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Abstract
Diabetic complications, chiefly seen in long-term situations, are persistently 
deleterious to a large extent, requiring multi-factorial risk reduction strategies 
beyond glycemic control. Diabetic cardiomyopathy is one of the most common 
deleterious diabetic complications, being the leading cause of mortality among 
diabetic patients. The mechanisms of diabetic cardiomyopathy are multi-factorial, 
involving increased oxidative stress, accumulation of advanced glycation end 
products (AGEs), activation of various pro-inflammatory and cell death signaling 
pathways, and changes in the composition of extracellular matrix with enhanced 
cardiac fibrosis. The novel lipid signaling system, the endocannabinoid system, 
has been implicated in the pathogenesis of diabetes and its complications through 
its two main receptors: Cannabinoid receptor type 1 and cannabinoid receptor 
type 2, alongside other components. However, the role of the endocannabinoid 
system in diabetic cardiomyopathy has not been fully investigated. This review 
aims to elucidate the possible mechanisms through which cannabinoids and the 
endocannabinoid system could interact with the pathogenesis and the 
development of diabetic cardiomyopathy. These mechanisms include oxidative/ 
nitrative stress, inflammation, accumulation of AGEs, cardiac remodeling, and 
autophagy. A better understanding of the role of cannabinoids and the endocan-
nabinoid system in diabetic cardiomyopathy may provide novel strategies to 
manipulate such a serious diabetic complication.

Key Words: Δ9-tetrahydrocannabinol; Autophagy; Cannabinoid receptors; Diabetic 
cardiomyopathy; Endocannabinoid system; Inflammation
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Core Tip: Diabetic cardiomyopathy is considered to be one of the most common deleterious diabetic 
complications being the leading cause of mortality among diabetic patients. The endocannabinoid system 
has been implicated in the pathogenesis of diabetes and its complications. However, the role of the 
endocannabinoid system in diabetic cardiomyopathy has not been fully investigated. This review aims to 
elucidate the possible mechanisms through which cannabinoids and the endocannabinoid system could 
interact with the pathogenesis of diabetic cardiomyopathy. Better understanding of the role of 
cannabinoids and the endocannabinoid system in diabetic cardiomyopathy may provide novel strategies to 
manipulate this serious diabetic complication.

Citation: El-Azab MF, Wakiel AE, Nafea YK, Youssef ME. Role of cannabinoids and the endocannabinoid system 
in modulation of diabetic cardiomyopathy. World J Diabetes 2022; 13(5): 387-407
URL: https://www.wjgnet.com/1948-9358/full/v13/i5/387.htm
DOI: https://dx.doi.org/10.4239/wjd.v13.i5.387

INTRODUCTION
Diabetes mellitus is one of the most common chronic disorders worldwide, and it continues to increase 
in number and significance. The total number of individuals with diabetes worldwide is 463 million, 
with a prevalence rate of 9.3% according to the International Diabetes Federation[1]. It is estimated that 
the prevalence of diabetes on a global scale could reach 578 million by 2030 and 700 million by 2045. In 
2017, diabetes-related mortality accounted for 4 million people worldwide and the total healthcare 
expenditure reached 727 billion United States Dollars[2].

Diabetes mellitus is a complex metabolic condition that is characterized by hyperglycemia resulting 
from a lack of absolute or relative insulin[3]. It is linked to insulin resistance in many instances. Type 1 
diabetes is caused by an autoimmune destruction of insulin-secreting cells in the pancreas, and type 2 
diabetes is caused by insufficient compensatory insulin production in the presence of peripheral insulin 
resistance. Ninety percent of diabetes cases are of the latter type[4].

Both microvascular (retinopathy, nephropathy, and neuropathy)[5-9] and macrovascular 
(cardiovascular disease) problems are linked to diabetes[6-10]. Despite substantial advances in anti-
diabetic therapy, diabetic complications, which are most commonly recognized in the long-term, are 
consistently harmful to a large extent, necessitating multi-factorial risk reduction measures beyond 
glycemic control[11]. Diabetes-related morbidity and mortality are primarily caused by cardiovascular 
problems[12]. Indeed, 50% of diabetic patients die of a cardiovascular disease[13]. Endothelial 
dysfunction, coronary artery disease, and myocardial left ventricular dysfunction (which leads to heart 
failure) are all well-known cardiovascular problems[14]. Diabetic patients have a 2-4 times higher risk of 
heart failure than non-diabetic patients, according to clinical research[15,16].

Diabetic cardiomyopathy is a deficiency in ventricular contractile function that occurs in diabetic 
individuals regardless of the presence of coronary artery disease or other cardiovascular disorders. It is 
a complicated diabetes-related condition marked by severe alterations in the heart's physiology, 
anatomy, and mechanical performance[17]. Diabetic cardiomyopathy is a complicated and poorly 
understood process. To explain the structural and functional alterations associated with diabetic 
cardiomyopathy, several pathogenic processes have been explored and suggested[18]. Increased 
oxidative/nitrative stress[19-21], accumulation of advanced glycation end products (AGEs)[22], 
activation of various pro-inflammatory and cell death signaling pathways[23], and changes in the 
composition of extracellular matrix with elevated cardiac fibrosis[24] are some of the proposed 
pathological mechanisms. Unfortunately, despite the growing body of information concerning diabetic 
cardiomyopathy over the last few decades, therapeutic choices remain inadequate. Other treatments for 
diabetic cardiomyopathy's multi-factorial pathogenic pathways have yet to be developed.

The endocannabinoid system is an endogenous lipid signaling system that consists of: (1) Two main 
receptors identified as cannabinoid receptor type 1 (CB1) and cannabinoid receptor type 2 (CB2); (2) 
Endogenous ligands for these two receptors known as endocannabinoids; and (3) Proteins that control 
endocannabinoid tissue levels (anabolic and catabolic enzymes)[25]. The endocannabinoid system has 
become a novel therapeutic target in a range of cardiovascular illnesses in the last decade, including 
atherosclerosis, myocardial infarction, and heart failure[26]. Furthermore, the significance of the 
endocannabinoid system in the development of diabetes and associated consequences has been 
suggested in various pre-clinical and clinical research[27-29]. The possible mechanisms through which 
cannabinoids and the endocannabinoid system could modulate the pathogenesis of diabetic cardiomy-
opathy are highlighted in this review (Table 1), an approach that could pave the way for the use of this 
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Table 1 Role of cannabinoid agents in diabetes

Cannabinoid agent Mechanism Role in diabetes

Endogenous cannabinoid

CB1 agonist

Anandamide 

CB2 agonist

Elevated in diabetic patients[26]

Reduced weight[62]

Reduced hemoglobin A1c levels[62]

Reduced fasting blood glucose levels[62]

Reduced high density lipoprotein, cholesterol and triglyceride levels[62]

Rimonabant (SR141716A) CB1 antagonist

Improved systolic blood pressure[62]

Psychoactive cannabinoid

CB1 partial agonist

Δ9-tetrahydrocannabinol (THC)

CB2 partial agonist

Lowered blood glucose level[65]; Preserved pancreatic insulin content[65]

Non-psychoactive cannabinoid Reduced the incidence of type I diabetes[66]Cannabidiol

Low affinity to CB1 and CB2 Immunosuppressive effect[66]

system as an effective tool in the management of these harmful diabetic complications.

DIABETIC CARDIOMYOPATHY: A DISTINCT COMPLEX DISORDER
Cardiomyopathies are a group of diseases characterized by myocardial dysfunction that is not induced 
by common causes, such as coronary artery disease, valvular dysfunction, or hypertension. Cardiomy-
opathies are divided into four categories depending on hemodynamic characteristics: Dilated, 
hypertrophic, restrictive, and obliterative cardiomyopathy[30]. Dilated cardiomyopathy is characterized 
by ventricular dilatation and systolic dysfunction, which commonly affects both ventricles. The most 
common symptom of hypertrophic cardiomyopathy is significant ventricular hypertrophy. Restrictive 
cardiomyopathy is characterized by inflexible and poorly distensible myocardium, resulting in poor 
compliance. Endo-myocardial fibrosis is a symptom of obliterative cardiomyopathy. The endocardium's 
severe fibrosis encroaches on and reduces the size of the ventricular cavities[31]. Diabetic cardiomy-
opathy can be classified as either dilated or hypertrophied cardiomyopathy[32].

Rubler et al[33] coined the name diabetic cardiomyopathy in 1972 after observing a specific type of 
cardiomyopathy in diabetic patients who did not have other cardiovascular issues such as coronary 
artery disease, valvular or congenital heart disease, or hypertension. Diabetic cardiomyopathy is 
defined by a series of cardiac alterations, including interstitial fibrosis, myocardial hypertrophy, and 
microcirculatory abnormalities, that arise due to diabetes mellitus. These circulatory issues impair heart 
function, eventually leading to cardiac failure[4]. Heart failure lowers an individual's quality of life and 
makes diabetes control more difficult. As a result, early diagnosis and treatment of these patients are 
regarded as top priorities[34].

Insulin resistance and hyperglycemia are significant drivers in diabetic patients, activating a variety 
of adaptive and maladaptive responses that ultimately affect cardiac function[35]. To explain the 
complicated structural and functional abnormalities associated with diabetic cardiomyopathy, several 
pathogenic processes have been examined and proposed (Figure 1). These systems work in concert and 
may even enhance one another[36]. Hyperglycemia increases oxidative stress by accelerating glucose 
oxidation and mitochondrial production of reactive oxygen species (ROS), which induce DNA damage 
and promote apoptosis[37]. AGEs build up in tissues, including the myocardium, and have been linked 
to structural abnormalities in diabetic hearts[22]. Activation of numerous pro-inflammatory and stress 
signaling pathways, such as mitogen activated protein kinases (MAPKs), also stimulates apoptotic 
pathways and cell death, and promote myocardial cell death[23,38]. Finally, there is increased collagen 
formation in the myocardium that leads to fibrosis and reduced contractile function of the heart[24,39].

Diabetic cardiomyopathy is divided into three stages (Figure 2): Early-stage, middle-stage, and late-
stage[4]. In the early stage, the heart develops hypertrophy and has diastolic dysfunction with normal 
ejection fraction, and it is asymptomatic[40]. Increased left ventricular size, wall thickness, and mass, as 
well as diastolic dysfunction and a modest decline in systolic performance, characterize the intermediate 
stage. Insulin resistance, AGE formation, elevated renin-angiotensin-aldosterone system levels, 
apoptosis, necrosis, and fibrosis are all associated with this stage[41]. As the disease progresses from the 
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Figure 1 Molecular mechanisms of diabetic cardiomyopathy. Hyperglycemia and insulin resistance increase reactive oxygen species formation, oxidative 
stress, advanced glycation end-products formation, and the recruitment of various inflammatory pathways leading to cardiac dysfunction and heart failure. ROS: 
Reactive oxygen species.

Figure 2 Stages of diabetic cardiomyopathy progression. Diabetic cardiomyopathy progresses from early development of hypertrophy and diastolic 
dysfunction that then progress to decreased systolic activity, apoptosis and cardiac fibrosis leading to severe impairment in both systolic and diastolic functions. AGE: 
Advanced glycation end products.

medium to late stage, it becomes more severe, impairing both systolic and diastolic functioning[13].

THE ENDOCANNABINOID SYSTEM
The discovery of the endogenous signaling system now recognized as the endocannabinoid system 
began with the chemical detection of 9-tetrahydrocannabinol (THC), the main psychoactive component 
of Cannabis sativa[42]. THC's psychotropic and immunomodulatory effects are due to the ability to bind 
to and activate specific receptors, including the CB1 receptor, which is one of the most abundant G-
protein-coupled receptors in the central nervous system[43], and the CB2 receptor, which is abundantly 
expressed in several immune cells and tissues[44].

The existence of endogenous substances (the endocannabinoids) capable of binding to and activating 
CB1 and CB2 receptors was suggested. Anandamide (N-arachidonoyl ethanolamine)[45] and 2-
arachidonoyl glycerol (2-AG)[46] are the two most well-studied examples of these compounds. The 
endocannabinoid system is made up of cannabinoid receptors, endocannabinoids, and proteins that 
catalyze endocannabinoid biosynthesis (N-acyl-phosphatidylethanolamine phospholipase-D for 
anandamide and diacylglycerol lipases for 2-AG), transport, and inactivation [fatty acid amide 
hydrolase (FAAH) for anandamide and monoacyl glycerol lipase for 2-AG][47]. Signaling via CB1 and 
CB2 receptors is complex, involving inhibition (and activation in some cases) of adenyl cyclase activity, 
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activation of various MAPKs [e.g., p38- and p44/42-MAPKs, c-Jun N-terminal kinase (JNK) and 
extracellular signal–regulated kinase (ERK)], protein kinases A and C (PKA and PKC), and modulation 
of various calcium and potassium channels[48].

Since its discovery about two decades ago, the endocannabinoid system has gained considerable 
importance as a fundamental signaling system implicated in almost all physiological and pathological 
processes in animals[49]. In a wide range of pathological conditions, including mood and anxiety 
disorders, movement disorders, neuropathic pain, multiple sclerosis, cancer, glaucoma, osteoporosis, 
reproductive disorders, immune dysfunction, cardiovascular and metabolic disorders, there is growing 
evidence that the endocannabinoid system plays pivotal roles and holds tremendous therapeutic 
options[50,51].

Besides the primary distribution of CB1 receptors in the CNS and CB2 receptors in immune cells, as 
these are responsible for the psychoactive and immunomodulatory effects of cannabinoids, both 
receptors have been found to be expressed in cardiovascular system cells such as cardiomyocytes, 
fibroblasts, endothelial and vascular smooth muscle cells, and infiltrating immune cells[26]. CB1 
receptors activation by endocannabinoids or synthetic ligands has complex depressive effects in the 
cardiovascular system and has been linked to the development of pathophysiological alterations and 
compromised cardiovascular function in various forms of shock[51] and heart failure[52]. In addition, 
several studies indicated that stimulation of CB1 receptors in the cells of the cardiovascular system is 
associated with activation of stress signaling pathways promoting cell death, ROS production, and 
induction of inflammatory cascades[26,52]. On the other hand, an increased CB2 receptor expression has 
been reported in the cardiovascular system under pathophysiological conditions such as inflammatory 
stimulation or tissue injury, which likely reflects a protective response to limit these effects[53]. A great 
body of evidence suggest a protective role of CB2 receptors in experimental models of cardiovascular 
disorders including mouse models of atherosclerosis[54], restenosis[55] and myocardial ischemia/ 
reperfusion injury[56].

Different expression patterns of CB1 and CB2 receptors together with other components of the 
endocannabinoid system such as synthesizing and degrading enzymes have been reported in islet cells 
of humans, rats and mice[57-59]. There are controversial results regarding the role of CB1 receptors in 
insulin secretion with studies showing an increased insulin secretion in islet cells by activation of CB1 
receptors[57,58], and others showing decreased insulin secretion[60]. In addition, activation of CB2 
receptors in islet cells has also been shown to either stimulate[61] or attenuate insulin secretion[57]. 
Several studies have found that the endocannabinoid system plays a significant role in the etiology of 
diabetes. Serum levels of anandamide and 2-AG have been found to be greater in type 2 diabetics than 
in healthy individuals[27]. Furthermore, in these diabetic patients, subcutaneous tissue levels of 
anandamide were found to be elevated, indicating endocannabinoid system overactivity[28].

A clinical trial was conducted in obese patients with type 2 diabetes inadequately controlled by either 
metformin or sulfonylureas using the CB1 antagonist rimonabant (SR141716A). Rimonabant treatment 
caused a reduction in weight, hemoglobin A1c levels, fasting blood glucose, high-density lipoprotein 
cholesterol and triglycerides, as well as improvement in systolic blood pressure[62]. In the type 2 
diabetic patients naive to anti-diabetic treatment, rimonabant showed similar results with improved 
glycemic control and metabolic profile[63]. Another study demonstrated that the treatment of type 2 
diabetic patients on standard insulin treatment with rimonabant also improved glycemic control and the 
metabolic profile[64]. The psychoactive cannabinoid THC was shown to attenuate the severity of 
autoimmune responses in an experimental model of autoimmune diabetes in addition to lowering blood 
glucose level and preserving pancreatic insulin content[65]. Unfortunately, the psychoactive effects of 
THC hampered this therapeutic approach. The non-psychoactive cannabidiol (CBD) reduced the 
incidence of diabetes in a mouse model of type 1 diabetes, an effect that involved immunosuppressive 
and anti-inflammatory effects[66].

The majority of diabetic complications are linked to abnormalities in the vascular system[67]. 
Hyperglycemia has been related to a number of critical processes, including oxidative/nitrative 
damage, AGE buildup, and inflammatory system stimulation[68]. Endothelial dysfunction occurs in 
arteries, which contributes to the development of numerous diabetes problems. Indeed, cannabinoids 
and the endocannabinoid system represent an outstanding therapeutic approach to manage these 
deleterious complications. Interestingly, this notion is supported by a great body of evidence 
implicating the endocannabinoid system in the pathogenesis of nearly all diabetic complications 
including nephropathy, retinopathy, and neuropathy, in addition to cardiovascular complications, 
mainly through modulation of the aforementioned mechanisms[29]. Still, the role of the endocan-
nabinoid system in diabetic cardiomyopathy; the distinct diabetic complication, has not been fully 
investigated in detail.
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POSSIBLE MECHANISMS THROUGH WHICH CANNABINOIDS AND THE ENDOCAN-
NABINOID SYSTEM COULD MODULATE DIABETIC CARDIOMYOPATHY
Oxidative/Nitrative stress
Nearly 95% of oxygen consumed by tissues is used in metabolic processes to produce adenosine 
triphosphate (ATP), and approximately 5% of oxygen consumed is transformed into superoxide (O2–) 
radical, the principal oxygen free radical produced by mitochondria[69]. The antioxidant enzymes 
superoxide dismutase (SOD1, SOD2, and SOD3) quickly convert superoxide to hydrogen peroxide 
(H2O2) within the cell[70]. Antioxidant enzymes such as catalase, glutathione peroxidase, and other 
peroxidases generally convert excess H2O2 to harmless water[71]. Although H2O2 is not a free radical, 
it can undergo the Fenton reaction with reduced transition metals [e.g., ferrous ion (Fe2+)] or with 
superoxide in the presence of metal ions (usually iron or copper) to produce the highly reactive 
hydroxyl radical (OH), which is a far more damaging molecule to the cell[72]. Superoxide radicals can 
quickly react with nitric oxide (NO) to produce cytotoxic peroxynitrite anions (ONOO–) in addition to 
producing H2O2[73]. Superoxide and NO are less reactive than peroxynitrite, which might combine 
with carbon dioxide to generate nitrotyrosine, that triggers protein degradation and lipid oxidation[74].

Besides mitochondria, other cellular sources of reactive oxygen and nitrogen species (RNS) exist. 
NADPH oxidase, for example, promotes the enzymatic conversion of oxygen to superoxide anion. 
Several critical cytosolic proteins (p44phox, p67phox, p40phox, and Rac2) must be translocated to the 
cellular membrane for NADPH oxidase activation[75]. Other sources of ROS and RNS, in addition to 
NADPH oxidase, include nitric oxide synthase (NOS), which stimulates NO synthesis[76], and 
peroxisomes, that are known to create H2O2 primarily through fatty acid oxidation[77] and phagocytic 
cell activation[78].

The oxidative stress pathway has emerged as a common thread connecting all major diabetic 
cardiomyopathy pathophysiological mechanisms[79]. These pathways are the result of a single 
hyperglycemia-induced process: The overproduction of superoxide by the mitochondrial electron 
transport chain[80]. Formation of AGE products, auto-oxidation of glucose, activation of PKC, and 
NADPH oxidase are some of the other sources of ROS in diabetes[81]. Once oxidative stress develops, it 
results in a vicious self-sustaining cycle of generating more free radicals and causing more stress as a 
result of the activation of multiple stress-induced pathways and due to its ability to cause damaging 
effects to multiple components within the cell[82].

Through a variety of mechanisms, ROS induce cellular damage in the diabetic myocardium. 
Increased ROS directly damage cellular proteins and DNA[83]. In addition, ROS activate matrix 
metalloproteinases, which modify the extracellular matrix architecture and cause fibrosis[84], as well as 
regulating signal transduction pathways that cause cardiomyocyte hypertrophy[85] and apoptosis, 
which results in the loss of contractile tissue[86]. In a similar manner, peroxynitrite induces vasocon-
striction, enhanced leukocyte adherence, platelet activation, oxidation, pro-thrombotic state, impaired 
coagulation, and vascular inflammation, among other pro-atherosclerotic pathogenic processes[87]. In 
type 1 diabetic mice, selective suppression of mitochondrial ROS was demonstrated to prevent diabetic 
cardiac abnormalities, confirming the importance of mitochondrial ROS role in developing cardiac 
abnormalities[88]. Moreover, Rac1 increases mitochondrial ROS generation via NADPH oxidase 
activation and plays an important role in cardiomyocyte death and cardiac failure in streptozotocin-
induced diabetes in mice[89].

Previous studies have shown that the endocannabinoid system can influence ROS and RNS 
production, implying that modulating the endocannabinoid system and administering exogenous 
cannabinoids with antioxidant properties could be beneficial in the treatment of diabetes-related 
cardiovascular complications, such as diabetic cardiomyopathy[29].

It has been shown that genetic deletion of CB1 receptors attenuated the rise in markers of oxidative 
[4-hydroxy-trans-2-nonenal (4-HNE)] and nitrative (nitrotyrosine) stress in the myocardium of mice 
treated with acute or chronic doses of the potent, cardio-toxicant, anticancer drug doxorubicin[90]. In 
addition, doxorubicin treatment led to decreased myocardial content of the components of the 
antioxidant defense system: Glutathione, glutathione peroxidase, and SOD. These changes were 
significantly reduced in the myocardium of CB1 knockout mice[90]. Consistent with the data obtained 
from rodents, activation of CB1 receptors by anandamide or the potent agonist HU210, with or without 
doxorubicin, induced ROS production in human primary cardiomyocytes (HCM). The previous 
deleterious effect was attenuated by the use of CB1 antagonists: SR141716A or AM281[90].

Mukhopadhyay et al[52] similarly found that pharmacological blockage of CB1 receptors with AM281 
or SR141716A reduced doxorubicin-induced oxidative/nitrative stress and related cell death. In 
comparison to their wild-type counterparts, mice lacking the FAAH gene showed a significant increase 
in acute and chronic doxorubicin-induced cardiac oxidative and nitrative stress, as well as impaired 
antioxidant defense and tissue injury[91]. Furthermore, anandamide increased the sensitivity of inflam-
matory cells isolated from FAAH mutant mice to ROS generation. These findings imply that, in 
pathological situations involving oxidative/nitrative stress (such as doxorubicin-induced myocardial 
injury), FAAH plays an important role in regulating endocannabinoid-induced cardiac cell injury, 
which is mediated in part by CB1 receptor activation because these effects may be attenuated by 
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selective CB1 antagonists[91].
The role of the endocannabinoid system in oxidative stress control has also been proven in athero-

sclerosis models such as the apolipoprotein E (ApoE) deficient animal model. In ApoE and CB2 double 
knockout mice, the release of superoxide radical was increased two-fold in intact aortic segments 
compared to ApoE knockout mice. The selective CB2 agonist JWH-133 reduced ROS release in ApoE 
knockout mice to comparable levels to those in wild-type animals[54].

The first evidence of a direct link between the endocannabinoid system and the pathogenesis of 
diabetic cardiomyopathy came from the interesting study conducted by Rajesh and co-workers in 2011. 
This research group demonstrated an increased expression of CB1 receptors and anandamide levels in 
the myocardium of streptozotocin-induced diabetic mice compared to their non-diabetic counterparts
[92]. Streptozotocin-induced diabetic cardiomyopathy was characterized by a profound accumulation of 
markers of oxidative and nitrative stress in the myocardium, an effect that was ameliorated by genetic 
deletion of CB1 receptors. In addition, genetic deletion of CB1 mitigated the expression of the p40phox

NADPH oxidase active subunit in myocardial tissue of diabetic mice[92].
Earlier, the same research group demonstrated a protective effect of CBD in diabetic cardiomyopathy

[92]. CBD is the most common non-psychotropic cannabinoid in Cannabis sativa, and it has been 
approved for the treatment of inflammation, pain, and spasms associated with multiple sclerosis in 
humans[93]. CBD exerts several actions that are independent of the CB1 and CB2 receptors[94]. In this 
study, CBD therapy was found to reduce oxidative and nitrative stress in the myocardium of strepto-
zotocin-induced diabetic mice. Additionally, CBD was found to reduce ROS production as well as the 
expression of active ROS-generating NADPH oxidase isoforms p22phox, p67phox, and gp91phox. It 
also increased glutathione levels and SOD activity and reduced nitrotyrosine production. These 
protective effects of CBD against oxidative/nitrative stress were also demonstrated in vitro in human 
primary cardiomyocytes[95].

In a study published in 2017, Vella et al[96] found that giving cannabinoids to diabetic rats reversed 
changes in lipid peroxidation and oxidative stress markers, as well as blocking maladaptive alterations 
in the structure and function of the heart and blood vessels. Similar findings were previously published 
by Rajesh's group, who reported that administering CBD to diabetic C57BL/6J mice for 11 wk reduced 
the formation of lipid peroxides, protein carbonyls, and ROS in the heart[95]. Furthermore, the binding 
site of anandamide has been linked to NO release[97], implying a possible mechanism by which 
cannabinoids could increase NO bioavailability. THC treatment of STZ-induced diabetic rats resulted in 
a controlled redox state that granted improvements in end organ function of the myocardium and 
vasculature[96]. This was demonstrated by preservation of myocardial pump function, cardiac electro-
physiology, noradrenergic-mediated contraction, and endothelial-dependent relaxation of resistance 
arteries. These findings suggested that cannabinoid receptor activation in an experimental type I 
diabetes animal might be a potential pharmacological target for diabetic cardiomyopathy management
[96] (Table 2).

Inflammation
Inflammation is a complex nonspecific response of vascular tissues to harmful stimuli such as 
pathogens, damaged cells, or irritants, and it involves several functional and molecular mediators, such 
as the recruitment and activation of leukocytes such as mast cells, neutrophils, and monocytes/ 
macrophages. On an acute basis, inflammation is usually good since it represents the organism's 
defensive attempt to eliminate damaging stimuli and begin the healing process. Inflammation, on the 
other hand, might have negative consequences if it continues for a long period[98]. The increased 
expression of many inflammatory proteins is regulated at the level of gene transcription through the 
activation of pro-inflammatory transcription factors which play a critical role in amplifying and 
perpetuating the inflammatory process[99].

Activation of the transcription factor nuclear factor-kappa B (NF-κB), which binds to DNA and 
activates gene transcription, appears to play a pivotal role in the regulation of inducible enzymes such 
as inducible nitric oxide synthase (iNOS), inflammatory cytokines such as tumor necrosis factor-α (TNF-
α), interleukin-1β (IL-1β) and IL-6, prostaglandins, cell adhesion molecules such as intercellular 
adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), in addition to other 
substances that are initiators or enhancers of the inflammatory process[100,101]. The aforementioned 
inflammatory mediators bind to specific target receptors on the cells and may increase vascular 
permeability, promote inflammatory cell chemotaxis, stimulate smooth muscle contraction, increase 
direct enzymatic activity, induce pain, and/or mediate oxidative damage[102].

Numerous investigations have indicated that inflammatory processes play a critical role in the 
development of diabetes macro- and microvascular complications[29,103]. Cardiac inflammation is a 
common and early symptom of diabetes, and it plays a key role in the progression of heart failure in 
diabetic cardiomyopathy[104]. Furthermore, various research on the heart of diabetic or diabetic 
hypertensive rats has shown that NF-κB plays a major role in the development of diabetic cardiomy-
opathy[105,106].

Cannabinoid receptor expression in immune cells can be influenced by various inflammatory factors 
and other triggers activating these cells[107]. Inflammatory stimuli may potentially boost the synthesis 
of endocannabinoids in immune cells (e.g., macrophages, monocytes, and dendritic cells) by activating 
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Table 2 Summary of possible mechanisms by which cannabinoids and the endocannabinoid system could modulate diabetic 
cardiomyopathy

Cannabinoid agent Mechanism Effect

Oxidative/Nitrative stress Influenced ROS and RNS production[28]

Myocardial remodeling Triggered activation of signaling pathways (e.g., p38 and JNK-MAPKs), 
promoting cell death[50,137]

Increased during inflammation[107]

Endocannabinoids

Inflammation

Modulating T and B lymphocyte proliferation and apoptosis, inflam-
matory cytokine production and immune cell activation by inflammatory 
stimuli[107,108,111]

AM281 Oxidative/Nitrative stress Attenuated doxorubicin-induced oxidative stress[52]

Oxidative/Nitrative stress Attenuated doxorubicin-induced oxidative stress[52]

Reduced plasma levels of the pro-inflammatory cytokines MCP-1 and IL-
12 in low density lipoprotein deficient mice[113]

Inflammation

Inhibited LPS-induced pro-inflammatory IL-6 and TNF-α expression[113]

Reduced activation of p38 and JNK/MAPK[90]

Improved myocardial dysfunction induced in a mouse model of diabetic 
cardiomyopathy[92]

SR141716A

Myocardial remodeling

Reduced markers of cell death (activated caspase-3 and chromatin 
fragmentation)[92]

Oxidative/Nitrative stress Reduced ROS release in ApoE knockout mice[54]

Decreased leukocyte recruitment in ApoE-knockout mice[54]

Attenuated TNF-α-induced NF-κB activation[116]

JWH133

Inflammation

Attenuated ICAM-1 and VCAM-1 up-regulation[116]

Attenuated oxidative and nitrative stress in the myocardium of strepto-
zotocin-induced diabetic mice[93]

Oxidative/Nitrative stress

Prevented changes in markers of lipid peroxidation and oxidative stress in 
diabetic rats[96]

Inhibited IκB-α phosphorylation and subsequent p65 NF-κB nuclear 
translocation[93]

Inflammation

Attenuated high glucose-induced NF-κB activation in primary human 
cardiomyocytes[93]

Attenuated the established systolic and diastolic dysfunction in diabetic 
mice[93]

Attenuated the activation of stress signaling pathways: p38 and 
JNK/MAPKs[93]

Enhanced the activity of the pro-survival AKT pathway in diabetic 
myocardium[93]

Myocardial remodeling

Decreased the activity of the pro-apoptotic enzyme caspase-3[93]

Cannabidiol

Autophagy Promoted endothelial cell survival via HO-1 mediated autophagy[170]

Oxidative/Nitrative stress Induced NO bioavailability[97]

Decrease rat heart mitochondrial O2 consumption[135]

Increased activation of p38 and JNK/MAPK, followed by cell death[90]

Anandamide

Myocardial remodeling 

Enhanced doxorubicin-induced MAPK activation and cell death[90]

Oxidative/Nitrative stress Regulated redox state in diabetic rats[96]Δ9-tetrahydrocannabinol (THC)

Myocardial remodeling Decreased rat heart mitochondrial O2 consumption[135]

Reduced atherosclerotic lesion macrophage content and IL-6 and TNF-α 
levels[114,115]

WIN55, 212-2 Inflammation

Reduced adhesion molecules VCAM-1 and ICAM-1 as well as NF-κB 
activation[114,115]
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Attenuated TNF-α-induced NF-κB activation, ICAM-1 and VCAM-1 up-
regulation[116]

Inflammation

Decreased endothelial cell activation and suppression of the acute inflam-
matory response[56,117]

Enhanced autophagy levels in heart tissues with diabetic cardiomyopathy
[171]

HU-308

Autophagy

Increased AMPK phosphorylation while decreasing the phosphorylation 
of mTOR[171]

Decrease rat heart mitochondrial O2 consumption[135]

Increased activation of p38 and JNK/MAPK, followed by cell death[90]

Enhanced doxorubicin-induced MAPK activation and cell death[90]

HU-210 Myocardial remodeling 

Enhanced left ventricular performance in rats with myocardial infarction
[143]

Improved cardiac function in carbon tetrachloride-induced cirrhosis in 
rats[140]

AM251 Myocardial remodeling

Reduced activation of p38 and JNK/MAPK[90]

LPS: Lipopolysaccharide; AMPK: Adenosine monophosphate activated protein kinase; mTOR: Mammalian target of rapamycin; IL: Interleukin; JNK: Jun 
N-terminal kinase; MAPK: Mitogen activated protein kinases; TNF-α: Tumor necrosis factor-α; NF-κB: Nuclear factor-kappa B; ICAM-1: Intercellular 
adhesion molecule-1; VCAM-1: Vascular cell adhesion molecule-1.

multiple biosynthetic pathways and/or decreasing the expression of metabolic enzymes that degrade 
them[107,108]. THC and other natural or synthetic cannabinoids have been studied for their 
immunomodulatory effects in mice and/or rats in vivo, as well as in cultured human immune cells. 
Overall, cannabinoid ligands exhibit suppressive effects on B-lymphocytes, T-lymphocytes, natural 
killer cells, and macrophages[109,110], which are most likely due to both CB1 and CB2 receptor-
dependent and –independent mechanisms. Other studies have revealed that endocannabinoids can 
influence immune functions by modulating T and B lymphocyte proliferation and apoptosis, inflam-
matory cytokine production and immune cells activation in response to inflammatory stimuli, 
macrophage-mediated killing of sensitized cells, chemotaxis, and inflammatory cell migration[107,110,
111]. Furthermore, cannabinoids may influence the expression of iNOS and the formation of ROS in 
immune cells, which play significant roles in the defense against invading pathogens and in modulation 
of the inflammatory response[21]. The involvement of cannabinoid receptors in inflammation is shown 
in Figure 3.

Han et al[112] demonstrated that CB1 receptors promote pro-inflammatory responses of macrophages 
through ROS production, and subsequent synthesis of TNF-α and monocyte chemoattractant protein-1 
(MCP-1). This effect was negatively regulated by CB2 and was attenuated by CB1 blockade. In a mouse 
model of atherosclerosis, the CB1 antagonist SR141716A (rimonabant) was able to reduce plasma levels 
of the pro-inflammatory cytokines MCP-1 and IL-12 in low density lipoprotein deficient mice fed with a 
high fat diet[113]. In addition, rimonabant inhibited lipopolysaccharide (LPS)-induced pro-inflam-
matory IL-6 and TNF-α expression in mouse peritoneal macrophages in vitro. Importantly, this effect 
was still observed when cells from CB1-knockout mice were used, suggesting a CB1-independent anti-
inflammatory effect of rimonabant[113]. In another model of atherosclerosis, Hoyer and co-workers 
demonstrated a severe vascular leukocyte infiltration in ApoE and CB2 double knockout mice which 
was more intense than that observed in ApoE-knockout mice[54]. Interestingly, treatment with the 
selective CB2 agonist JWH-133 decreased leukocyte recruitment in ApoE-knockout mice compared to 
their wild-type counterparts[54]. In 2010, Zhao et al[114,115] showed that treatment with the synthetic 
cannabinoid WIN55,212-2 reduced atherosclerotic lesion macrophage content and mRNA levels of 
inflammatory markers IL-6 and TNF-α; adhesion molecules VCAM-1 and ICAM-1 as well as NF-κB 
activation in ApoE-deficient mice fed on high-cholesterol diets. In human coronary artery endothelial 
cells, activation of CB2 receptors with the selective agonists HU-308 or JWH-133 attenuated the TNF-α-
induced NF-κB activation, ICAM-1 and VCAM-1 up-regulation, MCP-1 release, as well as trans-
endothelial migration and adhesion of monocytes, which are hallmarks of the development of athero-
sclerosis[116].

The beneficial effects of CB2 receptor activation by selective synthetic ligands, such as JWH-133 and 
HU-308, was largely attributed to decreased endothelial cell activation and suppression of the acute 
inflammatory response in animal models of myocardial ischemia/reperfusion injury, which are charac-
terized by a rapid increase in cytokines and chemokines in addition to an enhanced influx of leukocytes 
into the vulnerable region. Attenuated expression of adhesion molecules, chemokine secretion, 
leukocyte chemotaxis, adherence to endothelium, stimulation of trans-endothelial migration, and linked 
oxidative/nitrative stress associated with reperfusion damage were all beneficial effects of CB2 receptor 
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Figure 3 Role of cannabinoid receptors in inflammation. Activation of toll-like receptor 4 induces tumor necrosis factor receptor associated factor 6, which 
activates transforming growth factor beta-activated kinase 1 (TAK1), phosphoinositide 3-kinase (PI3K), and mitogen-activated protein kinase signaling. This will 
induce the formation of nuclear factor-kappa B (NF-κB) and the subsequent increase in inflammatory cytokines levels such as interleukin 6 (IL-6), IL-1β, and tumor 
necrosis factor α (TNF-α) in addition to the activation of inducible nitric oxide synthase (iNOS) and monocyte chemoattractant ptotein-1 (MCP-1). Stimulation of 
cannabinoid receptors will increase the PI3K activity leading to increased activity of protein kinase B (Akt/PKB), which in turn enhances the nuclear translocation of 
NF-κB. TLR4: Toll-like receptor 4; TRAF6: Tumor necrosis factor receptor associated factor 6; PI3K: Phosphoinositide 3-kinase; MAPK: Mitogen-activated protein 
kinase; NF-κB: Nuclear factor-kappa B; IL: Interleukin; TNF-α: Tumor necrosis factor α; MCP-1: Monocyte chemoattractant protein-1.

activation[56,117].
In a mouse model of streptozotocin-induced diabetic cardiomyopathy, which is characterized by up-

regulation of the expression of various inflammatory cytokines in the myocardium, genetic deletion, or 
pharmacological blockade of CB1 receptors resulted in attenuation of the expression of: Inflammatory 
cytokines such as TNF-α and IL-1β, adhesion molecules such as ICAM-1 and VCAM-1, iNOS, and 
cyclooxygenase 2 (COX2)[92]. In another study using the same model of diabetic cardiomyopathy, it 
was shown that there was a marked phosphorylation of the inhibitor of NF-κB (IκB-α) in the cytosol of 
diabetic hearts, leading to the release of the active p65 subunit of NF-κB, which subsequently 
translocated to the nucleus to induce the expression of inflammatory and apoptotic genes[95]. 
Treatment with CBD, the non-psychoactive cannabinoid, inhibited the IκB-α phosphorylation and 
subsequent p65 NF-κB nuclear translocation. The CBD treatment also inhibited the NF-κB-dependent 
mRNA and/or protein expression of adhesion molecules (ICAM-1 and VCAM-1), the pro-inflammatory 
cytokine TNF-α, and iNOS in the diabetic myocardial tissues. Cannabidiol (CBD) was also able to 
attenuate high glucose-induced NF-κB activation in primary human cardiomyocytes[95] (Table 2).

Accumulation of AGEs
An important consequence of high glucose-induced cellular injury is the formation of AGEs. AGEs are a 
heterogeneous group of compounds formed by the non-enzymatic glycation reaction of glucose and 
other glycating compounds with proteins and, to a lesser extent, lipids, and DNA[118]. In addition, 
AGEs can easily make covalent cross-linkages (adducts) with macromolecules like proteins and, in this 
way, can change the structure and function of these proteins[119]. In diabetic patients, the rate of 
formation of AGEs is increased. Thus, over time, even modest hyperglycemic excursions can result in 
significant adduct accumulation in long-lived macromolecules[120]. It is now well established that 
AGEs interact with cell surface receptors and binding proteins to evoke varied downstream responses. 
These include the pro-inflammatory responses that could play a critical role in the pathogenesis of 
diabetic complications including cardiomyopathy[121]. The receptor for AGEs (RAGE) is the most 
established and the best characterized AGE binding protein[122]. The RAGE is a trans-membrane 
receptor that belongs to the immunoglobulin super-family and is constitutively expressed in a range of 
tissues including neurons, endothelium, smooth muscle, epithelium, and inflammatory cells[123].
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There are two basic methods by which AGEs might alter myocardial function. AGEs, for starters, can 
form covalent adducts with proteins including collagen, laminin, and elastin[118,124]. As shown in the 
myocardium of an animal model of type 2 diabetes, this can inhibit collagen degradation, resulting in 
collagen buildup and fibrosis, producing increased myocardial stiffness, and reduced ventricular 
relaxation[19]. Second, soluble extracellular AGEs can bind to RAGE, causing up-regulation of 
transforming growth factor–β (TGF–β) and NADPH oxidase, resulting in the generation of substantial 
quantities of cytoplasmic and extracellular superoxide, which can then interact with NO to produce 
RNS[118]. Furthermore, when the RAGE receptor is active, it promotes the transcription factor NF-κB 
and associated genes by elevating intracellular free radical levels and by triggering multiple other 
signaling pathways[125].

In the literature, little is known about the interaction of the endocannabinoid system and the AGE 
and/or RAGE. In a mouse model of streptozotocin-induced diabetic cardiomyopathy, genetic deletion 
of CB1 receptors attenuated accumulation of AGEs and the expression of RAGE in the myocardium of 
diabetic mice[92] (Table 2).

Myocardial remodeling
Diabetes has a multifactorial nature, therefore there are changes at the cellular and molecular levels that 
predispose the heart to pathological, structural, and functional remodeling[4]. Diabetic cardiomyopathy 
is characterized by an unusually increased left ventricular mass and myocardial fibrosis. Left ventricular 
hypertrophy has been associated with hyperinsulinemia, insulin resistance, increased non-esterified 
fatty acids, and activation of the renin-angiotensin-aldosterone system[82]. Chronic cardiac remodeling 
and structural alterations are promoted by a continual cycle of increased ROS production[126,127]. 
Diastolic dysfunction is defined as an elevation in ventricular wall stiffness and prolonged diastolic 
relaxation time, and it is common in the early stages of cardiomyopathy[128].

Increased triglyceride buildup and decreased calcium absorption have been linked to diastolic 
dysfunction[128]. The progression of systolic dysfunction is marked by dilated cardiac remodeling, 
which leads to heart failure[129]. Cardiomyocyte mortality is accompanied by fibroblast replacement, 
which leads to interstitial fibrosis driven predominantly by TGF-β[130]. Cardiomyocyte death is 
mediated by activation of various stress signaling pathways and consequent apoptosis. The deleterious 
effect of accumulating free fatty acids on mitochondrial biogenesis eventually leads to mitochondrial 
apoptosis and lowered ATP generation, which is insufficient to meet cardiac demands, resulting in 
impaired cardiac contractility and lowered ejection fraction[128]. Myocardial dysfunction is caused by 
impaired endothelial function linked with insulin resistance[13].

Cannabinoid receptors are believed to have the ability to control apoptosis since they may signal 
through both pro- and anti-apoptotic pathways. Due to the lipophilic nature of their structures, they 
may be able to operate intracellularly without the help of a membrane transporter[131]. A number of 
cannabinoid drugs, including HU-210, THC, and anandamide, have been demonstrated to reduce 
cardiac mitochondrial O2 consumption in rats[132], as well as the role of mitochondria in marijuana-
induced cell death[133]. Stimulation of CB1 receptors by endocannabinoids has also been linked to the 
activation of signaling pathways (e.g., p38 and JNK-MAPKs) and cell death in various clinical circum-
stances[51,134]. It is reasonable to conclude, based on earlier results and observations of reduced cardiac 
apoptosis in FAAH-null animals, that endocannabinoids have strong potential for the regulation of 
apoptosis, and hence remodeling, in the heart[135].

Doxorubicin treatment is linked to increased anandamide levels in the myocardium, but not to 
alterations in CB1 or CB2 receptor expression[52]. Doxorubicin triggered apoptosis in a cardiac cell line 
(H9c2) that was reduced by CB1 receptor blockage, but the result was not sensitive to a CB2 blocker or 
CB1 and CB2 receptor agonists[52]. Similarly, studies on cardiac function suggest that endocan-
nabinoids have a role in cirrhosis-related cardiac dysfunction[136]. AM251, which blocks CB1 receptors, 
enhanced cardiac function in rats with carbon tetrachloride-induced cirrhosis, and anandamide levels 
were shown to be elevated in the hearts of cirrhotic rats compared to controls[137]. In contrast, aging-
associated cardiac dysfunction is reduced in FAAH-null mice, which could be interpreted as showing a 
need for increased endocannabinoid activity in the heart[135].

Mukhopadhyay et al[90] demonstrated that genetic deletion of CB1 receptors attenuated cardiac 
dysfunction induced by doxorubicin in mice. In this study, doxorubicin-induced activation of stress 
signaling pathways (p-38 and JNK/MAPKs) with subsequent apoptosis was attenuated in CB1 
knockout mice. In addition, these findings were supported in vitro in human primary cardiomyocytes as 
the activation of CB1 receptors by anandamide or HU210 resulted in increased activation of p38 and 
JNK/MAPK, followed by cell death, which are effects that were attenuated by both selective CB1 
antagonists (SR141716A or AM281) and MAPK inhibitors[90]. Furthermore, doxorubicin-induced 
MAPK activation and cell death in human cardiomyocytes were significantly enhanced when 
doxorubicin was co-administered with anandamide or HU210, an effect which could also be attenuated 
by both CB1 antagonists and MAPK inhibitors[90]. Another aspect of doxorubicin-induced 
cardiotoxicity is the induction of myocardial fibrosis, an effect that was attenuated by genetic deletion of 
CB1 indicating its role in this model of cardiotoxicity[90]. In another study using the same model of 
doxorubicin-induced cardiotoxicity in mice, it has been shown that FAAH knockout mice exhibited 
significantly increased doxorubicin-induced cardiac dysfunction and myocardial cell death compared to 
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their wild-type counterparts. The effects of doxorubicin in FAAH knockouts were attenuated by CB1 
receptor antagonists[91].

Acute myocardial infarction causes cardiomyocyte necrosis, which triggers repair mechanisms that 
result in scarring[138]. This post-infarction cardiac remodeling process involves adaptive changes in the 
ventricular shape, size, and function, which can lead to contractile dysfunction and heart failure[138]. In 
ischemic cardiomyocyte death, fibrosis, and cardiac dysfunction, Defer and coworkers showed consid-
erable evidence for the protective impact of CB2 receptors[139]. CB2-knockout mouse hearts displayed 
larger infarcts and more persistent cell loss 3 d after ischemia, as well as accelerated damage and 
apoptosis in the non-ischemic remote myocardium compared to wild-type mice[139]. Cardiomyocytes 
and fibroblasts lacking CB2 were more vulnerable to oxidative stress-induced cell death in vitro. Long-
term effects of cardiac remodeling in CB2-knockout hearts involved marked fibrosis, accelerated 
cardiomyocyte hypertrophy, dilated cardiomyopathy, and cardiac dysfunction, as reported 4 wk post-
infarction[139]. On other hand, wild-type post-ischemic hearts acquired mild fibrosis and 
cardiomyocyte hypertrophy while maintaining cardiac function[139]. Wagner and colleagues revealed 
another investigation where the administration of the CB1 antagonist AM251 for 12 wk after an experi-
mentally induced infarction exacerbated the decline in left ventricular function, but administration of 
the non-selective cannabinoid agonist HU-210 improved left ventricular performance[140].

A previous study conducted by Liao and co-workers demonstrated that CB1 deficiency contributed to 
the exacerbation of chronic cardiac remodeling induced by pressure overload in mice, revealing a new 
role of CB1 in the pathophysiology of congestive heart failure[141]. Genetic deletion of CB1 was found 
to worsen left ventricular hemodynamics and exacerbate cardiac hypertrophy compared to wild-type 
mice. Furthermore, it was found that CB1 deficiency led to enhanced activation of the epidermal growth 
factor receptor, p38, and ERK/MAPKs, which contributed to the exacerbation of cardiac hypertrophy
[141].

In patients with chronic heart failure, clinical data revealed an increase in cardiac CB2 expression as 
well as increased levels of the endocannabinoids, anandamide, and 2-AG[142]. Additionally, in these 
patients, cannabinoid receptor expression was also found to be slightly downregulated[142]. It was 
believed that CB2 up-regulation could have a negative inotropic effect due to lower cyclic adenosine 
monophosphate (cAMP) levels, which could lead to ventricular weakness. CB2 receptors, on the other 
hand, may mediate positive inotropic effects via cAMP-independent processes, hence serving as a 
compensation strategy to sustain heart function[53]. Furthermore, as demonstrated in rats, CB2 upregu-
lation could be a protective response to counteract structural alterations caused by chronic heart failure
[139]. Recently, it has been shown that in biopsies collected from the hypertrophic myocardium of 
patients with aortic stenosis, there were elevated concentrations of anandamide, higher expression of its 
degrading enzyme FAAH, and of CB2 receptors[143].

Rajesh et al[92] indicated that myocardial dysfunction induced in a mouse model of diabetic 
cardiomyopathy was improved in CB1-knockout mice or in diabetic mice treated with CB1 antagonists 
(SR141716A or AM281). This was demonstrated by improved indices of left ventricular systolic and 
diastolic dysfunction, ejection fraction, contractility, and ventricular stiffness. In the same study, there 
was attenuated activity of MAPKs and reduced markers of cell death (activated caspase-3 and 
chromatin fragmentation) in the myocardium of diabetic CB1-knockout mice and in diabetic wild-type 
mice treated with the CB1 antagonist (SR141716A). Diabetic mice developed myocardial fibrosis as a 
structural consequence of diabetic cardiomyopathy, and this was characterized by increased accumu-
lation of collagen and enhanced expression of markers of fibrosis such as TGF-β and fibronectin. 
Interestingly, these changes were attenuated by genetic deletion or pharmacological blockade of CB1 
receptors[92]. In another study using the same model, chronic treatment of diabetic mice with the non-
psychoactive CBD attenuated the established systolic and diastolic dysfunction in diabetic mice[95]. In 
addition, CBD treatment attenuated the activation of stress signaling pathways: p38 and JNK/MAPKs. 
It also enhanced the activity of the pro-survival AKT pathway in diabetic myocardium. Another 
beneficial effect of CBD treatment in this model was its ability to decrease the activity of the pro-
apoptotic enzyme caspase-3 and to reduce the rate of cell death in diabetic myocardium. Finally, CBD 
treatment protected diabetic myocardium from the deleterious process of fibrosis by decreasing 
myocardial collagen content and attenuating the expression of fibrosis markers: TGF-β, fibronectin, and 
the enzyme matrix metalloproteinase[95] (Table 2).

Autophagy
Autophagy, an essential metabolic process, is a self-degradative and recycling procedure dependent on 
lysosomes. It targets dysfunctional organelles and long-lived proteins[144,145]. This occurs through the 
biogenesis of double-membrane vesicles containing cytoplasmic components destined for lysosomal 
degradation, these vesicles are known as autophagosomes[146]. Autophagosome biogenesis entails 
nucleation, expansion, and closure of the phagophore (a cup-shaped membrane) thereby sequestering 
cytoplasmic cargo. This is followed by fusion with endolysosomal compartments to facilitate 
degradation of the sequestered material[146].

Autophagy is performed by genes called autophagy-related (ATG) genes[147]. The discovery of ATG 
genes in yeast in the 1990s allowed researchers to identify how autophagy works[148]. Today, 36 ATG 
proteins have been identified as being particularly significant for autophagy, with 18 of them belonging 
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to the basic machinery[149]. Through the Unc-51-like kinases, ULK1 and ULK2 (mammalian 
homologues of ATG1), two protein kinases (mTOR and AMPK) control autophagy in mammals[150]. 
The ULK kinases are dephosphorylated and activated when autophagy is induced. Beclin-1 
(mammalian ortholog of ATG6), which is part of a protein complex, is phosphorylated and activated by 
the ULK[151]. The active ULK and Beclin-1 complexes translocate to the phagophore, the site of 
autophagosome initiation, where they both help to stimulate downstream autophagy components[152].

Autophagosome production requires two ubiquitin-like conjugation mechanisms[153]. The first one 
covalently binds the ubiquitin-like protein ATG12 to ATG5. The conjugate protein subsequently 
attaches to ATG16L1, forming an E3-like complex that is part of the second ubiquitin-like conjugation 
system[154]. This complex binds and activates ATG3, which covalently binds to the mammalian 
homologues of the ubiquitin-like yeast protein LC3 to the lipid phosphatidylethanolamine (PE) on 
autophagosome surfaces[155]. Lipidated LC3 aids autophagosome closure[156] and facilitates the 
docking of particular cargos and adaptor proteins such as Sequestosome-1/p62[157]. The autopha-
gosome then unites with a lysosome to produce an autolysosome. The autolysosome's contents are then 
destroyed, and their constituents are liberated from the vesicle[158].

Autophagy has a role in the control of cardiovascular disorders such as myocardial infarction and 
atherosclerosis[159]. Increased autophagy levels have been shown to protect against diabetic cardiomy-
opathy[160,161]. As a result, pharmacological activation of autophagy might be a promising therapeutic 
strategy for diabetic cardiomyopathy.

Autophagy also plays an essential role in the functioning of a variety of receptors. In the case of 
cannabinoid receptors, autophagy has been related to the protective effects of CB2 in a variety of 
disorders[162-164], suggesting the relevance of autophagy in disease treatment. Autophagy was 
previously shown to contribute to the alleviative effects mediated by CB2 activation in inflammatory 
disorders such as multiple sclerosis, alcoholic liver disease, and inflammatory bowel disease[162-164]. 
Activating CB2 improved inflammatory bowel disease in mouse models by inhibiting the NLRP3 
inflammasome and triggering autophagy in murine macrophages, according to Ke and colleagues[163]. 
In mouse multiple sclerosis models, a similar relationship between CB2 and autophagy was discovered
[164].

In the case of autophagy in diabetic cardiomyopathy, it was shown that increasing autophagy levels 
contributed to improving the condition. Several treatments have been demonstrated to be beneficial in 
reducing the etiology and development of diabetic cardiac myopathy by utilizing enhanced autophagy 
levels[160,161,165,166]. CB2 activation via autophagy induction provided protection against diabetic 
cardiomyopathy, according to a recent study by Wu and coworkers[167]. They used HU308 to 
selectively activate CB2, resulting in a substantial increase in autophagy levels in diabetic cardiomy-
opathy heart tissues in vivo and hyperglycemia-challenged cardiomyocytes in vitro. Furthermore, 
inhibiting autophagy with bafilomycin A1 reduced the cardioprotective effect of HU308 in both in vitro 
and in vivo models. Wu et al[167] concluded that CB2-induced autophagy was involved in the CB2-
mediated cardio-protective effect.

Resveratrol, an autophagy inducer, was discovered to have a cardio-protective impact in 
cardiomyocytes exposed to hyperglycemia via the AMPK-mTOR-p70S6K signaling pathway[168]. 
AMPK-mTOR signaling contributed to the cardio-protective effect in STZ-induced diabetic mice by 
increasing autophagy[161,169]. According to these findings, Wu et al[167] found that administering 
HU308 to selectively activate CB2 enhanced AMPK phosphorylation while lowering mTOR and p70S6K 
phosphorylation, initiating the AMPK-mTOR-p70S6K signaling cascade in murine primary ventricular 
cardiomyocytes. Furthermore, using compound C, an AMPK inhibitor, significantly reduced the cardio-
protective effect of HU308, showing that AMPK-mTOR-p70S6K signaling-induced autophagy was 
essential in CB2-mediated cardiac protection in dilated cardiomyopathy[167]. However, because the 
mechanisms behind CB2-mediated autophagy activation are complex, more research is required. 
Figure 4 summarizes the effect of cannabinoid receptors on AMPK/mTORC1/NLRP3 signaling.

Cannabidiol (CBD), has recently gained increased interest for therapeutic use. Indeed, CBD has been 
shown to suppress a high glucose-induced inflammatory response and barrier disruption of endothelial 
cells[170] and to attenuate myocardial dysfunction, cardiac fibrosis, oxidative/nitrative stress, inflam-
mation, cell death, and interrelated signaling pathways in a mouse model of type I diabetic cardiomy-
opathy[95]. The critical role of HO-1 has been evident in the regulation of autophagy, with survival-
enhancing effects in various cell types, including endothelial cells[171-173]. Moreover, HO-1 showed 
positive in vivo effects in animal models of atherosclerosis and restenosis[174]. Böckmann and Hinz have 
recently proved that CBD promoted endothelial cell survival via HO-1 mediated autophagy[170] 
(Table 2).

CONCLUSION
Diabetes-induced cardiomyopathy is a deleterious complication of the cardiovascular system charac-
terized by structural and functional changes in the myocardium that ultimately lead to cardiac failure. 
The mechanisms underlying the development of diabetic cardiomyopathy are complex and involve 
several pathogenic pathways. A great body of evidence supported a special role of oxidative/nitrative 



El-Azab MF et al. Cannabinoids in diabetic cardiomyopathy

WJD https://www.wjgnet.com 400 May 15, 2022 Volume 13 Issue 5

Figure 4 Effect of cannabinoid receptors on adenosine monophosphate activated protein kinase/mammalian target of rapamycin 
complex 1/NLR family pyrin domain containing 3 signaling. Cannabinoids enhance the phosphorylation of adenosine monophosphate activated protein 
kinase (AMPK), which reduces the stimulatory effect of mammalian target of rapamycin complex 1 (mTORC1) on inflammasome assembly. Depressed activation of 
NLR family pyrin domain containing 3 (NLRP3) will diminish the activation of procaspase-1 leading to a decrease in interleukin-1β (IL-1β) and IL-18 production. 
Additionally, the inhibitory effect of phosphorylated AMPK on mTORC1 will enhance autophagy. AMPK: Adenosine monophosphate activated protein kinase; 
mTORC1: Mammalian target of rapamycin complex 1; NLRP3: NLR family pyrin domain containing 3; IL: Interleukin.

stress and inflammation in the pathogenesis of diabetic cardiomyopathy. The endocannabinoid system 
has been implicated in the development of several pathological conditions including cardiovascular 
disorders. Several mechanisms have been proposed as targets by which cannabinoids and the endocan-
nabinoid system could modulate cardiovascular disorders and recent evidence suggested the 
involvement of this system in the pathogenesis of diabetic cardiomyopathy. Indeed, the manipulation of 
the endocannabinoid system could represent a promising therapeutic approach for diabetic cardiomy-
opathy, and several mechanisms have been proposed for this role including its effects on 
oxidative/nitrative stress, inflammatory pathways, and autophagy together with possible effects on 
cardiac remodeling. However, more research is needed to define the exact mechanisms of the 
intervention of the different components of this system in diabetic cardiomyopathy.
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