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Abstract
Organ transplantation is the ultimate treatment for end-stage diseases such as 
heart and liver failure. However, the severe shortage of donor organs has limited 
the organ transplantation progress. Xenogeneic stem cell transplantation provides 
a new strategy to solve this problem. Researchers have shown that xenogeneic 
stem cell transplantation has significant therapeutic effects and broad application 
prospects in treating liver failure, myocardial infarction, advanced type 1 diabetes 
mellitus, myelosuppression, and other end-stage diseases by replacing the 
dysfunctional cells directly or improving the endogenous regenerative milieu. In 
this review, the sources, problems and solutions, and potential clinical appli-
cations of xenogeneic stem cell transplantation will be discussed.

Key Words: Xenogeneic stem cells; Transplantation; Immune rejection; Organ recons-
truction; Neurological diseases; Tissue defects
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Core Tip: The severe shortage of donor organs generates long waiting lists for patients 
with end-stage diseases anticipating organ transplantation and ultimately leads to the 
deaths for those who are not fortunate to receive an organ. Xenogeneic stem cell 
transplantation provides a new strategy to solve this problem. In this review, we 
summarize possible problems and solutions and the clinical prospects of xenogeneic 
stem cell transplantation.
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INTRODUCTION
Organ transplantation is the ultimate treatment for end-stage diseases, such as liver 
failure, myocardial infarction, and advanced type 1 diabetes mellitus. The demand for 
organ transplants has been increasing for decades all around the world. Thus, the 
severe shortage of donor organs has become the biggest obstacle to organ 
transplantation[1-3]. In 2017, there were 114000 patients in the United States on 
waiting lists for organ transplantations. On average, 20 of these patients die every day 
because of their inability to obtain a suitable organ[4]. Moreover, organ shortage is 
more serious in some regions outside the United States. For example, in less developed 
regions, the success rate of transplantations decreased owing to the inconvenient 
transportation processes of transplanted organs. In addition, organ donation is 
opposed by some religious groups. Timely organ harvesting and transplantation are 
also influenced by controversial standards of death set by different religions[5,6].

Owing to the aforementioned limitations of organ transplantation, an alternative 
strategy for end-stage diseases is urgently needed. Thus, some researchers have 
focused on stem cell transplantation, which has achieved progress in the treatment of 
many diseases. For example, the induction of human embryonic stem cells (ESCs) into 
hepatocytes is an option for cell replacement therapy in liver diseases[7]. Hematopo-
ietic stem cell transplantation is gradually becoming a mature therapy for a variety of 
hematologic malignancies[8]. These researchers have shown that stem cell trans-
plantation is the most promising alternative treatment for end-stage diseases. 
However, with the development of allogeneic stem cell transplantation, it has been 
found that human stem cells are restricted in large-scale clinical applications for the 
following reasons. First, the human stem cell source is still limited because the number 
of stem cells in the human body decreases considerably with aging. Second, isolation 
of human stem cells is an invasive operation associated with specific ethical issues. 
Third, the prolonged time period needed to isolate and culture primary human stem 
cells makes them inconvenient for use in large-scale clinical applications. Fourth, 
relatively expensive and complex operations restrict the large-scale commercial 
production and application of human stem cells. Finally, it is difficult to perform 
quality control on human compared with animal stem cells[2,9,10]. Therefore, more 
researchers have been focused on the identification of alternative xenogeneic 
approaches with stem cells from animals for transplantation.

With the continuous development of xenogeneic stem cell transplantation, 
numerous researchers have demonstrated that it has considerable therapeutic effects 
and broad application prospects in treating liver failure, myocardial infarction, 
advanced type 1 diabetes mellitus, myelosuppression, and other end-stage diseases 
based (1) On the direct replacement of dysfunctional cells; or (2) On the improvement 
of the endogenous regenerative milieu[11-15]. Although potential problems in 
xenogeneic stem cell transplantation remain, many researchers have conducted 
numerous studies to solve these issues[3,16]. In this review, the sources, problems and 
solutions, and potential clinical applications of xenogeneic stem cell transplantation 
will be discussed.

SOURCES OF XENOGENEIC STEM CELLS
The sources of xenogeneic stem cells are extensive. Nonhuman primates, domestic 
animals, and rodents are promising cell sources for transplantation. Nonhuman 
primates that are genetically and physiologically close to humans are the leading cell 
sources[11,14,15]. Horn et al[14] injected baboon hematopoietic stem and progenitor 
cells in nonobese diabetic/severe combined immune-deficient mice. The results 
showed that CD34-enriched cells are capable for hematopoietic reconstitution[14]. 
However, many nonhuman primates are endangered species with limited access to 
stem cells. To guarantee cell sources, many researchers have turned their attention to 
domestic animals and rodents. Domestic animals include pigs, rabbits, dogs, cats, 
horses, sheep, goats, and cows, which are extensively recognized as suitable donors of 
xenogeneic stem cells owing to easy accessibility, breed capability, and low cost[17]. 

http://creativecommons.org/Licenses/by-nc/4.0/
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Among all domestic animals, most researchers have focused on pigs and porcine stem 
cells. Porcine stem cells are regarded as ideal candidates for cell transplantation owing 
to their comparatively larger sizes and accessibility[18-22]. Zhu et al[12] injected 
porcine adipose-derived stem cells (ADSCs) in the portal vein of acute-on-chronic liver 
failure rabbits, and showed that ADSCs migrated to the female rabbit liver and differ-
entiated to hepatocytes[12]. Some researchers have paid attention to the rabbit for its 
docile character and high-reproductive rate. Li et al[9] has isolated umbilical cord 
mesenchymal stem cells (MSCs) from rabbits to repair murine bone defects by tissue 
engineering[9]. Considering the strong reproductive capacity, short repro-ductive 
cycle, and sufficient species-specific reagents of rodents[17], there is a possibility of 
using rodents as a xenogeneic stem cell transplantation source. Kasraeian et al[23] 
injected mouse bone marrow mesenchymal stem cells (BMSCs) into the liver of rat 
fetuses in utero on day 14 of pregnancy and the result showed that these cells were 
capable to remain functional probably as hepatocyte-like cells in the liver of infant 
rats[23]. Jia et al incubated rat ADSCs with normal human serum and the result 
showed that these cells can protect themselves from human xenoantibody and 
complement-mediated lysis[24]. These studies suggest that rodents might be one 
possible source of xenogeneic stem cells in the future, while there remains a long way 
to go before its clinical application.

Regarding the choice of accessible stem cell types, the most frequently used 
xenogeneic stem cells include MSCs, ESCs, induced pluripotent stem cells (iPSCs), and 
placenta-derived cells. MSCs have been regarded as the most ideal cell type on account 
of their extensive cell sources, lack of ethical restrictions for its use, easy accessibility 
without invasiveness, high survivability in in vivo conditions, low-immunological 
characteristics, low tumorigenicity, and high safety in clinical applications[18-22]. 
Many research studies have demonstrated that xenogeneic MSC transplantation is 
effective in the treatment of liver failure, myocardial infarction, and bone 
defects[9,12,13]. ESCs have also gained attention with their totipotency and high-self-
renewal capacity[10].

PROBLEMS AND SOLUTIONS OF XENOGENEIC STEM CELL 
TRANSPLANTATION
Problems associated with xenogeneic stem cell transplantation, including immuno-
logical incompatibility, cell death, abnormal cell differentiation and proliferation, viral 
transmission from animals to humans, and ethical problems, hinder its clinical 
applications[3,16]. To solve these problems, numerous researchers have embarked on 
various studies that have led to great achievements.

Immune rejection
Immune rejection is undoubtedly the problem that generates considerable concern 
among all xenogeneic stem cell transplantation problems. Methods employed to 
suppress immune rejection include: (1) The choice of an appropriate stem cell type; (2) 
Gene editing technology; (3) Encapsulated cell technology; (4) Immunosuppressive 
drugs; (5) Regulation of cytokine levels; and (6) The use of cellular desensitization 
technology. These methods have helped enhance the transplantation success rate.

Choosing stem cells with low immunogenicity, immuno-suppressive and immune-
modulatory properties could solve this problem. Ding et al transplanted human 
umbilical cord stroma-derived stem cells in immunocompetent mice. The results 
showed that this type of human stem cell has immunosuppressive and immunomodu-
lation properties[25]. Subsequently, a number of researchers showed that xenogeneic 
stem cells, especially xenogeneic MSCs, have low immunogenicity, and immunosup-
pressive and immune-modulatory properties[26-29]. Porcine MSCs have been favored 
in xenotransplantation studies owing to their low-immunogenicity properties and 
immunomodulatory features[19,24,27-29]. Yang et al[27] and Medicetty et al[28] 
transplanted porcine umbilical cord MSCs and porcine ESC-derived neuronal 
progenitors in non-immunocompromised rats separately. Their results yielded similar 
cell immunosuppressive effects[27,28]. Li et al[9] transplanted rabbit umbilical cord 
MSCs with hyaluronic acid/tricalcium phosphate scaffolds in rats and exhibited the 
low-immunogenicity properties and immune suppression capabilities of rabbit 
umbilical cord MSCs[9]. Lévêque et al[26] co-transplanted rat MSCs with porcine 
neuroblasts in immunocompetent rat striata, and demonstrated the immunosupp-
ressive properties of these cells. Jia et al[24] demonstrated that rat ADSCs are capable 
of protecting themselves from human xenoantibodies and complement-mediated lysis, 
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which is dependent on CD59 and is correlated with low expression of galactose-α-1,3-
galactose (α-Gal)[24]. All the aforementioned research studies suggest that the choices 
of the appropriate stem cell types can reduce immune rejection without other 
measures.

To further reduce the possibility of immune rejection, we discuss herein other 
methods for the suppression of immune rejection. Considering that stem cells are 
much easier to use for gene editing than organs, gene editing technology is the most 
promising approach, and has a major advantage in suppressing immune rejection of 
stem cell transplantation. Gene editing can exert anti-immune rejection effects by 
knocking out or adding genes that are associated with immunity. For example, 
CRISPR/Cas9 can target genes encoding immunogenic proteins, such as α-Gal, that 
are expressed on the surface of porcine cells[16,30]. Leung et al[31] transplanted hESC-
derived endothelial cells with transgenic expression of murine CD47 on their cell 
surfaces in mice. The results showed that ectopic expression of recipient CD47 
mitigates macrophage-mediated phagocytosis and improves their survival after 
transplantation[31]. Similarly, Diamond et al[32] transplanted the hearts of transgenic 
pigs that express high levels of human CD46 in porcine vascular endothelial cells into 
baboons. The results showed no hyperacute rejections[32]. However, antibodies 
against other non-Gal antigens were found at varying levels in the pretransplanted 
sera of most primates, implying that additional research needs to be conducted on this 
topic in the future[33].

The use of encapsulated-cell technology helps stem cells to avoid xenogeneic host 
immune attacks. Cell encapsulation refers to the enveloping of single or groups of cells 
in a polymeric biomaterial that forms membranes with semipermeable proper-
ties[1,34,35]. Miceli et al[34] encapsulated human amnion-derived MSCs in a semiper-
meable and biocompatible fiber so that the paracrine activity of these cells could 
promote tissue regeneration while it avoided allogenic-related problems[34]. Orive 
et al[35] demonstrated that stem cells could generate functional pancreatic organoids to 
treat type 1 diabetes mellitus, while gradual loss of function and cell death were 
commonly detected when pancreatic organoids were transplanted in immunocom-
petent animals. Macro- and/or micro-encapsulations are able to improve long-term 
survival of pancreatic organoids generated from human cells[1,35]. The referred 
research studies indicate that cell-encapsulated technology is an effective method to 
solve the immune rejection problem.

Immunosuppressive drugs can also be used to suppress immune rejection in 
xenogeneic stem cell transplantation. A classic immunosuppressor is cyclosporine A, 
which has had reliable therapeutic effects on immune rejection in clinical practice for 
many years[36,37]. Compared with organ transplantation where the drugs are given 
systemically, the drug delivery methods in stem cell transplants are more flexible and 
convenient. Co-grafting a drug sustained-release system with stem cells is the most 
favored method. Yu et al[37] co-grafted cyclosporine A poly-(L-lactide) nanoparticles 
with human iPSCs in hemi-Parkinsonian rats. The results showed that this method 
exerted the desired immunosuppressive effect without any side effects[37].

Considering the role of cytokines in the immune rejection, some researchers used 
cytokines as candidates for the immunomodulatory tools in a xenogeneic stem cell 
transplantation model. Interferon-γ (IFN-γ) treatment of MSC/extracellular matrix 
complex upregulated indoleamine 2,3-dioxygenase expression, and thus suppressed T-
cell properties in vitro. Xenotransplantation of IFN-γ-pretreated MSC/extracellular 
matrix complex without the use of an artificial scaffold retained an elevated 
immunomodulator capacity and induced bone regeneration in a mouse calvarial 
defect[38]. In addition, other cytokines such as transforming growth factor-β could be 
used to regulate T-cell responses[39-41].

In addition, cellular desensitization may be used as a method to suppress immune 
rejection. Cell desensitization refers to the desensitization achieved by repeat injections 
of xenogeneic stem cells into a neonatal host, so that the stem cells can survive long-
term transplantation in the xenograft environment of adult host. Although the desens-
itization mechanism and success rate need to be discussed, Heuer et al’s research has 
demonstrated that hESC desensitization could surpass the survival time of conven-
tional pharmacological immune-suppressive treatments[42]. Although the cell desens-
itization has been demonstrated in animal models only thus far, cellular or cell 
derivatives’ desensitization offers the possibility of xenogeneic stem cell 
transplantation.

Cell death, abnormal differentiation, and proliferation 
Similar to the problems associated with cell replacement therapy, cell death and 
abnormal cell differentiation and proliferation have directly led to the failure of 



Jiang LL et al. Xenogeneic stem cell transplantation

WJCC https://www.wjgnet.com 3830 June 6, 2021 Volume 9 Issue 16

xenogeneic stem cell transplantation, and even harmed the recipients. Researchers 
have shown that the cell culture microenvironment affects cell death and differen-
tiation. Therefore, some researchers have tried to change the microen-vironment of the 
cells to avoid cell death and abnormal differentiation. Herein, we will discuss two 
common methods to alter the microenvironment of cell cultures to emulate the native 
growth niche in vivo. One method is to change the traditional two-dimensional (2D) 
culture to a three-dimensional (3D) culture. Qiao et al[43] used cell chips, a device to 
restrict cells to specific spatial locations, to develop single-cell derived spheres of 
umbilical cord MSCs. They combined a 3D culture with 2D arrayed patterns of single 
or multiple cells on one patch in the cell chip to (1) improve MSC survival and 
migration ability; and (2) promote angiogenesis in xenotrans-plantation[43]. The other 
approach involves the modification of the scaffold. For tissue-engineering-related 
xenogeneic stem cell transplantation, scaffold materials may play a role in cell survival 
and differentiation. Raynald et al[44] used a hyaluronic-acid-based scaffold which was 
covalently modified by poly-l-Lysine, as a vehicle to deliver the hBMSCs to the injured 
spinal cord of rats. Rats receiving hBMSCs/hyaluronic acid-poly-l-Lysine showed 
improved survival of transplanted hBMSCs in vivo[44]. McCarty et al[45] showed that 
the gel foam scaffold was supportive of chondrogenesis, while a ceramic hyaluronic 
acid/tricalcium phosphate carrier resulted in ectopic osteogenesis, adipogenesis, and 
hematopoietic-support activity in the case of sheep MSCs injected in immunocom-
promised rats. These findings highlighted the importance of selection of a suitable 
scaffold for tissue engineering considering the expected cell differentiation 
direction[45]. iPSCs and ESCs have potential tumorigenic properties owing to their 
cellular overgrowth in cell transplantation and other therapies. To solve this problem, 
Zygogianni et al[46] implemented optimized directed differentiation protocols to yield 
the desired precursor cell types and utilized cellular enrichment procedures to remove 
unwanted cells to select only the cells with a restricted proliferation potential for 
transplan-tation[46].

Animal viruses
Although the public is concerned with animal virus transmission in xenogeneic stem 
cell transplantation, animal viruses are much easier to be controlled than human-to-
human viral transmissions. Previous studies have demonstrated that animal viruses 
can be controlled with the use of effective measures, including the breeding of source 
animals in biosecure isolation conditions, regular testing of donor animals, and the 
execution of long-term follow-ups after clinical xenotransplantations[2,27,47].

For endogenous retrovirus that cannot be solved by the above methods, gene 
editing can be used as an effective strategy. The current research studies focus more on 
porcine endogenous retroviruses. CRISPR/Cas9, a revolutionary gene editing 
technology that allows the custom modification of almost any part of any genome with 
unmatched precision and accuracy, has stimulated interest in the field as it offers the 
possibility to genetically engineer porcine organs and tissues that are virtually risk-
free of endogenous porcine retrovirus transmissions[16,30].

Ethical issues
The attitude of the public toward the ethics of xenogeneic stem cell transplantation is 
changing. Some people hold the view that xenotransplantation inevitably 
compromises species boundaries and erodes human dignity. Animal welfare groups 
also opposed xenotransplantation on the grounds that nonhuman animals should not 
be treated as redesignable systems[30]. In fact, various animal products are already 
used in humans. For example, bioactive bones from decellularized bovine femoral 
bone and freeze-dried bone marrow stem cell paracrine factors are extensively used in 
large-sized bone defects[48]. These achievements are gradually changing the public’s 
outlook, paving the way for xenogeneic stem cell transplantation. However, potential 
applications must consider customs, laws, religions, and other factors in different 
regions.

CLINICAL PROSPECTS
The transplanted xenogeneic stem cells could replace directly the dysfunctional cells 
through in situ tissue-specific lineage transdifferentiation (e.g., totipotent stem cells 
and tendon- or bone-derived lineage cells), as well as improve the endogenous 
regenerative milieu through the release of pro-angiogenic, proneurogenic, and anti-
inflammatory factors. Therefore, xenogeneic stem cell transplantation could be used to 
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treat a variety of diseases (Figure 1 and Table 1).

Organ reconstruction
Xenogeneic stem cell transplantation introduces new ideas for organ reconstruction. 
Thus far, multiple research studies have reported its therapeutic effects in liver failure, 
myocardial infarction, advanced type 1 diabetes mellitus, myelosuppression, and other 
end-stage diseases[11-15]. Zhu et al[12] transplanted porcine ADSCs in acute-on-
chronic liver failure rabbits. The results showed that xenogeneic stem cell 
transplantation significantly improved liver function and prolonged the liver survival 
time owing to various mechanisms such as cytokine production and inflammatory 
reaction inhibition. Hepatic regeneration may be associated with multiple pathways to 
accomplish cell replacement and organ repair[12]. Nakamura et al[13] injected porcine 
MSCs directly into the peri-infarct zones of hearts of immunodeficient mice at the time 
of acute myocardial infarction. The promoted functional improvement in the infarcted 
heart is most likely attributed to the paracrine effects of MSCs rather than because of 
directly induced cardiomyocyte regeneration[13]. Radtke et al[11] injected nonhuman 
primate hematopoietic stem and progenitor cells intravenously in a mouse model and 
demonstrated a dose-dependent multilineage engraftment of nonhuman primate 
hematopoietic stem and progenitor cells in the peripheral blood, bone marrow, spleen, 
and thymus; this enabled homing of the nonhuman primate hematopoietic stem and 
progenitor cells in the bone marrow stem cell niche and supported complete reconsti-
tution of phenotypically and functionally distinct nonhuman primate hematopoietic 
stem and progenitor cell subpopulations[11]. Horn et al[14] reported low-level 
engraftment of gene-modified and transplanted baboon hematopoietic stem and 
progenitor cells with the nonobese diabetic/severe combined immune-deficient mouse 
model, and demonstrated that baboon hematopoietic stem and progenitor cells 
provide stable multilineage repopulation and differentiation of all blood cell types 
after transplantation as human candidate stem cells[14]. Abed et al[15] reported that 
Macaca cynomolgus iPSC-derived hematopoietic cells can yield hematopoietic 
engraftment in a cytokine stimulation protocol in immunodeficient mice[15].

In addition to the narrow sense of xenotransplantation of stem cells from animals to 
humans or animals that belong to another species, the so-called reverse xenotransplan-
tation can also be used for organ reconstruction. Reverse xenogeneic stem cell 
transplantation takes advantage of the host animals to generate and expand human 
cells, tissues, and organs for transplantation. For example, to generate hepatocytes, 
islets, or hematopoietic cells, the human stem cells would be allowed to fully differ-
entiate in the animal host whereupon the mature cells or tissues could be harvested 
and transferred to the patient with slight or no immune rejection. The generation of 
human iPSCs enables the access to patient-derived pluripotent stem cells and 
tissues/organs can potentially be generated to match the same genetic background of 
the patient recipient[3,23,49]. Reverse xenogeneic stem cell transplan-tation mainly 
involves gene knockouts to generate animal models that lack specific organs and 
blastocyst complementation to form a chimeric animal consisting of the animal and 
human embryo, thus potentially allowing the fabrication of human organs in 
animals[16,49,50]. The CRISPR/Cas9 system is the most convenient tool for gene 
knockouts. The blastocyst complementation method was developed to inject cells in a 
blastocyst. Current research studies mainly deliver human stem cells to animals 
through intra-uterine stem cell transplantation that averts rejection and provides a 
more nurturing microenvironment[3,23]. Earlier research studies of organ regeneration 
by blastocyte complementation mainly focused on rat blastocysts with xenogeneic 
(interspecific: Mouse ESC and iPSC) stem cells. Thus far, organs that have been 
successfully used in rat hosts have included the pancreas, heart, lung, and 
kidney[23,50]. Considering the development rate, anatomy, physiology, organ size, 
genomic similarity, and cell cycle characteristics between donor and recipient, large 
animals (humanized pigs) constitute good candidates as transplantation hosts to 
generate sizable masses of human cells, tissues, and organs for clinical pur-
poses[16,49]. Matsunari et al[51] created apancreatic pig embryos as recipients for the 
complementation with wild-type donor cells, and demonstrated the feasibility of 
organ generation with blastocyst complementation in pigs[51]. Although research-
related gene knockout studies associated with all the lung tissue types have been 
published, a better understanding of the nuances of pulmonary development is 
required before this method can be applied to pulmonary tissues[52]. In addition, 
before the use of chimeric human–pig embryos becomes successful, the selection of 
suitable human iPSCs and ethical issues should be considered. These reports 
demonstrated that xenogeneic stem cell transplantation has broad prospects in liver 
failure, myocardial infarction, advanced type 1 diabetes mellitus, myelosuppression, 
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Table 1 Therapeutic potential of xenogeneic stem cells in various experimental disease models

Source Clinical condition/experimental animal 
model used Observations Ref.

Porcine ADSC Acute-on-chronic liver failure/rabbit Improved the liver function and prolonged their 
survival time

[12]

Porcine MSCs Acute myocardial infarction/immunodeficient 
mouse

Promoted functional improvement in the infarcted 
heart most likely resulting from the paracrine effects

[13]

Baboon hematopoietic 
stem/progenitor cells

Nonobese diabetic/severe combined immune-
deficient mouse

Provide stable multilineage repopulation and 
differentiation into all blood cell types

[14]

NHP hematopoietic 
stem/progenitor cells

Mouse Reconstituted the bone marrow stem cell niche [11]

Macaca cynomolgus iPSC-
derived hematopoietic cells

Immunodeficient mouse Yielded hematopoietic engraftment in a cytokine-
stimulation protocol

[15]

Rabbit umbilical cord 
mesenchymal stem cells

Bilateral cranial defects/immunocompetent rat Promoted osteogenesis by secreting BMP2 and 
inhibiting the inflammatory reaction

[9]

Sheep BMSCs Ectopic implantation/immunocompromised 
mouse

Extensive bone formation [58]

Ovine MSCs Ectopic implantation/immunocompromised 
mouse

Ectopic osteogenesis, adipogenesis and 
haematopoietic-support activity (with a ceramic 
HA/TCP carrier); partial chondrogenesis (within a 
gelatin sponge)

[45]

Porcine NPCs Intravenous pentylenetetrazole seizure threshold 
test/rat

Widespread migration and inhibitory interneurons [55]

Porcine ESCs Spinal cord injury rat Functional recovery of hindlimbs and exhibition of the 
highest BBB scale score

[27]

Pig embryonic neural precursor 
cells

Parkinson’s disease/ Macaca fascicularis Long-term xenograft survival and differentiation; 
significant improvement of locomotor activity

[54]

Porcine neural stem/precursor 
cells

Parkinson’s disease/rat Exhibited large and healthy grafts; improvement in 
recovery neurological function and survival

[29]

Miniature-swine neural stem 
cells

Parkinson’s disease/rat Functional recovery from Parkinson’s disease 
behavioral defects; the graft revealed multiple types of 
neurons

[18]

Porcine UCMSC Parkinson’s disease/rat Engrafted and proliferated without immune rejection; 
differentiated into TH-positive cells

[28]

ADSC: Adipose-derived stem cell; MSCs: Mesenchymal stem cells; NHP: Nordic hamstring protocol; iPSC: Induced pluripotent stem cells; BMP2: Bone 
morphogenetic protein 2; BMSCs: Bone marrow mesenchymal stem cells; HA/TCP: Hydroxyapatite/beta-tricalcium-phosphate; NPCs: Nucleus pulposus 
cells; ESCs: Embryonic stem cells; BBB: Blood-brain barrier; UCMSC: Umbilical cord mesenchymal stem cell.

and other end-stage diseases.

Neurological diseases
Xenogeneic stem cell transplantation provides a novel pathway for diseases that 
cannot be solved by organ transplantation, such as neurological diseases represented 
by Parkinson’s disease[53]. Badin et al[54] transplanted pig embryonic neural 
precursor cells in the striatum of immunosuppressed Parkinsonian primates that 
resulted in long-term xenograft survival and differentiation, in conjunction with 
significant improvements in locomotor activity[54]. Michel-Monigadon et al[29] 
transplanted porcine neural stem/precursor cells into the striatum of rats without 
immunosuppression. The cells yielded large and healthy grafts and led to significant 
improvements/recovery of neurological function and survival[29]. Backofen-
Wehrhahn et al[55] demonstrated that bilateral transplantation of neural precursor 
cells derived from porcine and human ventral mesencephalon in the subthalamic 
nucleus of immunosuppressed rats induces anticonvulsant effects. All these cells 
showed widespread migration characteristics, developed characteristics of inhibitory 
interneurons, and survived for up to 4 mo after transplantation[55]. Mine et al[18] 
transplanted miniature-swine mesencephalic neuroepithelial stem cells from the 
midbrain at early embryonic stage in the Parkinsonian rat striatum. The cells can 
survive, differentiate into functional neurons, form synaptic connections with the host 
brain, and ameliorate neurological dysfunction only during the 1-wk administration of 
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Figure 1 Xenogeneic stem cell transplantation and reverse xenotransplantation.

immunosuppressants[18]. Yang et al[27] transplanted porcine embryonic stem-derived 
neuronal progenitors in spinal cord injury model rats and demonstrated the treatment 
potential of grafted cells for spinal cord injury and functional behavioral 
improvement[27]. Similarly, Medicetty et al[28] transplanted porcine umbilical cord 
MSCs in the lesioned brains of rats affects by Parkinson’s disease, and the cells prolif-
erated normally and differentiated into tyrosine hydroxylase-positive cells[28]. Fink 
et al[56] and Schumacher et al[57] have transplanted porcine fetal neural cells unilat-
erally in Parkinson’s and Huntington’s disease patients, and observed clinical 
improvement and favorable safety profiles[56,57]. These research studies showed that 
xenogeneic stem cells could serve as an attractive candidate for neural transplantation.

Tissue defects
Xenogeneic stem cell transplantation has broad prospects in tissue defects. Tissue 
defects can be caused by trauma, tumor, and birth defects, which severely impair daily 
and social lives of patients[9,17,19]. Many researchers have demonstrated that 
xenogeneic stem cell transplantation with scaffolds could treat bone, cartilage, and soft 
tissue defects. Kon et al[58] and McCarty et al[45] independently transplanted sheep 
BMSCs ectopically with different carriers in immunocompromised mice. Both studies 
showed that xenogeneic stem cells induced chondrogenesis, osteogenesis, 
adipogenesis, and hematopoietic-support activity[45,58]. Li et al[9] transplanted rabbit 
umbilical cord MSCs into rats and showed that xenogeneic stem cells promote 
osteogenesis by secreting bone morphogenetic protein 2 and inhibiting the inflam-
matory reaction in xenogeneic rat hosts of bilateral cranial defects[9]. In addition, 
porcine synovial MSCs were cultured to develop 3D cell/matrix constructs, which 
were transplanted in an allogenic meniscus defect model that resulted in fibrous- or 
chondrogenic-tissue-like repairs[21,22]. Autogenous porcine BMSCs/ engineered 
collagen tissue can also be used to treat osteochondral defects in vivo[59].

CONCLUSION
Xenogeneic stem cell transplantation has the advantages of (1) Potentially unlimited 
supply; (2) Convenient acquisition; (3) Achievable quality control; and (4) Lower cost, 
thus establishing the basis for large-scale clinical applications. Prior research studies 
have demonstrated that xenogeneic stem cell transplantation has significant 
therapeutic effects and broad application prospects in treating liver failure, myocardial 
infarction, advanced type 1 diabetes mellitus, myelosuppression, and other end-stage 
diseases based on the direct replacement of the dysfunctional cells or the improvement 
of the endogenous regenerative milieu. Although there remain potential problems in 
xenogeneic stem cell transplantation, researchers have conducted numerous studies to 
solve these issues. Therefore, xenogeneic stem cell transplantation provides a new 
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strategy for end-stage diseases and is worthy of intensive investigations in the future.
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