fitness cost
[141,142]. Another effect of escape variants results in impaired recognition by T cells 
receptors and thus prevents CD8+ T cell recognition. Moreover, CD8+ T cells from 
infected patients with genotype 4 were not able to recognize epitopes from other 
genotypes[52]. This finding highlights the challenging task of choosing vaccine targets 
that protect against multiple HCV genotypes. Hence, identifying conserved epitopes 
recognizable by specific CD8+ T cells is a key point to develop efficient T cell-based 
vaccines.

(2) T cell exhaustion: While T cell-based vaccines likely provide protection against 
chronic virus infections, they also have the potential to generate immunopathology 
following subsequent virus infection. This is illustrated by the fact that during chronic 
infection an impaired HCV-specific CD8+ T cell response develops, known as T cell 
exhaustion. This phenotype is associated with the inability of the immune system to 
control viraemia during chronic infection. These exhausted T cells undergo a progre-
ssive loss of their ability to proliferate, to secrete cytokines (such as IFN-γ), and to be 
cytotoxic[64,65].

Long-lived memory T cell response is only induced following spontaneous 
clearance and it can provide some protection. However, individuals who cannot 
maintain such long-lived memory T cell response due to T cell exhaustion are not 
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protected upon re-exposure.
One of the major challenges for immunogenic T cell vaccines refers to the recovery 

of T cell immunity through vaccination in people with persistent HCV infection. Kelly 
et al[145] (2016) demonstrated that when an HCV T cell vaccine based on chimpanzee 
adenoviruses (ChAd3) are given to patients with chronic disease, the immune 
response is not able to restore T cell function[145]. Failure to respond to this vaccine 
approach may be the result of T cell exhaustion, as vaccination is stimulating memory 
responses that were induced early in infection but that ended up partially dysfunc-
tional following viral exposure[145].

Lack of efficient in vitro systems 
An essential step in vaccine research is the evaluation of antibodies generated as a 
result of natural infections or experimental immunizations, as well as the evaluation of 
vaccine candidates. For those purposes using different in vitro and animal models 
becomes a must[23].

As we will exemplify in a later section on vaccines against SARS-CoV-2, the 
generation of live-attenuated and/or inactivated whole virus vaccines has been 
possible against a number of different viruses (measles, mumps, rubella, rotavirus, 
hepatitis A virus, poliovirus, among others), however this strategy is not achievable to 
generate HCV vaccines. Since HCV was discovered[1], and only until recently, resear-
ch has been thwarted by the inability to culture the virus both in vitro and in vivo[23,
146].

As for in vitro models, propagating HCV in cultured cells remained limited for 
several years since inoculation of patient sera or plasma in different cell lines resulted 
in limited or no viral replication[147]. The first report of efficient replication came from 
working with HCV subgenomic replicons (where the structural region was replaced 
by a neomycin-encoding gene)[148]. However, the challenge was to generate an in 
vitro system that was able to produce infectious HCV particles at high titers that would 
allow further research[23]. The production of cell-culture derived viral particles (HCV-
cc) was only achieved in 2003 with the discovery of a genotype 2a isolate (strain JFH-1) 
derived from a Japanese patient with a fulminant hepatitis[149,150]. Transfecting 
replicon HCV RNA from isolate JFH-1 into human hepatoma-derived Huh7 cells 
resulted in efficient RNA replication without the need of any adaptive mutations[150,
151]. Nevertheless, despite this breakthrough, efforts to replicate this with other 
isolates corresponding to different genotypes were only partially succe-ssful. On the 
one hand, some of these cloned full-length RNAs were able to produce infection in vivo 
(in chimpanzees), but on the other hand, even in the presence of multiple adaptive 
mutations, they failed to produce infectious viral particles in cell culture, despite some 
being able to efficiently replicate (details on the history of HCV cell culture systems are 
thoroughly reviewed elsewhere[147,152-154]).

Further studies on HCVcc led to the discovery of more permissive cell clones 
derived from Huh7 cells (e.g., Huh7.5 and Huh7.5.1)[155,156] as well as to the 
generation of inter- and intragenotypic recombinant genomes that are able to 
recapitulate the complete HCV life cycle and produce high titers of infectious particles 
in vitro. These recombinants have been shown to be optimal in vitro models to study 
the neutralization ability both of mAbs as well as of sera from infected patients[82,157-
160]. They have also been used to characterize antibody escape mutations[71,137,161]. 
Additionally, reporter and flag-tagged JFH-1-based genomes (J6/JFH1) have been 
generated[162-164] and used in vaccine development[165], the latter in particular to 
facilitate large-scale purification of viral particles[163]. However, the most important 
aim in this field would be to efficiently grow any virus derived from HCV infected 
patients, which unfortunately has not yet been achieved[153]. For now, we depend on 
the constructs described above as well as a few full-length consensus clones, which 
have been developed after a lot of research effort and had to be designed including 
numerous adaptive mutations[166-170], therefore, not quite resembling natural 
circulating isolates. In spite of the setbacks, all these constructs have the potential to be 
employed for producing inactivated whole-virus vaccines.

Another in vitro approach to assess the neutralizing ability of sera and mAbs, in 
addition to HCVcc, relies on the generation of HCV pseudoparticles (HCVpp). These 
are generated by cotransfecting HCV E1 and E2 genes together with a retroviral 
packing and reporter system[171]. Due to the struggles imposed by the generation of 
different HCVcc derived viral particles, HCVpps were actually developed earlier[172,
173] but continue to be used in vaccine research nowadays[157,174-176].
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Lack of small immunocompetent animal models
Humans are the natural hosts of HCV, and in order to test the efficacy and safety of 
vaccine candidates in pre-clinical studies, in vivo animal models are needed. Foremost, 
in vivo studies on pathogenesis of HCV chronic infections have been problematic since 
HCV only infects humans and, under experimental conditions, also chimpanzees. The 
first and most successful immunocompetent animal model has indeed been the 
chimpanzee. However, ethical concerns and its inclusion on the United States Fish and 
Wildlife Service’s Endangered Species have led to a ban in its use for biomedical 
research[177]. Even before this prohibition, the continued use of these animals faced 
many issues such as high costs, small cohort sizes which made statistically significant 
results difficult to achieve, and the inability to genetically manipulate chimpanzees. 
Furthermore, it would require the need to have special and expensive facilities to 
breed and keep them under study[178].

Small animal models are frequently very useful tools to test potential vaccine 
candidates, but, since HCV does not infect rodents, a lot of effort has been devoted 
into developing strategies to adapt mice to evaluate HCV vaccines. This led to the use 
of chimeric humanized or transgenic mice with humanized livers[179] or expressing 
human CD81 and occludin[180], two cellular proteins that HCV uses as receptors for 
cell entry. However, mouse models are difficult to produce, and most are immuno-
compromised, which makes them inappropriate to study virus-host interactions and 
immune responses. Additionally, they do not exhibit cirrhosis or HCC[181]. In spite of 
this, genetically humanized fully immunocompetent inbred mice expressing human 
orthologs of HCV entry factors were developed[182], which have allowed the study of 
viral entry, yet not the full viral cycle. To address the latter, Chen et al[183] (2014), 
developed an immune-competent humanized mice model that is capable of 
developing persistent HCV infections and hepatopathological manifestations[183], yet 
the mice stock are outbred and genetically not well defined. More recently, Keng et al
[184] (2016) were able to establish a new humanized mouse model including human 
hepatocytes as well as human immune system[184], which was able to recapitulate 
HCV infection and immunopathogenesis[181], although low levels of B cells were 
detected when compared to clinical settings.

For the difficulties in getting broad access to small immunocompetent mouse 
models, alternative experimental non-human primate models have been explored. 
However, no signs of infection were detected (for a detailed review see Ploss and 
Kapoor[178], 2020), with the exception of tree shrews (now classified in a separate 
order Scandentia, but previously designated as small squirrel-like primates) which can 
become symptomatic and even progress to chronicity[185]. Despite this encouraging 
finding, keeping these animals in captivity is a difficult task, and additionally they are 
genetically diverse for being an outbred species, which again poses issues to be widely 
used in HCV biomedical research[178].

Altogether, this shows us the difficulty we face when we need animals that can be 
employed for vaccine development but also to study HCV-associated pathogenesis. 
An alternative could be the use of substitutes and analogue viral models that can be 
propagated in mice lab strains and that appear to share basic immunological features 
with HCV. Recently, the discovery of non-primate hepaciviruses has raised interest 
since they can be used as analogues of HCV infection[23]. A rodent Hepacivirus 
discovered in Norway rats[186] has been shown to establish high-titer liver infections 
when inoculated in immunocompetent mice, and thus, provides insight into hepatic 
immune responses[187]. However, the main drawback of this model is the limited 
sequence homology to HCV[186]. On the other hand, equine hepacivirus (eqHV), 
formerly known as non-primate Hepacivirus, is the closest relative of HCV and both 
species share some important features such as the level of E1E2 glycosylation or the 
presence of miR-122 seed sites in their 5’ non-coding regions (2 sites in HCV and 1 site 
in eqHV)[188,189]. These approaches of using alternative and analogue viral models 
for vaccine development is extremely valuable, yet it is worth acknowledging that 
different mammalian immune systems might respond in different ways and this 
should be taken into consideration at the moment of interpreting data[23].

Difficulty in designing clinical studies
The design of clinical studies for HCV vaccine candidates poses its own hurdles. It 
must be considered that, in order for an effective vaccine to be validated, it should be 
tested in populations at risk for HCV infection[11,36]. This is an issue in developed 
countries where HCV infection incidence is low other than in PWID populations. 
Targeting this group of patients has ethical concerns and practical difficulties to be 
overcome[190]. Despite this, there are a few studies which have been successful in 
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identifying, enrolling and monitoring PWID before developing an acute HCV infection
[191,192], the latest completed phase I/II clinical trial with outcome results was able to 
enroll 548 active intravenous drug users (ClinicalTrials.gov Identifier: NCT01436357
[193])[194]. On the other hand, large studies could be conducted where incidence is 
higher, such as some developing countries. However, logistical problems may arise 
due to the large number of patients needed and their appropriate follow up, 
specifically to detect acute cases of hepatitis, which usually course without any 
symptoms[36].

APPROACHES TO DESIGN VACCINE CANDIDATES FOR HCV
There are several traditional and newer approaches in vaccine development, and most 
of them have been explored for the design of HCV vaccine candidates (Figure 2), albeit 
the majority only directed at genotype 1.

Traditional vaccine approaches include whole-organisms vaccines containing either 
inactivated whole or live attenuated viruses. Live attenuated vaccines are potent in 
inducing CMI and humoral immunity and have been successful for many viral 
infections because they resemble what occurs naturally. Nevertheless, they have the 
potential risk of reverting to virulent wild-type strains. In contrast, inactivated viruses 
are noninfectious but have the downside of being less immunogenic than attenuated 
viruses. Therefore, when inactivated whole viruses are developed as vaccine 
candidates, they often include adjuvants and/or booster injections in order to enhance 
the immunogenicity[195].

Newer methods involve the use of one or more genes of the virus of interest to be 
incorporated into the genome of a nonpathogenic organism for amplification. In this 
way, mainly three different approaches have been developed: Subunits vaccines (by 
purifying the protein/s of interest generated in the heterologous organisms), DNA 
vaccines (usually by isolating a plasmid containing the gene/s of interest), and 
recombinant viruses (by using the entire host virus as a live vector)[195].

The latest method successfully explored has been the use of RNA-based vaccines, 
whose development is faster than other technologies, easily scalable, and of lower cost 
to manufacture. These characteristics have been essential to the development and 
recent authorization for emergency use of some of the vaccines currently available to 
control the COVID-19 pandemic[196].

In this section we will go over some of the vaccine candidates explored against 
HCV, and we will delve into nucleic acid-based and recombinant viral vector app-
roaches.

Inactivated whole virus (HCVcc)
This traditional approach of inactivated virus was only feasible after the development 
of cell culture systems, with all the challenges that they impose even nowadays. This is 
partly the reason why there are only a few pre-clinical studies assessing the immuno-
genicity of inactivated HCVcc as vaccine candidates[197,198]. Both studies have shown 
the induction of humoral immune responses in chimeric mice[198] as well as in a non-
human primate model[197]. The latter also elicited T cell responses. These findings are 
promising, but there are still some developmental challenges to overcome if this 
approach is to be considered for clinical trials, such as production in serum-free 
culture conditions and scalable and cost-efficient downstream processes. Fortunately, 
there are a few studies which have addressed these difficulties, and have shown that 
high titer serum-free HCVcc is possible for different intra and intergenotypic 
recombinants based on JFH-1 isolate[199] and that more efficient downstream 
processes based on ultracentrifugation and chromatography can be applied[200]. 
Nevertheless, the challenge of generating high titers of HCVcc of the most widespread 
genotypes and subtypes still remains.

Recombinant subunits and synthetic peptides
Recombinant E1/E2 proteins were the first prophylactic vaccine candidates being 
tested since they are the major targets for nAb, in particular HVR1 region within E2. 
They were shown to be able to induce the generation of nAb in chimpanzees[201], yet 
only one candidate reached clinical trials in 2007 (ClinicalTrials.gov Identifier: 
NCT00500747[202]). Results of the phase I trial in healthy volunteers showed the 
vaccine was well-tolerated at different doses used, and that it was able to induce 
antibody production[203,204].
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Figure 2 Summary of all hepatitis C virus vaccine approaches explored to date. The studies are divided in three categories depending on the highest 
stage of research achieved: In vitro evaluation only (in lilac background), pre-clinical studies in different animal models (in light blue background) and clinical trials in 
healthy volunteers and/or chronically hepatitis C virus-infected patients (in green background). For each approach (A to I) key characteristics on the vaccine 
candidates are provided. In addition, for all the technologies that have reached clinical trials, the ClinicalTrials.gov Identifier and the phase of the trial are indicated. 
Image created with BioRender.com.

Whereas recombinant E1E2 vaccines were designed to elicit humoral immune 
response, synthetic peptide vaccines are more attractive since they can be designed to 
prime both arms of the immune response. Some peptide combinations targeting both 
cytotoxic lymphocytes and CD4+ T cell epitopes (core, NS3, NS4) have entered clinical 
trials. Results for the phase 2 trial NCT00602784[205] have shown that the peptide 
vaccine IC41 can trigger T cell responses in relapse patients after dual therapy, yet 
viral clearance was not achieved[206]. Unfortunately, humoral response was not 
analyzed. The results of the other studies remain to be published (ClinicalTrials.gov 
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Identifier: NCT01718834[207] and NCT00601770[208]).
Of interest, computational identification of B and T cell epitopes has been explored 

as an alternative for the rational design of effective vaccine candidates. By means of 
different immune-bioinformatic and population dynamics simulation approaches, 
many predicted epitopes in E2, NS3/4A, NS5A and NS5B have been identified[209-
212]. These approaches provided valuable information and in silico screening methods 
for highly conserved immunogen candidates with the putative ability to block escape 
mutations (for a detailed review please see[213]). These computational designs can 
help speed up vaccine development at the experimental stages by rationally selecting 
the most promising epitopes for subunit vaccine in vitro and ex vivo evaluation.

Virus-like particles
Virus-like particles (VLPs) are particles that resemble a virion but do not contain the 
viral genome, rather they are generated by the auto assembly of structural proteins in 
a manner that is genome-independent. In this way, the particle is similar to the native 
virus but it lacks the ability to replicate and for vaccine candidates is a very attractive 
technology since they are more immunogenic than soluble proteins and can prime 
both arms of the immune response[214].

The rationale behind this type of vaccines is supported by the successful deve-
lopment of vaccines against hepatitis B virus and human papilloma virus, currently 
commercially available[23]. Unfortunately, despite having shown promising pre-
clinical results[215,216], to the best of our knowledge, HCV VLPs have not yet reached 
clinical trials.

Recombinant vector-based vaccines
The use of live recombinant viral-based HCV vaccines as a genetic immunization 
approach has shown to be powerful for eliciting CMI[217]. For this purpose, different 
modified viruses are used as vectors to carry HCV genetic information[19].

Adenoviral vectors are the most widespread used in the vaccine developing 
industry. They are attractive models for different reasons: Adenoviral genomes are 
well characterized and are relatively easy to modify into replication-defective viruses, 
most human adenoviruses cause mild infections, they infect a broad number of cell 
types (dividing and non-dividing), they can be grown to high titers in tissue culture, 
and by deleting essential genes, genetic information of interest can be inserted[218]. 
The most frequently used in immunization studies is the human adenovirus serotype 5 
(hAd5), which is included in at least 12 of the vaccines against SARS-CoV-2 that are 
currently on clinical trials and in one that already had authorization for emergency use 
(Sputnik V vaccine)[219,220]. Despite their benefits, individuals might exhibit 
preexisting anti hAd5 Abs, which could diminish the immune response to vaccines 
based on this viral vector. For this reason, less frequent serotypes such as hAd24, hAd6 
or hAd26 have been employed in pre-clinical and clinical studies of vaccine candidates 
against different viruses[221-223]. Additionally, adenoviruses that infect chimpanzees 
(AdCh3) have been tested in conjunction with hAd6, both carrying HCV non-
structural proteins NS3 to NS5B of genotype 1b, yet despite reaching clinical trials, 
they have only been evaluated in phase I studies (ClinicalTrials.gov Identifiers: 
NCT01094873[224] and NCT01070407[225]). The reason for not continuing these 
studies seemed to be the inability to restore CMI, and as a result, a non-significant 
effect on HCV viral load was observed[145].

In light of these drawbacks, another viral vector has been employed in prime/boost 
vaccination strategies against HCV: The Modified Virus of Ankara (MVA), an 
attenuated poxvirus strain which is immunogenic and safe since it lacks several 
immunomodulatory genes[226]. MVA vector together with hAd6, both expressing 
HCV non-structural proteins NS3 to NS5B have entered phase I clinical trials to 
evaluate the combination as a therapeutic vaccine to be used in conjunction with dual 
therapy (ClinicalTrials.gov Identifier: NCT01701336[227]). Even though the study is 
complete, no results have been disclosed, presumably due to the newer DAA 
treatments which have completely substituted classical therapy. The most promising 
trials currently in phase I and II use the combination of ChAd and MVA vectors 
harboring HCV NS3-NS5B genomic regions. A phase I study in healthy volunteers 
showed promising results in terms of eliciting T cell responses (ClinicalTrials.gov 
Identifier: NCT01296451[228])[229]. Unfortunately, a phase I/II study in PWID 
population showed that this vaccination strategy was not effective for preventing 
chronic infections since T cell exhaustion was not reversed (ClinicalTrials.gov 
Identifier: NCT01436357[193])[194,230]. These results highlight the need for a vaccine 
strategy that stimulates both humoral and T cell immunity[23,231]. However, attempts 
to enhance CMI without the need of boosting the generation of Abs, have been 
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addressed in pre-clinical studies on non-human primates by fusing the HCV non-
structural antigen to MHC class II-associated invariant chain[232]. The results showed 
enhanced and accelerated CD8+ T cell responses and paved the way to reach clinical 
trials. At the time of writing this manuscript, there is an actively recruiting phase I 
clinical trial (ClinicalTrials.gov Identifier: NCT03688061[233]) that seeks to enroll 25 
healthy participants to assess the safety and immunogenicity of HCV prime/boost 
vaccination with both ChAd and MVA vectors expressing HCV non-structural 
antigens fused to a class II-invariant gene. Results from only 15 individuals seem 
promising, largely mimicking pre-clinical studies, but more participants are still 
needed and assessment of durability of the enhanced CMI needs to be further 
addressed[234].

The most recent vector-based therapeutic vaccine candidate entering phase I clinical 
trials is a lentiviral based HCV immunotherapy (HCVax) which aims to evaluate both 
the safety and the immune response in chronic HCV patients (ClinicalTrials.gov 
Identifier: NCT04318379[235]). Last generation lentiviral vectors are safer than first 
generation ones (previously used for gene therapy) and like adenoviral vectors, are 
capable of infecting both dividing and nondividing cells, and since they integrate into 
the host’s genome, expression of the transgene can be long-term, a characteristic which 
makes them attractive as vaccine strategy[236].

Nucleic acid-based vaccines 
Nucleic acid based-vaccines present numerous advantages over traditional vaccine 
approaches: (1) No issues associated with misfolding of proteins in recombinant 
protein vaccines or with high manufacture costs; (2) No infectious risks that might be 
associated with live-attenuated or inactivated whole virus vaccines; (3) They are able 
to activate both arms of the immune response (humoral and cellular); (4) The 
expression of antigens resembles natural epitopes; (5) In a single injection, multiple 
genes can be delivered; and (6) If multiple doses are needed, unlike the use of 
recombinant virus-based vaccines, there is no risk of anti-vector immunity[39,237,238].

DNA-based vaccines have been in the picture for nearly 40 years now[239]. They 
usually consist of purified plasmids which harbor sequences of interest that are 
expressed under the control of a eukaryotic promoter for a robust expression in 
mammalian cells. They are inexpensive, easy to manufacture, and also important, 
stable at room temperature. All of which are features that make them an ideal 
technology in vaccine research, as distribution and access could be granted effortlessly 
even to developing countries[39].

RNA vaccines have been explored for around 25 years, beginning with studies of 
self-amplifying RNA vectors (modified RNA from viruses) as well as mRNA pulsed 
into dendritic cells (DCs)[240,241], and have been largely assessed for tumor 
vaccination[242]. They share some features with DNA vaccines, but they do not need 
to enter the nucleus to translate the genetic information into antigen proteins, which 
represents an advantage over DNA immunization since the barrier of the nuclear 
envelope is removed, and thus, their efficacy is higher[238]. However, RNA is more 
labile than DNA, which might yield less robust vaccines than DNA-based formu-
lations due to RNA shorter shelf life, reason why modified nucleosides have been used 
to enhance stability and therefore induce a higher antigen production[238], as it is the 
case of the COVID-19 mRNA Vaccine (nucleoside modified)[243].

The first approach for delivery of nucleic acid-based vaccines, was direct injection of 
naked DNA plasmid or mRNA (transdermally or intramuscularly), however, effici-
ency seemed to be very low, in part due to the negative charge of these molecules. 
There-fore, several delivery methods were developed to improve uptake and immuno-
genicity in different organisms: (1) Gene gun: DNA is loaded on the surface of 
tungsten or gold particles and then fired at target cells; (2) Electroporation: Transient 
pores in cell membranes are created by electrical impulses allowing DNA delivery 
inside the cell; and (3) Nanoparticles: Non-viral vectors made up from lipids, inorganic 
molecules and polymers can safely carry DNA and RNA into a cell by encapsulating 
the negatively charged nucleic acid, preventing its digestion by endonucleases and 
facilitating intracellular release[36,238].

DNA-based vaccines
Multiple pre-clinical studies in different animal models have been performed throug-
hout the years to assess the efficiency of several DNA-based formulations against HCV 
to elicit immune responses. Nevertheless, only a few have entered phase I or II clinical 
trials.
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The use of core as antigen, directly injected as naked DNA plasmid intramuscularly 
(IM) or intraperitoneally (IP) into different mice models, has evidenced a weak 
immunogenic capacity in terms of humoral response but strong CMI, even though at 
least 2 doses 2-4 wk apart were administered[244-248]. Using the same delivery 
method and injection scheme, HCV core and E2 sequences were fused to immu-
nogenic proteins (hepatitis B surface antigen or gD protein from herpes simplex virus 
type-1) to address the weak Ab response, and both arms of the immune response were 
detected in mice as well as in rats[249-251]. Others have attempted to evaluate if 
different localizations of HCV antigens within the cell and the CpG content of the 
plasmid backbone might influence the Ab response. Results indicated that membrane-
bound and secreted E2 forms as well as the addition of immunostimulatory CpG 
motifs elicited a better humoral response in mice[252]. Low doses of IFN-α have also 
shown to augment CTL response after DNA immunization with a plasmid encoding 
HCV core protein in mice models[253].

Targeting structural proteins in DNA-based formulations employing injection of 
naked plasmid as the delivery method was thoroughly tested in animal models but the 
vast majority failed to enter clinical trials. With the increasing knowledge on immune 
correlates during acute infections, it became clear that non-structural proteins are the 
target of CMI during acute resolutions, and that other delivery methods such as 
electroporation or gene gun rendered broadly reactive CTL responses[254].

As a consequence, DNA-based vaccines encoding HCV non-structural proteins have 
become widely used approaches. Transdermal gene gun injection of DNA plasmid 
encoding NS3/4A proteins into mice has shown high titers of Abs and the ability to 
prime CD4+ T helper cells[255] and also a CD8+ T cells that were able to clear HCV 
protein-expressing hepatocytes and persist up to 12-18 mo after immunization[256,
257]. When NS3 DNA vaccine was co-administered with interleukin-12 as adjuvant, 
strong immunogenicity was also displayed in murine models[258]. Several other adju-
vants have also been employed in NS3-based DNA vaccination in order to enhance 
their potency (for a detailed review see Sepulveda-Crespo et al[231] 2020). In addition, 
constructs encoding a codon-optimized NS5A injected IM into mice, in combination 
with in vivo electroporation, were also able to prime specific T cell responses[259]. Two 
clinical trials in chronic HCV patients (naïve to treatment, infected with genotype 1) 
have entered phase I/IIa and phase II to evaluate a potential therapeutic vaccine based 
on a plasmid encoding NS3/4A (ChronVac-C) (ClinicalTrials.gov Identifier: 
NCT00563173[260] and NCT01335711[261]). Results have shown that high doses of 
ChronVac-C were able to activate HCV-specific T cell responses which led to a 
transient reduction in viral loads[262]. When 8 of the 12 patients enro-lled also 
received dual therapy after the vaccine doses, 6 were able to achieve SVR, which might 
indicate that immunization had a beneficial effect on the response to therapy. 
However, these results seem irrelevant at present with the advent of DAA treatments.

Even though pre-clinical results were promising, full-length NS3 protein exhibits 
immunosuppressive effects and it is possibly involved in the development of HCC due 
to its enzymatic activity which deregulates the normal functions of the host cells[263]. 
Even though DNA immunization renders antigen expression only transiently, and the 
adverse effects possibly caused by NS3 enzymatic activity would be marginal, alter-
native plasmids for DNA vaccination encoding modified NS3 sequences have been 
tested in animal models. Ratnoglik et al[264] (2014) showed that vaccinating mice with 
a non-enzymatic version of NS3 (with its catalytic site and NTPase/RNA helicase 
domains mutated to abrogate their functions) induced strong CMI, indicating that 
mutations in this protein do not seem to interfere with its immunogenicity[264]. 
Additionally, a plasmid with a truncated form of NS3, only encoding immunogenic 
epitopes (1095–1379 amino acids positions), succeeded in eliciting a strong Ab respo-
nse after repeated intra-dermal inoculation in mice[265]. However, none of these 
candidates has reached clinical trials.

These findings seem to indicate that immunizing only with DNA-based 
formulations coding for NS3/4A or NS5A might not be sufficient to control viremia in 
HCV-infected patients, despite encouraging pre-clinical results in animal models.

In addition to NS3/4A or NS5A plasmid vaccination, IM injections followed by 
electroporation of constructs encoding NS3 to NS5B into Rhesus macaques and chim-
panzees, in multiple-dose boosting schemes, evidenced HCV-specific effector CD4+ 
and CD8+ T cells and effector memory-like CTLs after immunization[266,267]. More 
recently, studies in mice have shown that adding a plasmid expressing cytokine IFN-
λ3 (formerly known as IL28B) to the immunization with plasmids expressing NS3/4A, 
NS4b and NS5A provided significant immunoadjuvant activity[268]. These 
encouraging results led to a phase I clinical trial to evaluate the safety, tolerability and 
immunogenicity of this strategy in chronic hepatitis C patients infected with HCV 
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genotypes 1a or 1b, which had previously exhibited treatment failure to dual therapy 
alone or in combination with DAAs (ClinicalTrials.gov Identifier: NCT02027116[269]). 
The vaccination strategy comprised a combination of 3 plasmids each encoding 
NS3/4A, NS4B or NS5A (formerly known as VGX-6150) and a fourth plasmid 
encoding IFN-λ3 as an efficacy enhancer (the mixture of 4 plasmids has been renamed 
to GLS-6150). Three different doses were tested in a prime-vaccination scheme of 4 
doses every 4 wk, and then a booster immunization at week 36, all injected IM follo-
wed by electroporation. Results of this trial have been recently published and they 
showed that GLS-6150 is safe and was overall well tolerated with no serious adverse 
events identified[270]. More importantly, vaccination increased the HCV-specific T cell 
responses, although, surprisingly, RNA viral titers did not decrease. Therefore, 
considering the reinfection possibility of patients who achieved SVR after DAA 
treatment, a new phase I clinical trial is ongoing in order to assess immunogenicity of 
GLS-6150 in this population and in healthy volunteers (ClinicalTrials.gov Identifier: 
NCT03674125[271]). Another clinical trial employing DNA vaccination of plasmids 
encoding NS3 to NS5A (INO-8000) but with the co-administration of a different 
adjuvant (interleukin-12) is currently active as a phase I study in chronically HCV 
infected patients (genotype 1) (ClinicalTrials.gov Identifier: NCT02772003[272]) which 
highlights the potential of these approaches including immunostimulatory molecules 
as adjuvants. The main takeaway of these approaches is that, the addition of more 
nonstructural genes as well as the co-administration of immunostimulatory adjuvants, 
might still be insufficient to clear an established infection. The question remains if they 
might be useful to prevent reinfections.

Therefore, as an alternative, heterologous prime/boost vaccination strategies have 
also been explored in mice, in which immunization with DNA-based vaccines is 
followed by immunization with viral vectors such as MVA to enhance response levels
[273]. Even though results provided proof-of-concept that 2 different HCV vaccine 
technologies can improve immunogenicity when used in combination, to the best of 
our knowledge, so far, no clinical trial has tested this approach.

RNA-based vaccines
As will be detailed in the section about vaccines against SARS-CoV-2, several mRNAs-
based vaccine candidates have been intensely explored in clinical trials, in particular to 
fight the COVID-19 pandemic. However, so far none have been approved for human 
use, with the exception of some of the vaccines currently in phase 3 clinical trials 
which are undergoing assessment for WHO emergency use listing and prequali-
fication[274-277] (ClinicalTrials.gov Identifier: NCT04368728[278] and NCT04713553
[279]–Pfizer/BioNTech SE, ClinicalTrials.gov Identifier: NCT04470427[280] and 
NCT04649151[281]–Moderna TX, Inc).

On the contrary, with the exception of using mRNA to transfect DCs (which will be 
discussed in the next section), there have been no pre-clinical or clinical trials using 
mRNA-based vaccines against HCV. Interestingly, Sharifnia et al[282] (2019) have 
proposed for the first time that an RNA-based vaccine against HCV could be feasible 
since after in vitro generation of an mRNA coding for the core protein, they were able 
to detect core protein in monocyte-derived DCs which were previously transfected 
with this construct[282]. Unfortunately, no further animal studies were performed to 
assess the immunogenicity of this approach.

DCs as vaccine delivery system
DCs are one of the most potent antigen-presenting cells needed to induce and 
maintain immune responses. Given their fundamental roles, DC-based vaccination 
strategies have been given special attention, in particular for cancer immunotherapy
[283]. However, different approaches have also been explored in HCV vaccination 
both in pre-clinical studies as well as in clinical trials[284]. Strategies involve loading 
DCs with HCV core, NS3 or NS5 proteins[285,286], pulsing them with HCVpp[287], 
transfecting them with DNA[288] or mRNA[289], or transducing them with adenoviral 
vectors expressing HCV non-structural proteins[290-293].

Two recently concluded phase I/II clinical trials have enrolled chronically HCV-
infected patients (HCV genotype 1b) to evaluate the safety and clinical efficacy of 
therapeutic vaccination using autologous DCs. Despite employing different strategies 
(autologous DCs loaded with recombinant HCV core and NS3 proteins vs transduced 
with a recombinant adenovirus encoding NS3), both studies revealed similar results in 
terms of immunogenicity and ability to reduce viral titers: T cell responses were 
generated albeit weakly, and these were insufficient to clear the virus or reduce viral 
loads[286,293] (ClinicalTrials.gov Identifier: NCT03119025[294] and NCT02309086[295]
). These findings are somewhat discouraging since in order to design better 
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vaccination strategies, attention will have to be placed on enhancing CMI so as to, at 
least partially, reduce viral titers.

IS THERE A POTENTIAL USE OF ATTENUATED VIRUSES AS VACCINE  
CANDIDATES AGAINST HCV?
As with whole inactivated virus vaccines against HCV, the limited in vitro culture 
systems have hampered studies on attenuated vaccines. In particular, attenuation has 
been achieved by serial passaging of a given virus in non-primate cells, which leads to 
the emergence of mutations that have low fitness in human cells. Yet HCV does not 
replicate efficiently in non-human cells, which poses problems for the identification 
and production of attenuated strains. Additionally, there is also the risk of causing an 
infection after the use of these types of vaccines, which in principle, limits their 
potential use[11,14]. However, it is worth noting that live-attenuated viral vaccines are 
licensed for human use for prevention of several viral diseases such as dengue, 
hepatitis A, measles, mumps, varicella, yellow fever and gastrointestinal disorders 
caused by rotaviruses[296]. Therefore, if properly designed, this technology offers safe 
and effective vaccines.

Considering the issue of identifying attenuating mutations in non-human cultures, 
an alternative is to detect mutations occurring naturally within the human host, 
present only as minority variants within the quasispecies, and exhibiting an attenuated 
phenotype.

HCV, as many members of the Flaviviridae family (all except for those within the 
Flavivirus genus), translate its polyprotein in a CAP-independent manner by 
recruiting the ribosome directly to the internal ribosome entry site (IRES), which is 
found in the 5’ non-coding region[297]. IRES structure and sequence are essential to its 
function, and any change can affect the translation process[298,299]. Therefore, invest-
igating on mutations that might affect this process may enable an alternative approach 
for the design of live-attenuated vaccines against HCV. In this regard, our group has 
identified several mutations within the IRES of HCV isolates from chronically infected 
patients of genotype 1a and 3a, that are present in very low frequencies within the 
viral population, and that have evidenced a significant decrease in viral translation 
efficiency in vitro[300]. Studies in cell culture, using full-genome chimera replicons 
based on JFH-1 strain are underway in order to assess both translation efficiency as 
well as viral fitness.

It is important to mention, that one of the initial vaccines designed to fight polio was 
a formulation with poliovirus (PV) strains where, through successive passages in non-
human cells, mutations were selected along the whole genome[301]. Of those, a 
mutation within PV IRES which drastically diminishes the translation efficiency, is the 
main responsible for the attenuated phenotype[302]. Unfortunately, live-attenuated PV 
vaccines have shown to be genetically unstable, and some of the mutations that confer 
the attenuated phenotype can reverse during replication in humans, causing rare cases 
of vaccine-associated paralytic poliomyelitis[303]. Thus, if the aim were to design a 
safe live-attenuated HCV vaccine with mutations in the IRES region, perhaps 
additional approaches would need to be considered so as to minimize the chances for 
reversion or enhancing the resulting immune response. One such approach could be 
constructing a bicistronic vector co-expressing an antiviral protein (for example IFN-β
), which has already been proven effective to limit viral spread and to induce antiviral 
immunity in animal models when assessing a Flavivirus vaccine candidate[304].

On the other hand, a rational synthetic design of attenuated strains might be a new 
and achievable approach to employ based on the newest infectious replicons that 
harbor almost the entire genome sequence from non-JFH-1 strains, covering in this 
way most of the circulating HCV genotypes. This strategy has been successfully 
developed and tested in mice for other RNA viruses such as Influenza A virus and 
Coxsackievirus[305]. It consisted of engineering codons that were more prone to 
generate a Stop mutation after a single nucleotide change in as many positions as 
possible, without changing the amino acid identity. This strategy proved that the 
synthetic and rational generation of self-limiting vaccines is possible in different RNA 
viruses and thus, could represent an alternative way of generating HCV attenuated 
vaccines as well, provided that the issues with in vitro scaling-up production can be 
overcome in the near future.
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LESSONS LEARNT FROM ANTI-SARS-CoV-2 VACCINES
COVID-19, caused by the SARS-CoV-2[306], has become a major health concern all 
over the world and has spawned challenges to develop safe and effective antiviral 
drugs and vaccines for preventive use. Vaccine development is a complex and time-
consuming process, that typically requires years of research and testing before 
reaching the clinic. But in 2020, in an unprecedented effort due to the synergy between 
academia, researchers, and pharmacists, added to financial support and guided by 
cumulative knowledge from many years of scientific work, scientists were able to 
produce safe and effective coronavirus vaccines in record time[307]. Coronavirus 
vaccine types include inactivated vaccines, nucleic acid vaccines, adenovirus vector -
based vaccines, and recombinant subunits vaccines. Up until February 18th researchers 
were testing 70 vaccine candidates in clinical trials, and 20 have reached the final 
stages of testing. Over 10 have been approved for emergency use in several countries 
around the word. Among these, it seems important to highlight the Emergency Use 
Authorization for 2 highly effective mRNA COVID-19 vaccines from Pfizer-BioNTech 
and Moderna. This is the first time that mRNA-based vaccines have ever been 
approved for human use, and marks a critical milestone for achievement in both 
science and public health[275,308,309]. As previously mentioned, mRNA vaccines 
trigger immune responses by transfecting synthetic mRNA encoding viral antigens (in 
this case spike protein or protein motifs) into human cells. Once the nucleic acid enters 
the cytosol of the cell, the mRNA vaccine temporarily induces the cell to produce 
specific viral antigens coded by the mRNA[308,310]. The major breakthroughs of these 
two vaccines were: (1) The mRNA modifications and purification process to reduce the 
innate immune response and to improve mRNA stability; and (2) The effective 
intracellular delivery to facilitate cellular uptake of mRNA and to protect it from 
RNase degradation.

These RNA vaccines generate powerful antibody responses to the SARS-CoV-2 
coronavirus, but they have not proven to be as good as the AstraZeneca/Oxford 
vaccine (adenoviral vector vaccine) at stimulating CD8+ T cells. Recently animal studies 
suggest that a combination of an RNA coronavirus vaccine and a adenoviral vector 
vaccine (AstraZeneca/Oxford vaccine) could strengthen immune response by rousing 
CD8+ T cells in mice better than either vaccine alone[311,312]. This preliminary data 
should be confirmed in upcoming clinical trials.

Thus, what can we learn about SARS-CoV-2 impressive vaccine development? 
Firstly, that when there is interest and resources, the development and production 
times of a vaccine can be significantly reduced. Secondly, that mRNA vaccines have a 
high potency, ability for rapid development, and cost-efficient production. Thirdly, 
that preliminary data suggests that mixing COVID vaccines technologies boosts the 
immune response at a cellular level.

Is it possible, therefore, to apply all the knowledge gained from COVID-19 vaccines 
to accelerate HCV vaccine development? Unfortunately, only partially. As mentioned 
in the section about challenges, many hurdles remain since HCV biology and 
immunology differ greatly from that of SARS-CoV-2. However, the so far unexplored 
possibility of an HCV mRNA-based vaccine could certainly benefit from the 
experiences and developments in the field of RNA-based vaccines against SARS-CoV-
2.

CONCLUSION
HCV is an insidious virus, which, since its discovery, has caused enormous difficulty 
to be kept under control. The successful introduction of DAAs has become a milestone 
in keeping the epidemic in line, however it has proven to be insufficient to achieve 
global eradication of this virus and all the health complications derived from the 
infection. Therefore, numerous approaches have been explored in order to design an 
effective vaccine, either prophylactic or therapeutic. Unfortunately, to date, none of 
these attempts have rendered a viable vaccine for human use. Several drawbacks have 
hampered its development, among which, to our understanding, one of the most 
difficult to override is T cell exhaustion, the main cause of therapeutic vaccines failure. 
However, many other challenges related to a still incomplete understanding of HCV 
immunology remain to be overcome. Noteworthy among these, is the insufficiency of 
CMI to control infections and the need for a joint humoral response, as well as the 
necessity for characterization of better epitopes for nAbs. An approach that might 
prove effective in the future, is the use of heterologous prime/boost vaccination, 
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where two different technologies can be employed to enhance the immune responses. 
Additionally, we believe that ongoing efforts to develop improved and more suitable 
in vivo systems should be a priority, since many of the successful pre-clinical studies 
have possibly failed in clinical trials due to the differences in immunopathology 
between the used animal models and humans. All of the hard work that has enabled 
the rapid and effective development of vaccines against SARS-CoV-2 should be taken 
as an example of what can be achieved if the interest and the efforts are focused on 
tackling a health burden. In particular, the advances on mRNA-based vaccine 
technology, which so far has not been explored in HCV vaccine candidates, would be a 
good starting point if the aim is to explore alternatives not investigated so far. 
Additionally, different methodologies which have been shown to be efficacious 
against other RNA viruses, are available for the design of live-attenuated strains as 
vaccines against HCV. Following this line of thought, and likely fueled both by the 
success of COVID-19 vaccines[313] and by the Nobel Prize in Physiology or Medicine 
2020 (awarded to three scientists for the discovery of HCV)[28], last year, the NIH 
opened a grant opportunity for projects concerning HCV vaccine design[30]. As a 
result, it is expected that more research will be focused on this subject in the upcoming 
years, and hopefully, auspicious findings will follow. This renewed interest in funding 
HCV vaccines might be what is needed to achieve HCV global eradication, as has been 
proposed by the WHO a few years ago. Allocating funds for this purpose boosts the 
research area that has been left behind in terms of breakthroughs that can be 
effectively translated to public health benefits.
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