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Abstract

AIM: Mitogenic and non-mitogenic activities of fibroblast
growth factor (FGF) are coupled to a range of biological
functions, from cell proliferation and differentiation to the
onset of many diseases. Recent reports have shown that
acidic fibroblast growth factor (aFGF) has a powerful anti-
apoptosis function, which may have potentially therapeutical
effect on gut ischemia and reperfusion injuries. However,
whether this function depends on its mitogenic or non-
mitogenic activity remains unclear. In this study, we identified
the source of its anti-apoptosis function with a mutant,
aFGF28-154 and observed its effect on reducing gut ischemia
and reperfusion injury.

METHODS: aFGF28-154 was generated by amplification
of appropriate DNA fragments followed by subcloning the
products into pET-3c vectors, then they were expressed in
BL21 (DE3) cells and purified on an M2 agarose affinity column.
This mutant aFGF28-154 maintained its non-mitogenic
activity and lost its mitogenic activity. With a dexamethasone
(DEX)-induced mouse thymocyte apoptosis model in vitro

and in vivo, we studied the anti-apoptotic function of
aFGF28-154. Also, in vivo study was performed to further
confirm whether aFGF28-154 could significantly reduce
apoptosis in gut epithelium after gut ischemia-reperfusion
injury in rats. Based on these studies, the possible signal
transduction pathways involved were studied.

RESULTS: With a dexamethasone (DEX)-induced mouse
thymocyte apoptosis model in vitro and in vivo, we found
that the anti-apoptotic function of aFGF28-154 was significantly
enhanced when compared with the wild type aFGF. In vivo

study further confirmed that aFGF28-154 significantly
reduced apoptosis in gut epithelium after gut ischemia-
reperfusion injury in rats. The mechanisms of anti-apoptosis
function of aFGF28-154 did not depend on its mitogenic
activity and were mainly associated with its non-mitogenic
activities, including the intracellular calcium ion balance
protection, ERK1/2 activation sustaining and cell cycle balance.

CONCLUSION: These findings emphasize the importance of
non-mitogenic effects of aFGF, and have implications for its
therapeutic use in preventing apoptosis and other injuries in
tissues and internal organs triggered by ischemia-reperfusion
injury.
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INTRODUCTION
Fibroblast growth factors (FGFs) are members of a family of
polypeptides that are potent regulators of cell proliferation,
differentiation, and function. They play very important roles in
normal development, maintenance of tissues, wound healing
and repair. They have also been implicated in a wide range of
pathological conditions, including tumorigenesis and
metastasis[1-4]. Acidic and basic fibroblast growth factors (aFGF
and bFGF), the important members of this family, were named
for their different isoelectric points. They have similar molecular
weights and spectra of biological activities, and show
approximately 55% amino acid similarity. aFGF and bFGF
stimulate the proliferation of all cells of mesodermal organ, and
many cells of neuroectodermal, ectodermal, and endodermal
origin. Also, both FGFs are chemotactic and mitogenic for
endothelial cells in vitro, inducing production of many factors
involved in regulation of many functions[2-5]. Recent reports have
shown that aFGF has a powerful anti-apoptotic function, which
may have potentially therapeutical use in some diseases[5-13].
However, whether this function depends on its mitogenic or
non-mitogenic activity remains unclear, and clarification of this
function may help to find its new mechanisms and active
domains. In the present study, we modified the wild type of
aFGF and acquired a mutant, aFGF28-154, which kept its non-
mitogenic activity and lost its mitogenic activity. By using the
dexamethasone (DEX)-induced apoptotic model, we found that
the anti-apoptosis function of the modified aFGF28-154 was
significantly enhanced when compared with the wild type of
aFGF. The results indicated that the powerful anti-apoptosis
function of aFGF28-154 was associated with the intracellular
calcium ion balance protection and ERK1/2 activation
sustaining, which did not depend on its mitogenic activity. Further
studies showed that aFGF might have a surveillance function at
the checkpoint of cell cycle, for determination of stagnation,
division or apoptosis. Finally, in vivo study confirmed that
aFGF28-154 could significantly reduce apoptosis in gut epithelium
after gut ischemia- reperfusion injury in rats.

MATERIALS AND METHODS
Protein preparation
Plasmids encoding aFGF28-154 were generated by amplification
of appropriate DNA fragments, followed by subcloning the



products into pET-3c vectors. aFGF28-154 protein was expressed
in BL21 (DE3) cells and purified on an M2 agarose affinity
column (Sigma). We carried out SDS-PAGE and Western blot
analysis with aFGF monoclonal antibody (Sigma) to determine
the accuracy of protein expression.

Mitogenic activity assay
MTT method was conducted to test the mitogenic activity of
both aFGFs. NIH 3T3 fibroblasts and PC12 cell lines from Wuhan
University were cultured in DMEM (Hyclone) with 150 mL/L
fetal bovine serum (Gibico) plus 50 mL/L equine serum (Hyclone)
for PC12 culture. These cells were stimulated with aFGF and
aFGF28-154 at a final concentration of 0, 1, 2, 3, 4, 5, 6, 8, 10 ng/mL
for 24 h before A value detection.

Apoptosis models in thymocytes and treatment methods in vitro
Twenty homogeneous Balb/c mice aged four weeks were randomised
into 4 groups: control group (group 1); DEX group (group 2),
DEX+aFGF (Biopharmaceutical R&D Centre) group (group 3)
and DEX+aFGF28-154 (group 4). DEX, if applied, was taken at
a final concentration of 1 µmoL. aFGF and aFGF28-154, if applied,
were taken at a final concentration of 100 ng/mL. In order to
explore the relationship between dosage and effects, different
dosages of aFGF28-154 from 50 to 200 ng/mL were used in another
experiment. After collected under sterile conditions, thymocytes
were cultured in RMPI1640 medium (Hyclone) supplemented
with 100 mL/L fetal bovine serum (Gibico) for 5 h.
       In in vivo study, Group 1 was injected with saline, group 2 with
DEX 10 mg/kg, group 3 with DEX 10 mg/kg and aFGF10 µg/kg,
and group 4 with DEX 10 mg/kg and aFGF28-154 10 µg/kg.
Animals were fed for 5 h before collection of thymocytes.

Flow cytometry
Flow cytometry was performed using an FACScaliber (Becton
Dickinson). Phosphatidylserine (PS), a sign of early apoptosis,
was stained with Annexin V-FITC (Baosai), while DNA fragments
of the necrotic cells were evaluated with PI apoptosis.

Morphological observation and gel electrophoresis analysis of
apoptosis
Transmission electron microscope was used to morphologically
visualize apoptosis and agarose gel electrophoresis was performed
to find the damage of nuclear chromatin DNA.

Analysis of intracellular Ca2+ concentration
Confocal microscope was used to analyse the changes of

intracellular Ca2+ concentration.

Apoptosis model in gut epithelium and treatment methods in vivo
Rat intestinal ischemia-reperfusion (I/R) injury was produced
by clamping the superior mesenteric artery (SMA) for 45 min
followed by reperfusion for 24 h. One hundred and fourteen
Wistar rats were divided randomly into four groups, namely
intestinal I/R plus saline treatment group (I/R+Saline), intestinal
I/R plus wild type aFGF treatment group (I/R plus aFGF),
intestinal I/R plus aFGF 28-154 group (I/R plus aFGF28-154)
and normal control group (normal control). In groups 1, 2 and 3,
SMA was separated and occluded for 45 min, then released for
reperfusion for 24 h. At the onset of reperfusion, saline (0.5 mL)
or aFGF (4 µg/rat), or aFGF28-154 (4 µg/rat) was injected through
the jugular vein. In control group, SMA was separated without
occlusion. After the animals were sacrificed, tissue biopsies
were taken from the intestine at 30 min, 1, 2, 6, 12, and 24 h,
respectively. Apoptosis in epithelium entericum was assayed
with TUNEL technique and analyzed using light microscope.
All animal experiments were carried out according to the Guidelines
for Care and Use of Experimental Animals and approved by the
internal ethical committees of the Trauma Centre of Postgraduate
Medical College (Beijing).

Analysis of signal transduction in cells stimulated by DEX and
both aFGFs in vitro
Cultured thymocytes were sampled to carry out Western blot
analysis. Antibodies used were ERK1/2, p-ERK1/2, JNK1/2,
p38 MAPK, c-Myc (Sigma), and Caspase-3 (Boster).

RESULTS
Protein preparation and mitogenic activation assay
Plasmids encoding aFGF28-154 were generated by amplification
of appropriate DNA fragments, followed by subcloning the
products into pET-3c vectors. aFGF28-154 protein was expressed
in BL21 (DE3) cells and purified on an M2 agarose affinity
column (Sigma). We carried out SDS-PAGE and Western blot
analysis with aFGF monoclonal antibody (Sigma) to determine
the accuracy of protein expression (Figure 1A , B). We tested
both aFGF and aFGF28-154 for their effects on proliferation of
NIH 3T3 fibroblasts and rat pheochromocytoma (PC12) cells.
The results indicated that the latter significantly lost its mitogenic
activity evidenced by MTT results (Figure 1C). Thus, we could
perform a comparative research to clarify whether aFGF function
depended on mitogenic activity.

Figure 1  Loss of mitogenic activity in aFGF after modification. A: Sequence comparison between modified aFGF (aFGF28-154) and
the wild type. B: Western blot analysis of purified aFGF and aFGF28-154. C: MTT assay of the mitogenic activity of both aFGFs.
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Assay of anti-apoptotic activation of both aFGFs
We examined the anti-apoptotic effects of both aFGFs by a
DEX-induced thymocyte apoptosis model in mouse, which was
considered as one of the best characterized apoptosis research
systems[14-16]. First, a number of typical apoptotic thymocytes
with apoptotic bodies from the DEX-induced group were
visualized by transmission electron microscope (Figure 2A, B).
Second, agarose gel electrophoresis results of this group also
indicated characteristic ladder bands of oligonucleosomal
fragments (180-200 bp) produced by extracted chromatin DNA,
while few were found in blank group and the DNA damage in
DEX -induced group was much more serious than that in both
aFGFs treated groups (Figure 2C). Third, Annexin V-FITC/PI
staining was used to distinguish apoptotic and necrotic cells
from normal ones by flow cytometry (Figure 2D). Our test

indicated that under the stimulation of DEX, thymocytes showed
apoptosis both in vivo and in vitro (44.40% and 20.07%,
respectively) after 5-h culture. With the protection of aFGF,
when exposed to DEX, the apoptosis rate was lower both in vivo
and in vitro (33.71% and 18.31%, respectively). Under the same
condition, however, the apoptosis rate was significantly lower
in aFGF28-154 group than in DEX and aFGF groups both in vivo
and in vitro (23.95% and 13.80%, respectively) (Figure 2D).
The quantitative analysis of anti-apoptosis results and the dose-
effect relationship of aFGF28-154 are summarized in Table 1.
Fourth, we studied the changes of concentration of intracellular
calcium ion (Ca2+) by confocal microscope to further confirm
the anti-apoptotic effects of both aFGFs on mouse thymocytes.
High concentration of intracellular Ca2+ caused by influx increase
was involved in triggering protease and endonuclease

Figure 2  Comparative evaluation of the anti-apoptotic function of aFGF28-154 both in vitro and in vivo. A: TEM observation
(×20 000) of DEX-induced apoptosis in mouse thymocytes. B: Typical apoptotic bodies in DEX-induced thymocytes. C: Damage
of DNA analysis by agarose gel electrophoresis according to DNA ladder kit (Apoptosis DNA Laddering Kit-Ethidium Bromide,
R&D Systems). Lane 1: DNA extracted from normal control group; lane 2: DNA from DEX only group; lane 3: DNA from DEX
plus aFGF28-154 group; lane 4: DNA from DEX plus aFGF group; lane 5: DNA size markers (bp). D: Flow cytometry results.
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activation and apoptosis. Hence, Ca2+ influx was considered as
a sign of apoptosis occurrence[17-19]. In this study, the intracellular
Ca2+ concentration in thymocytes increased quickly when
exposed to DEX. When administrated with aFGF, however,
Ca2+ concentration decreased to a lower level (Figure 3A).
However, the test for aFGF28-154 showed a marked reduction
of Ca2+ influx (Figure 3B).

Table 1  In vitro quantitative analysis of anti-apoptotic effects
and dose-effect relationship of aFGF28-154 on thymocytes
induced by DEX (mean±SD)

Groups     Conc. (ng/mL)      Apoptosis (%)

Normal control          1.37±0.39
DEX only        18.99±0.52a

DEX plus aFGF28-154   50        16.14±0.44c

100        12.35±0.36b

150          9.75±0.20b

200        11.23±0.71b

aP<0.05 vs normal control; cP<0.05, bP<0.01 vs DEX only.

Gut epithelium apoptosis and treatment effects with both aFGFs
in vivo
We investigated the therapeutic use of both aFGFs in gut ischemia-
reperfusion injury in rats and found that the apoptosis rate of
epithelium entericum was 5.83±1.47 in normal control rats,
46.16±4.06 in rats treated with saline, 39.66±3.56 in rats treated
with wild type of aFGF and 40.66±2.73 in rats treated with
aFGF28-154 2 h after ischemia-reperfusion injury (Table 2). The

quantitative analysis of apoptosis in epithelium entericum in
different groups of different time points is summarized in Table 2.
The morphological examination with light microscope and
immunohistochemical detection and quantification of apoptosis
based on the labelling of DNA strand breaks confirmed that
tissue edema, local necrosis (Figure 4A, C, E, G) and apoptosis
in epithelium entericum were markedly reduced in both aFGFs
treated rats (Figure 4B, D, F, H).

Analysis of possible signal transduction pathway
In in vitro study, we analysed the changes of ERK1/2, p- ERK1/2,
JNK1/2, p38 MAPK, c-Myc and Caspase-3. The results showed
that only ERK1/2 pathway was activated in all of the three
pathways during aFGF anti-apoptosis course (Figure 5A, B, C, D)
and no phosphorylated JNK1/2 and p38 MAPK could be
detected. In normal control thymocytes, steady ERK1/2 activation
was observed, and such an activation was almost completely
blocked when cells exposed to DEX. But both aFGFs attenuated
this DEX-induced blockage, maintaining ERK1/2 activation,
which is required for normal thymocyte cycle at a certain level
(Figure 5A). P38 expression in control group was steady with
time lapse (Figure 5B) and decreased gradually when cells
exposed to DEX (Figure 5C). However, the total p38 MAPK
expression decreased at 30 min and then a peak expression
appeared at 60 min when the DEX-induced cells were protected
with aFGF or aFGF28-154 (Figure 5D, E). The expression of c-Myc
and Caspase-3 in thymocytes in the control group was kept at
a stable level following the time course (Figure 5B). When
stimulated merely by DEX, c-Myc was highly expressed in the
first 30 min and the activated Caspase-3 increased following
c-Myc (Figure 5C). These results indicated that DEX- induced
thymocyte cell cycle turned out to be c-Myc-induced apoptosis.
In the aFGF group, however, c-Myc was expressed only at
0 min, and then showed no significant change at other time
points (Figure 5D). In the aFGF28-154 group, c-Myc showed a
peak expression at 30 min, and then held at a relatively steady
level (Figure 5E).

DISCUSSION
Currently, the anti-apoptotic effects of aFGFs have been
established from the results of DNA ladder electrophoresis,
Annexin V-FITC/PI staining, examination of Ca2+ concentration
with confocal microscope, and in vivo study on gut ischemia-
reperfusion injury in rats. But the results were far beyond our
expectation. aFGF, especially the modified non-mitogenic
aFGF28-154 with a powerful ability to reduce the apoptosis rate,
made us to explore whether there were some special mechanisms
involved in such an action.
       To further investigate the mechanisms of the anti-apoptotic
function of aFGF, we studied three protein kinases, including
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Figure 3  Balance of cytosolic calcium ion concentration protected by both aFGFs when stimulated by DEX. A: Mouse thymoytes
from Ca2+ influx protected by wild type aFGF. B: Decrease of intracellular Ca2+ concentration caused by aFGF28-154.
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Table 2  In vivo quantitative analysis of apoptosis in epithe-
lium entericum in different groups (mean±SD)

Time                Normal       I/R+Saline     I/R+aFGF     I/R+aFGF
    control        (n = 36)          (n = 36)       28-154
    (n = 6)                                                     (n = 36)

Before ischemia 5.83±1.47     5.83±1.47      5.83±1.47     5.83±1.47
I/R 30 min         29.83±3.43b   23.83±2.78c     25.50±1.87c

I/R 60 min         39.33±4.32b   30.33±3.07c   33.44±5.60c

I/R 2 h         46.16±4.60b   39.66±3.56c   40.66±2.73c

I/R 6 h         31.33±3.72b     25.5±2.16c   26.00±2.61c

I/R 12 h           62.5±3.08b   48.50±2.74c   50.16±3.71c

I/R24 h         51.66±3.87b   41.33±2.94c   42.16±3.31c

bP<0.01 vs normal control; cP<0.05 vs I/R+Saline group. The
percentage of positive apoptotic epithelium entericum was
estimated after two hundred cells were counted in five differ-
ent fields randomly chosen from preparation (n = 5). We did
all analysis with SPSS. All data were presented as mean±SD.
We used one-way analysis of variance and the t test where
appropriate. Significance was defined as P<0.05.



extracellular-signal-regulated kinase (ERK) 1/2, c-Jun-NH2-
terminal kinase (JNK) 1/2, and p38 mitogen associated protein
kinase (MAPK). According to the Western blot analysis on

phosphorylation, we found that only ERK1/2 pathway was
activated in all of the three pathways during aFGF anti-apoptosis
course (Figure 5A) and no phosphorylated JNK1/2 and p38

Figure 4  Morphological examination and immunohistochemical detection and quantification of apoptosis based on the label-
ling of DNA strand breaks (Roche Applied Science, Germany). A: Marked epithelial separation from the basement, subepithelial
edema, haemorrhage, erosion. C: Necrosis in I/R plus saline control group. E and G: Tissue damage reduction in both aFGF and
aFGF28-154 treated groups. B: Immunohistochemical detection and quantification of apoptosis in normal epithelium entericum.
D: Increased number of apoptotic cells in epithelium entericum in rats treated with saline. F and H: Significant reduction of
apoptotic cells in epithelium entericum in rats treated with both aFGF and aFGF28-154.

Figure 5  Function of aFGFs as a checker of cell cycle. A: Western blot analysis of the phosphorylation of ERK1/2. B: Western blot
analysis of ERK1/2 MAPK, JNK1/2 and p38 MAPK, as well as c-Myc and Caspase-3 in control group. C: Analysis of thymocytes
stimulated by DEX. D: Analysis of thymocytes under aFGF protection. E: Analysis of thymocytes under aFGF28-154 protection.
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MAPK could be detected. In normal control thymocytes, the
steady ERK1/2 activation was observed, and such an activation
was almost completely blocked when cells exposed to DEX.
But both aFGFs attenuated this DEX-induced blockage,
maintaining ERK1/2 activation, which is required for normal
thymocyte cycle at a certain level (Figure 5A). ERK1/2 activation
was crucial for aFGF to exert protective effects on many cell
types[20,21]. DEX could induce mitochondrial membrane potential
collapse and promote Ca2+ release from intracellular pool and
the subsequent stimulation of a Ca2+ influx from extracellular
environment, which contributes to apoptosis[16]. However, an
ERK1/2 activation could protect mitochondrial membrane
potential by downstreaming Bcl-X activation[22]. The fact that
only ERK1/2 pathway was activated in all of the three pathways
and Ca2+ influx reduction in both aFGF groups strongly
suggested that the anti-apoptotic activity of aFGF involved in
maintaining ERK1/2 activation and regulation of intracellular
Ca2+ concentration.
       A very interesting finding from the results of total p38 MAPK
expression attracted our great attention. p38 expression in control
group was steady with time lapse (Figure 5B) and decreased
gradually when cells exposed to DEX (Figure 5C). However, the
total p38 MAPK expression decreased at 30 min and then a peak
expression appeared at 60 min when the DEX-induced cells were
protected with aFGF or aFGF28-154 (Figures 5D, E). Normally,
the activation of p38 MAPK often follows stress induction[23].
Although p38 MAPK was not markedly activated in all groups
in our study, we noticed that according to a previous study by
Lasa et al, dexamethasone could cause sustained expression
of MAPK phosphatase 1 and phosphatase-mediated inhibition
of p38 MAPK[24]. We also found p38 MAPK was constantly
decomposed by DEX induction (Figure 5C). Because the cells
in control group were not stressed and the other 3 groups were
all exposed to DEX, we speculated that the peak expression of
p38 MAPK at 60 min in both aFGF groups might reflect an
unveiled stress, which was lagged in both aFGFs groups
compared with the DEX group.
       To investigate the anti-apoptotic function of aFGFs at protein
level, we further examined the changes of c-Myc and Caspase-3.
Thymocytes in control group were kept at a stable c-Myc level
following the time course (Figure 5B). When stimulated merely
by DEX, c-Myc was highly expressed in the first 30 min and the
activated Caspase-3 increased following c-Myc (Figure 5C).
These results indicated that DEX- induced thymocyte cell cycle
turned out to be c-Myc-induced apoptosis. In aFGF group,
however, c-Myc was expressed only at 0 min, and then showed no
significant change at other time points (Figure 5D). In aFGF28-154
group, c-Myc showed a peak expression at 30 min, and then
held at a relatively steady level (Figure 5E). c-Myc, in association
with its partner Max, could function as a transcription factor to
drive apoptosis when low quantities of survival factors such
as IGF-1 and aFGF were present[25,26]. These results indicated
that cell cycle was stagnated in aFGF group, and balanced in
aFGF28-154 group. In both aFGF groups, Caspase-3 activation
remained nearly null during first 30-60 min and was suddenly
enhanced at 60 min and still kept at a high level until 180 min
(Figure 5D, E). This activation is cohort with the p38 reaction
during stress stimulation and especially with c-Myc expression
in normal and both aFGF groups.
     The above signal transduction analysis suggested that aFGF
might serve as a “checker” for cell cycle while exerting anti-
apoptotic function. These functions, including stagnation
determination, cell division or apoptosis induction may be similar
to those of p53, a typical checker of G1, S and G2/M phases of
cell cycle, which contribute both to the cell cycle arrest and
apoptotic functions by preventing replication of cells from DNA
damage[27-30]. Our results illustrated that when exposed to
apoptosis inducers, aFGF would also induce cell cycle arrest.

This action was reflected by the stagnation of c-Myc expression
in our study (Figures 5D, E). At the time interval of null c-Myc
expression, thorough check up and repair might be conducted,
thereby, new c-Myc would be expressed by aFGF induction.
We regarded that this procedure as a “sentence procedure”,
reflected by p38 implied second stress, might be carried out by
the combined effects of c-Myc and Caspase-3. C-Myc is a typical
two-face protein, which is necessary not only for DNA-
cleavage in G2 phase of cell cycle, but also for cell proliferation,
when cells are protected by trophy factors[31]. If cells can pass
through the examination and undergo a thorough “overhaul”,
they would be kept in normal cell cycle; whereas other non-
recoverable cells would be “sentenced to death” with high
activation of intracellular procaspase-3 by newly expressed c-
Myc. Caspase-3 may finally cleave the damaged DNA and
execute apoptosis.
       Here we conclude that the anti-apoptotic function of aFGFs
was enhanced after cancelling of its mitogenic activity and the
anti-apoptotic function did not depend on its mitogenic activity.
The action is associated with the protection of intracellular
Ca2+ concentration balance, ERK1/2 pathway sustaining, and
cell cycle balance. During the process of anti-apoptosis, aFGF
may play a role as a “checker” for cell cycle. Furthermore, we
speculate that there are two possible reasons for the anti-apoptotic
function enhancement after aFGF modification. First, aFGF28-154
loses the ability of nuclear translocation, a typical aFGF
characteristic[8], causing a longer interaction period with FGF
receptors and higher efficiency for aFGF28-154 than the wild
one. Second, the structural change of aFGF28-154 may be better
exposed with its active domain, which contributes to some
anti-apoptosis related activities.
       FGF has been widely used in the fields of wound repair and
regeneration and some other fields[32,33]. Because of its extensive
distribution and broad mitogenic functions, the side-effects or
potential tumour induction is of great concern for doctors. In
this study, we demonstrate a genetically engineered method to
abolish the mitogenic activity and maintain the non-mitogenic
activity of aFGF. This may be helpful to reduce people’s worry
about its tumour induction and to take as many preventive
measures as possible clinically. In short, the powerful anti-
apoptotic function of aFGF28-154 may play an important role in
prophylaxis and treatment of some immune system diseases or
as a protector in preventing apoptosis in tissues and organs
triggered by ischemia and reperfusion injury.
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