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Abstract
Renal tubules regulate blood pressure and humoral 
homeostasis. Mediators that play a significant role in 
regulating the transport of solutes and water include 
angiotensin Ⅱ (AngⅡ) and nitric oxide (NO). AngⅡ
can significantly raise blood pressure via effects on the 
heart, vasculature, and renal tubules. AngⅡ generally 
stimulates sodium reabsorption by triggering sodium 
and fluid retention in almost all segments of renal tu-
bules. Stimulation of renal proximal tubule (PT) trans-
port is thought to be essential for AngⅡ-mediated hy-
pertension. However, AngⅡ has a biphasic effect on in 
vitro PT transport in mice, rats, and rabbits: stimulation 
at low concentrations and inhibition at high concentra-
tions. On the other hand, NO is generally thought to 
inhibit renal tubular transport. In PTs, NO seems to 
be involved in the inhibitory effect of AngⅡ. A recent 
study reports a surprising finding: AngⅡ has a mono-
phasic stimulatory effect on human PT transport. De-
tailed analysis of signalling mechanisms indicates that 
in contrast to other species, the human NO/guanosine 
3’,5’-cyclic monophosphate/extracellular signal-regulat-
ed kinase pathway seems to mediate this effect of Ang 
Ⅱ on PT transport. In this review we will discuss recent 
progress in understanding the effects of AngⅡ and NO 

on renal tubular transport.
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Core tip: Angiotensin Ⅱ (AngⅡ) and nitric oxide (NO) 
play important roles in the regulation of renal tubular 
transport. AngⅡ has a biphasic effect on renal proximal 
tubule (PTs) transport, and NO seems to inhibit the ef-
fect of AngⅡ. In human PTs, however, AngⅡ seems to 
have an NO-dependent monophasic stimulatory effect. 
We will discuss the recent findings in this field.
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INTRODUCTION
Angiotensin Ⅱ (AngⅡ) is a strong pressor, acting on 
various organs and systems, including the kidney. It 
binds to angiotensin receptors, of  which the main sub-
types are angiotensin receptor type 1 (AT1R) and type 
2 (AT2R)[1]. Although other classes of  angiotensin and 
their receptors, such as AT7R[2], occur, the receptor with 
the dominant effect in the kidney seems to be AT1R. 
Recently, Coffman et al[3] demonstrated that renal AT1R 
is the essential target of  AngⅡ-induced hypertension[3]. 
By showing the importance of  renal AT1R in the emer-
gence of  hypertension, their study suggests that renal 
AT1R will be the target for therapy and the prevention 
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of  hypertension.
Nitric oxide (NO) is a gaseous vasoactive substance 

produced by nitric oxide synthase (NOS). NO has been 
shown to play important roles in the regulation of  renal 
tubular transport. However, its role seems to be pleiotro-
pic and varies according to circumstances.

NOS has three isoforms, NOS1, NOS2 and NOS3, 
previously referred to as neuronal NOS (nNOS), induc-
ible NOS (iNOS), and epithelial NOS (eNOS), respec-
tively. Renal tubules have each of  these NOS isoforms[4,5]; 
however, the details of  their actions in the tubules are still 
unclear.

NO seems to inhibit NaCl reabsorption in the renal 
tubules and induces natriuresis. Inhibiting NOS decreased 
urine volume and NaCl excretion, without changing renal 
blood flow and the glomerular filtration rate[6-10]. Overall, 
NO is thought to inhibit the reabsorption of  NaCl and 
fluid by tubules. 

ANG Ⅱ AND TUBULES
AngⅡ  in proximal tubules 
AngⅡ has been widely known as a strong pressor and 
regulator of  cardiovascular and renal function[11]. In the 
classical pathway, AT1R mediates the effects of  AngⅡ[1]. 
Proximal tubules (PTs) reabsorb approximately 60% to 
70% of  the sodium filtered in the glomeruli. Therefore, 
the regulation of  sodium reabsorption in this segment 
is important for the maintenance of  blood pressure and 
humoral homeostasis[12,13]. In the PTs, AngⅡ is known to 
stimulate sodium and water transport. Although AngⅡ 
affects transport processes in several nephron segments, 
as discussed below, its effect on PT transport may be its 
most important effect. In particular, the stimulatory ef-
fect of  AngⅡ in the PTs has significant importance for 
the emergence and progression of  hypertension[14].

AngⅡ acts mainly via type 1 and type 2 angiotensin 
receptors. The type 1 receptor has 1A and 1B subtypes 
and is thought to raise blood pressure[1]. AT2R is also 
thought to be located in the PTs[15-17]. Some investiga-
tors argue that AT2R may mediate the inhibitory effect 
of  AngⅡ[18]. However, most data, including our own 
obtained from AT1R knockout mice[13,19-21], indicate that 
AT1R is the dominant receptor mediating the biphasic 
effects of  AngⅡ in the PTs.

In PTs, the basolateral electrogenic sodium-bicarbon-
ate cotransporter type 1 (NBCe1) and the apical sodium-
proton exchanger type 3 (NHE3) mainly regulate sodium 
reabsorption[22]. In addition, sodium is reabsorbed and 
coupled with amino acids[23], glucose[24], phosphate[25], and 
other solutes from the apical side[14]. Sodium is also reab-
sorbed via Na+-K+-ATPase (NKA) from the basolateral 
side[26], which offers the driving forces for NBCe1 and 
NHE3.

AngⅡ is known to have biphasic effect on the PTs 
of  rats, mice and rabbits. Low concentrations (picomolar 
to nanomolar) of  AngⅡ stimulate PT transport, while 
high concentrations (nanomolar to micromolar) inhibit 

PT transport[27,28]. In PTs, AngⅡ regulates major sodium 
transporters, such as NHE3, NBCe1, and NKA, in a bi-
phasic manner[19,29-32]. The activation of  protein kinase C 
and/or a decrease in cAMP concentration, followed by 
the activation of  the extracellular signal-regulated kinase 
(ERK) pathway, may be responsible for the stimulatory 
effect of  AngⅡ[33-35]. On the other hand, the activation 
of  the phospholipase A2/arachidonic acid/5,6-epoxye-
icosatrienoic acid (EET) and/or the NO/guanosine 3’,5’
-cyclic monophosphate (cGMP) pathways[29,36,37] may be 
responsible for the inhibitory effect of  AngⅡ. The con-
centration of  AngⅡ is known to be much higher in kid-
ney than plasma[38,39], suggesting that the inhibitory effect 
of  AngⅡ may also have some physiological significance 
in the regulation of  renal tubular function and blood 
pressure.

AngⅡ  in the thick ascending limb
There are some reports that AngⅡ stimulates net NaCl 
absorption in the thick ascending limb (TAL). Wang and 
colleagues showed that AngⅡ stimulates basolateral Cl- 
channels by activating the protein kinase C-dependent 
NADPH oxidase pathway, inducing net NaCl absorp-
tion[40]. Garvin et al[41] investigated the regulation of  
NKA activity in AngⅡ-induced hypertension[41]. They 
showed that AngⅡ-induced hypertension is accompa-
nied by increased NKA activity in rat TAL, which may 
be at least partially due to AngⅡ-stimulated superoxide 
production[42] via NADPH oxidase[43]. Moreover, AngⅡ 
binding to AT1R was shown to inhibit ADH-stimulated 
transport in the rat TAL suspension cells[44]. Overall, 
AngⅡ seems to stimulate Na+ reabsorption in the TAL 
via AT1R.

AngⅡ  in the distal tubules
In the distal tubules, approximately 10% to 20% of  the 
filtered Na+ is reabsorbed. Na+ enters the tubule cells via 
the sodium-chloride cotransporter (NCC) and exits from 
the basolateral side via NKA, while Cl- exits via chloride 
channels (ClC-Kb)[14].

Recent studies indicate that With-No-Lysine Kinase 
(WNK), Oxidative stress-responsive kinase (OSR) 1, and 
STE20/SPS1-related proline alanine-rich kinase (SPAK) 
importantly regulate transport in distal tubules.

WNKs are atypical protein kinases, as their name 
“With No Lysine (K)” implies[45]. They are expressed in 
various organs and tissues, including renal distal tubules, 
and modulate several biological processes, such as solute 
transport, cell growth, and neurotransmission[46]. WNKs 
have subtypes, such as WNK1, WNK2, WNK3, WNK4 
and kidney-specific (ks-) WNK1. The kidney expresses 
WNK1, WNK3, WNK4 and ks-WNK1, where they 
modulate the function of  NCC in the distal tubules.

In distal tubules, AngⅡ seems to activate NCC via 
phosphorylation. Hoorn et al[47] showed that AngⅡ in-
duces the phosphorylation of  NCC, enhancing sodium 
retention in rat kidneys, independent of  aldosterone[47]. 
On the other hand, Uchida and colleagues showed that, 
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although AngⅡ increases NCC phosphorylation via the 
WNK-OSR1/SPAK pathway, the effect of  aldosterone in 
this pathway is predominant[48]. Using WNK4 knockout 
mice, Gamba et al[49] showed that AngⅡ stimulates NCC 
via a WNK4-SPAK dependent pathway and that WNK4 
is involved in AngⅡ-stimulated aldosterone secretion[49]. 
The detailed mechanisms by which AngⅡ, WNK-SPAK/
OSR1 and aldosterone regulate transport in the distal tu-
bules transport remain to be clarified.

AngⅡ  in the connecting tubules and collecting tubules
In the last portion of  the tubules, the connecting tubules 
(CNT) and the collecting tubules (CD), Na+ is mainly 
reabsorbed via an epithelial Na+ channel (ENaC) on 
the luminal side and NKA on the basolateral side. The 
amount of  Na+ reabsorbed from these segments repre-
sents only a small fraction of  the total Na+ absorption 
by the kidney, but its regulation contributes to the fine-
tuning of  sodium and fluid homeostasis.

ENaC is a heteromultimeric channel, with three ho-
mologous subunits (α, β, γ)[50,51]. Loss-of-function muta-
tions of  ENaC cause pseudohypoaldosteronism type I 
(PHA-I), while gain-of-function mutations cause Liddle’s 
syndrome[52,53]. PHA-I features renal salt wasting associ-
ated with hyperkalaemia, while Liddle’s syndrome shows 
arterial hypertension with hypokalaemia. Pharmacologi-
cally, amiloride directly and reversely blocks the ENaC.

In the CNT and CD segments, aldosterone has been 
thought to play a principal role in regulating basal and 
long-term ENaC activity[54]. Recently, however, Korbm-
acher et al[55] demonstrated that, in the distal convoluted 
tubules (DCT2) and CNT, ENaC function is largely 
independent of  aldosterone[55]. They suggested that glu-
cocorticoids and/or AngⅡ may be responsible for the 
aldosterone-independent ENaC activity. AngⅡ itself  
may directly stimulate amiloride-sensitive Na+ reabsorp-
tion in CNT and CD, independent of  aldosterone[56,57]. 
Indeed, several studies have reported that the AngⅡ
/AT1R pathway can regulate ENaC expression[58-61]. 
This effect of  AngⅡ is thought to be mediated via 
AT1R[62,63]. In obese Zucker rats, moreover, enhanced 
AT1R activity may result in the ENaC activation, sug-
gesting a role for AngⅡ in Na retention in diabetes and 
obesity[60].

THE EFFECT OF NO IN THE TUBULES
NO in the PTs
As described above, NO has been thought to inhibit net 
NaCl and fluid absorption through renal tubules. How-
ever, Wang and colleagues argued that NO has a biphasic 
effect on the PTs. Low concentrations of  an NO donor, 
sodium nitroprusside (SNP; 10-6 mol), stimulated PT flu-
id (Jv) and bicarbonate absorption (JHCO3) by 30%-50%, 
while high concentration of  SNP (10-3 mol) inhibited Jv 
and JHCO3 by 50%-70%[64]. However, most other studies 
report that NO inhibits PT transport[65-67]. In particular, 
NO has been shown to decrease NHE3 and NKA ac-

tivities[67,68]. Overall, NO is generally thought to inhibit 
NaCl, HCO3

-, and volume reabsorption in the PTs.

NO in the TAL
In the TAL, approximately 30% of  filtered Na+ is reab-
sorbed[14]. The major Na+ transporters here are the Na+/
K+/2Cl- cotransporter (NKCC2) and NHE3 on the api-
cal side as well as NKA on the basolateral side. 

Garvin and colleagues found that NO donors inhibit 
Cl- and HCO3

- reabsorption[69,70]. They found that NO 
inhibits NKCC2 and NHE3 activity, but not NKA activ-
ity[71,72]. Using NOS3-/- mice, they also showed that NOS3 
is responsible for NO production in the TAL[73,74]. HCO3

- 
reabsorption in the TAL is accomplished by H+ secretion 
via apical NHE3[75]. In the rat TAL, NO increases cGMP 
levels[76,77], and cGMP analogues inhibit JHCO3

[70] and 
JCl

[78,79]. The inhibition of  cGMP-dependent kinase (cGK) 
blocked the inhibitory effect of  NO on JHCO3, but not 
on JCl

[70,80]. On the other hand, the inhibition of  cGMP-
stimulated phosphodiesterase (PDEII) blocked the inhibi-
tory effect of  NO on JCl

[80]. Thus, the NO/cGK pathway 
seems to mediate the inhibitory effect on JHCO3, while the 
NO/PDEII pathway seems to mediate the inhibitory ef-
fect on JCl

[80].

NO in the CNT and CD
Recently, Wall and colleagues have showed that NO re-
duces Cl- absorption through ENaC in mouse CD[81]. In 
the cultured Xenopus laevis distal nephron cell line 2F3, 
Bao and colleagues showed that the activity of  ENaC 
was reduced by a cyclic GMP analogue or by an atrial 
natriuretic peptide[82]. Moreover, in cGKII knockout 
mice, ENaC inhibition induced a much greater increase 
in UNa+V (2.6-fold) than in wild-type mice (1.9-fold), 
suggesting that ENaC activity is upregulated in the 
knockouts[83]. Integrating these results, NO and its signal 
transduction system appear to inhibit ENaC in CD and 
to induce natriuresis, therefore preventing sodium reten-
tion and hypertension.

The interaction between AngⅡ  and NO in PT
As previously described, the AngⅡ effect on Na+ reab-
sorption in the proximal tubule is biphasic in rodents 
and rabbits[27,28]. The inhibitory effect of  AngⅡ is medi-
ated by the PLA2/arachidonic acid/EET and/or NOS/
NO/cGMP pathways. In rat PTs, for example, the regu-
lation of  NKA by AngⅡ seems to be dependent on the 
NO/cGMP pathway[35,36]. 

On the other hand, the effects of  AngⅡ on PT so-
dium transport in humans have not yet been clarified. 
To this end, we analysed the effects of  AngⅡ on human 
PTs isolated from the cortex of  kidneys removed for re-
nal carcinoma. Surprisingly, AngⅡ, in contrast to other 
species, was found to induce a monophasic stimulation 
of  human PT transport[84]. Specifically, AngⅡ induced 
a dose-dependent stimulation of  NBCe1, NHE3, and 
JHCO3 that was apparently mediated by both luminal and 
basolateral AT1Rs.
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In contrast to other animals, both arachidonic acid 
and 5,6-EET failed to inhibit NBCe1 stimulation, which 
may partly account for the lack of  an inhibitory effect of  
AngⅡ in human PTs. Notably, however, we found that 
the contrasting responses to the NO/cGMP pathway 
could largely explain the different actions of  AngⅡ on 
PT transport in humans and other species. Thus, inhibi-
tion of  the NOS/cGMP/cGKII pathway converted the 
inhibitory effect of  10-6 mol AngⅡ on mouse PT trans-
port into a stimulatory effect. SNP dose-dependently 
inhibited PT transport in wild-type but not in cGKII 
mice. By contrast, the inhibition of  NOS/cGMP/ERK 
pathway completely suppressed the stimulatory effect 

of  AngⅡ on human PT transport. While the inhibition 
of  cGKII did not affect the AngⅡ effects, SNP dose-
dependently stimulated transport in human PT. Western 
blotting with phosphor-specific antibodies revealed that 
AngⅡ induced a dose-dependent cGKII activation in 
mouse but not in human kidney cortex samples. On the 
other hand, SNP induced a dose-dependent ERK activa-
tion in human but not in mouse samples. Collectively, 
these results indicate that while the NO/cGMP/cGKII 
pathway mediates the inhibitory effect of  AngⅡ in 
mouse PTs, the NO/cGMP/ERK pathway mediates the 
stimulatory effect in human PTs as shown in Figure 1.

We confirmed that human PTs do express cGKII. 
On the other hand, NO/cGMP failed to activate ERK 
in PTs from cGKII KO mice, indicating that the simple 
removal of  cGKII from mouse PTs cannot reproduce 
the dose-dependent stimulatory effect of  AngⅡ in hu-
man PTs. Therefore, the reason why the NO/cGMP 
pathway, acting as the down-stream mediator of  AngⅡ, 
has contrasting effects on PT transport in humans and 
in other species is currently unknown. However, it is in-
teresting to note that while the role of  intrarenal NO in 
the adaptive natriuretic response to sodium loading has 
been well established in rodents, a similar role for NO 
has not been established in humans[85-90]. In any case, the 
human-specific stimulatory effect of  the NO/cGMP 
pathway on PT transport may offer a novel therapeutic 
target for human hypertension. 

CONCLUSION
The absorption of  Na+ in renal tubules is regulated 
by various factors, among which AngⅡ and NO play 
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Figure 1  Species difference in angiotensin II/nitric oxide signalling in 
proximal tubules. In humans, NO/cGMP stimulates PT transport via ERK. In 
mouse, by contrast, NO/cGMP inhibits PT transport via cGKII. Ang II: Angioten-
sin II; NO: Nitric oxide; cGMP: Guanosine 3’,5’-cyclic monophosphate; ERK: 
Extracellular signal-regulated kinase.

Table 1  Summary of angiotensin II effects on tubular transport

Nephron segment Potential targets Effects Ref.

PT NHE3, NBCe1 biphasic in rats, mice, rabbits [19,27-32]
JHCO3 monophasic stimulation in humans [84]

TAL NKA, NKCC2, Cl channel stimulation [40-43]
NADPH oxidase

DCT NCC stimulation [47,49]
WNK4?

CNT/CD ENaC stimulation [55,59-61]

PT: Proximal tubule; TAL: Thick ascending limb; DCT: Distal convoluted tubules; CNT: Connecting tubules; CD: 
Collecting tubules; NHE3: Apical sodium-proton exchanger type 3; NBCe1: Basolateral electrogenic sodium-
bicarbonate cotransporter type 1; NKA: Na+-K+-ATPase; NKCC2: Na+/K+/2Cl- cotransporter; NCC: Sodium-
chloride cotransporter; ENaC: Epithelial Na+ channel.

Table 2  Summary of nitric oxide effects on tubular transport

Nephron segment Potential targets Effects Ref.

PT NHE3, NBCe1 inhibition in rats, mice, rabbits [65-68,84]
JHCO3 biphasic in rats? [64]

monophasic stimulation in humans [84]
TAL NKA, NKCC2 inhibition [69-72]

JCl, JHCO3

CNT/CD ENaC inhibition [81,83]
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significant roles. In general, AngⅡ stimulates sodium 
reabsorption and triggers fluid retention, leading to hy-
pertension, while NO seems to induce natriuresis. How-
ever, our in vitro data suggest that NO may have distinct 
effects on PT transport in human and other species. 
Tables 1 and 2 summarize the effects of  AngⅡ and NO 
on renal tubular transport.
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