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Abstract
Spleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase expressed in most
hematopoietic cells and non-hematopoietic cells and play a crucial role in both
immune and non-immune biological responses. SYK mediate diverse cellular
responses via an immune-receptor tyrosine-based activation motifs (ITAMs)-
dependent signalling pathways, ITAMs-independent and ITAMs-semi-
dependent signalling pathways. In liver, SYK expression has been observed in
parenchymal (hepatocytes) and non-parenchymal cells (hepatic stellate cells and
Kupffer cells), and found to be positively correlated with the disease severity. The
implication of SYK pathway has been reported in different liver diseases
including liver fibrosis, viral hepatitis, alcoholic liver disease, non-alcoholic
steatohepatitis and hepatocellular carcinoma. Antagonism of SYK pathway using
kinase inhibitors have shown to attenuate the progression of liver diseases
thereby suggesting SYK as a highly promising therapeutic target. This review
summarizes the current understanding of SYK and its therapeutic implication in
liver diseases.

Key words: Spleen tyrosine kinase; Liver diseases; Inflammation; Targeted therapeutics;
Spleen tyrosine kinase inhibitors
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Core tip: Spleen tyrosine kinase has reported to be positively correlated with disease
severity and has shown to play a crucial role in the pathogenesis of liver diseases.
Therefore, specific targeting of spleen tyrosine kinase pathway using kinase inhibitors is
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a highly promising therapeutic approach for the treatment of liver diseases.
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INTRODUCTION
Spleen tyrosine kinase (SYK) is a cytoplasmic non-receptor protein tyrosine kinase
(PTK) that consists of two SYK homology 2 domains (SH2) and a C-terminal tyrosine
kinase domain. These domains are interconnected by two linker regions: Interdomain
A between the two SH2 domains and Interdomain B between the C-terminal SH2
domain  and  the  kinase  domain  (Figure  1).  SYK is  a  member  of  the  Zeta-chain-
associated protein kinase 70/SYK family of the PTKs, with the estimated molecular
weight of 70 kDa[1,2]. SYK is highly expressed in hematopoietic cells including mast
cells,  neutrophils,  macrophages,  platelets,  B  cells  and  immature  T  cells,  and  is
important  in  signal  transduction  in  these  cells[2,3].  In  Immune cells,  SYK mainly
functions via interaction of its tandem SH2 domains with immunoreceptor tyrosine-
based activation motifs (ITAMs). In mast cells, SYK mediates downstream signaling
via high-affinity IgE receptors, FcεRI and in neutrophils, macrophages, monocytes and
platelets downstream signalling is mediated via Igγ receptors, FcγR[4-6]. SYK plays a
key role in signaling downstream of the B and T cell receptors, hence also exhibit an
important  role  in  early  lymphocyte  development[4,7-10].  Upon  activation,  SYK
modulates downstream signaling events that drive inflammatory pathways of both
the innate and adaptive immune systems[11].  Besides ITAM-dependent signalling
pathway, SYK also mediates ITAM-independent signaling via integrins and C-type
lectins. For instance, SYK induces β2 integrin-mediated respiratory burst, spreading,
and site-directed migration of neutrophils towards inflammatory lesions[12].

The multifactorial role of SYK in the immune system has attracted attention in the
past years. SYK is recognized as a potential target for the treatment of inflammatory
diseases such as rheumatoid arthritis, asthma, allergic rhinitis, renal disorders, liver
fibrosis and autoimmune diseases[3,7,13-23]. In particular, the prevention of activation of
cells via immune complexes or antigen-triggered Fc receptor signaling and prevention
of  B  cell  receptor-mediated  events  are  believed  to  have  increasing  therapeutic
potential of SYK[24,25].

Besides hematopoietic cells,  SYK has also been shown to be expressed in non-
hematopoietic cells including fibroblasts, epithelial cells, hepatocytes, neuronal cells,
and vascular endothelial cells[7,26]. Here, SYK has shown to be involved in signalling
events  leading  to  activation  of  mitogen activated  protein  kinase  (MAPK)  by  G-
protein-coupled receptors in hepatocytes[26,27]. Besides being implicated in hepatocytes,
SYK is  also  expressed in  hepatic  macrophages,  hepatic  stellate  cells  (HSCs)  and
hepatic sinusoidal endothelial cells in liver[28]. However, studies investigating SYK
signalling pathway in liver diseases are still  limited.  This review highlights and
discusses  the  opportunities  and  challenges  of  SYK  as  a  potential  target  for  the
treatment of liver diseases.

SPLEEN TYROSINE KINASE SIGNALLING MECHANISMS
Immunoreceptor signalling through SYK requires the SYK kinase activity as well as
both SH2 domains[29]. The SYK kinase domain remain inactive during resting state but
can  be  activated  by  interaction  of  both  SH2  domains  to  dual  phosphorylated
ITAMs[30]. Phosphorylation of tyrosine residues within the linker regions (interdomain
A or B) also results in kinase activation even in the absence of phosphorylated ITAM
binding[29,30]. Binding of the SH2 domains of SYK to phosphorylated ITAMs is a critical
step in SYK activation and downstream signalling[31].  SYK itself  can catalyse the
autophosphorylation of its linker tyrosine’s, leading to sustained SYK activation after
a transient ITAM phosphorylation. In addition, SYK itself can phosphorylate ITAMs,
suggesting the existence of a positive-feedback loop during initial ITAM-mediated
SYK  activation[32].  Tsang  et  al[33]  showed  that  SYK  can  be  fully  triggered  by
phosphorylation or binding of its SH2 domains to the dual-phosphorylated immune-

WJG https://www.wjgnet.com March 14, 2020 Volume 26 Issue 10

Kurniawan DW et al. SYK in liver diseases

1006



Figure 1

Figure 1  Structure of spleen tyrosine kinase. Spleen tyrosine kinase contains tandem pair of spleen tyrosine
kinase homology 2 which connected by interdomain A and separated by interdomain B from the catalytic (kinase)
domain. SYK: Spleen tyrosine kinase; SH2: Spleen tyrosine kinase homology 2; ITAM: Immune-receptor tyrosine-
based activation motifs.

receptor tyrosine based activity motif (ppITAM) (Figure 2)[33,34]. Recently, Slomiany
and Slomiany demonstrated lipopolysaccharides (LPS)-induced SYK activation and
phosphorylation on serine residues mediated by protein kinase Cδ that is required for
its  recruitment  to  the  membrane-anchored  TLR4,  followed  by  subsequent  SYK
activation  through  tyrosine  phosphorylation.  Hence,  the  intermediate  phase  of
protein  kinase  Cδ-mediated SYK phosphorylation on serine  residues  affects  the
inflammatory response[35].  The activated SYK binds to  a  number of  downstream
signalling effectors and amplifies the inflammatory signal propagation by affecting
transcription  factors  activation  and their  assembly  to  transcriptional  complexes
involved in expression of the proinflammatory genes[36].

SPLEEN TYROSINE KINASE IN LIVER FIBROSIS
Liver fibrosis, triggered by hepatitis B/C viral infection (viral hepatitis), alcohol abuse
(alcoholic liver disease) or non-alcoholic steatohepatitis (NASH) etc., is characterized
by an excessive deposition of extracellular matrix (ECM) proteins[37], leading to tissue
scarring  that  further  progresses  to  end-stage  liver  cirrhosis  and  hepatocellular
carcinoma[38].

Liver fibrosis poses a major health problem accounting for more than 1 million
people deaths per year worldwide[39].  Moreover, there is no therapeutic treatment
available to date[40]. The central player that produces ECM resulting in liver fibrosis is
HSCs[41]. HSCs are normally localized in the peri-sinusoidal area, termed as space of
Disse, as quiescent cells in a healthy liver and functions as retinoid storage cells[42].
Owing  to  hepatic  injury,  quiescent  HSCs  phenotypically  transdifferentiate  into
activated, contractile, highly proliferative and ECM-producing myofibroblasts[43].

SYK has been documented to play a critical role in the activation of HSCs and its
upregulation is evidenced in hepatic fibrosis/cirrhosis in hepatitis B and C patients,
alcoholic  hepatitis  as  well  as  in  NASH  patients[28,44].  Upregulated  SYK  further
aggravate fibrosis by augmenting trans-communication between hepatocytes and
HSCs[28]. Blockage of SYK pathway using SYK inhibitors abrogated HSCs activation,
thereby ameliorated liver fibrosis and hepatocellular carcinoma (HCC) development
in vivo in animal models[28]. SYK has also shown to mediate its function via expression
of transcription factors associated with HSCs activation (cAMP response element-
binding protein, CBP; myeloblastosis proto-oncogene, MYB and myelocytomatosis
proto-oncogene,  MYC)  and  proliferation  (MYC  and  cyclin  D1,  CCND1) [28].
Furthermore, two isoforms of SYK i.e., the full-length SYK (L) and an alternatively
spliced SYK (S) have been suggested whereby SYK (L) but not SYK (S) found to play a
major  role  in  liver  fibrosis  while  SYK  (S)  has  been  associated  with  increased
tumorigenicity, HCC invasiveness and metastases[28].

Interestingly, the crosstalk between SYK and Wnt (portamanteau of int and wg,
wingless-related integration site) signalling pathways also mediates activation of
HSCs and accumulation of immune cells at the site of fibrosis[28]. Wnt signalling has
been shown to be upregulated in activated HSCs and blockade of canonical Wnt
pathway by adenoviral mediated transduction of Wnt antagonist (Dickkopf-1) or via
selective inhibitors reinstates quiescent phase of HSCs in cultured cells[45,46]. In-depth
investigation at a genetic level revealed overexpression of certain transcriptional
factors (MYB, CBP and MYC) which plays a vital role in the activation of HSCs[47,48].
Notably,  both  the  canonical  Wnt  pathway  and  SYK  has  shown  to  regulate  the
expression  of  MYC  and  CBP[23,49]  highlighting  SYK-Wnt  crosstalk  during  liver
fibrogenesis. SYK has also shown to promote expression of several other target genes
including Wnt in activated macrophages in a similar manner as in HSCs and this
potential  crosstalk between SYK and other signalling pathways warrants further
investigation. Dissection of the trans-communication between signalling pathways is
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Figure 2

Figure 2  Basis of spleen tyrosine kinase activation. In the resting state, spleen tyrosine kinase is auto-inhibited, because of the binding of interdomain A and
interdomain B to the kinase domain. This auto-inhibited conformation can be activated by binding of the two spleen tyrosine kinase homology 2 domains to dually
phosphorylated immune-receptor tyrosine-based activation motifs or by phosphorylation of linker tyrosine’s in interdomain A or B. SH2: Spleen tyrosine kinase
homology 2; ITAM: Immune-receptor tyrosine-based activation motifs.

of great importance in order to highlight prominent therapeutic targets to hinder liver
inflammation and fibrogenesis.  SYK is  the major  signalling pathway and is  also
shown to  be  expressed  in  recruited  macrophages,  besides  HSCs,  in  the  hepatic
fibrosis[20,28].  Selective  blocking  of  SYK or  its  deletion  in  macrophages  has  been
correlated with the diminished activation of macrophages, which is indicated by a
reduction in the expression of Fc gamma receptors, monocyte chemoattractant protein
1 (MCP-1), tumour necrosis factor α (TNF-α) and interleukin 6 (IL-6)[5]. In summary,
activation of HSCs under the influence of SYK signalling leads to the secretion of
soluble  factors  in  the  form of  cytokines  and chemokines.  These  factors  not  only
facilitate the recruitment of macrophages (and other immune cells) but also arbitrates
their activation to further worsen the site of fibrosis.

SPLEEN TYROSINE KINASE IN VIRAL HEPATITIS
In the recent study,  SYK expression was found to be highly induced in the liver
tissues  of  HBV-  and  HCV-infected  patients.  Furthermore,  markedly  increased
expression  of  SYK  was  observed  in  HCV-infected  hepatocytes  which  in  turn
promoted  reciprocal  higher  SYK  expression  in  HSCs  thereby  inducing  HSCs
activation  and  disease  development[28,50].  Furthermore,  the  preliminary  study
analysing gene expression profiles in Egyptian HCC patients associated with HCV,
showed that SYK is one of the most up-regulated gene out of 180 genes that were up-
regulated[51].

HCV is also associated with B lymphocyte proliferative disorders, as evidenced by
the binding of HCV to B-cell surface receptor CD81[52]. CD81 (cluster of differentiation
81, also known as TAPA1), is identified as a target of an antibody that controlled B-
cell  proliferation. Engagement of CD81 with HCV[53,54],  leads to ezrin and radixin
phosphorylation through SYK activation[55,56]. Ezrin and radixin are members of the
ERM (ezrin, radixin, moesin) family of actin-binding proteins[56]. Hence, ezrin-moesin-
radixin proteins and SYK are important therapeutic host targets for the development
of HCV treatment[57].

SYK is also an important regulator and therapeutic target against HCV infection in
hepatocytes[55].  SYK expression has been observed near the plasma membrane of
hepatocytes in HCV-infected patients[57,58]. HCV non-structural protein 5A has been
shown to physically and directly interact with SYK hence promoting the malignant
transformation  of  HCV-infected  hepatocytes[58].  These  studies  suggests  that  the
strategies blocking SYK activation before HCV-CD81 interaction, and/or modulating
HCV post-entry and trafficking within target cells  involving SYK, F-actin,  stable
microtubules and EMR proteins provide novel opportunities for the development of
anti-HCV therapies[55].
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SPLEEN TYROSINE KINASE IN ALCOHOLIC LIVER DISEASE
The pathogenesis of alcoholic liver disease (ALD) is multifactorial involving many
complex processes including ethanol-mediated liver injury, inflammation in response
to the injury, and intestinal permeability and microbiome changes[59-61] as depicted in
Figure 3. Alcohol and its metabolites generate reactive oxygen species (ROS) and
induce hepatocyte injury through mitochondrial damage and endoplasmic reticulum
(ER)  stress[62-64].  Damaged  hepatocytes  release  pro-inflammatory  cytokines  and
chemokines resulting in the recruitment and activation of immune cells. Central cell
types involved in ALD progression are macrophages that have an important role in
inducing liver inflammation[65] by stimulating infiltration of immune cells (including
monocytes) and activation of Kupffer cells (KCs, resident hepatic macrophages)[59].
The early communication of hepatocyte damage is mediated by KCs through damage-
associated molecular patterns (DAMPs) released by dying hepatocytes or pathogen-
associated molecular  patterns  (DAMPs)  including lipopolysaccharides  (LPS)  via
pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs), and nuclear
factor  kappa-light-chain-enhancer  of  activated  B  cells  (NF-κB)  signalling  and
inflammasome activation etc. In ALD, resident and recruited macrophages in the liver
are activated by TLR4 (Toll-like receptor 4) signalling pathway regulated by bacterial
endotoxin  (LPS)  that  is  elevated  in  the  portal  and  systemic  circulation  due  to
increased intestinal permeability after excessive alcohol intake[66,67]. However, there are
also other mechanisms that regulate macrophage activation, such as hepatocyte injury
and lipid accumulation, histone acetylation in ethanol-exposed macrophages and
complement system[68]. SYK also plays an important role in TLR4 signalling, and SYK
phosphorylation  in  neutrophils  and  monocytes  has  been  correlated  with  pro-
inflammatory cytokine secretion including TNF-α and MCP-1[69]. Interestingly, SYK
phosphorylation has also been shown to be regulated by LPS/TLR adaptor molecules
MyD88/IRAKM  (IL-1R-associated  kinase  M)/mincle  axis  linking  LPS-induced
hepatocyte cell death with inflammation during ALD disease pathogenesis. Zhou et
al[70]  has  shown  that  damaged  hepatocytes  releases  endogenous  mincle  ligand
spliceosome-associated  protein  130  as  a  danger  signal  that  together  with  LPS
synergistically drives liver inflammation including inflammasome activation during
ALD[70].

Several  studies  have  documented  the  increased  SYK  expression  and
phosphorylation in the livers of alcoholic hepatitis (AH) patients[44].  Interestingly,
increased SYK phosphorylation was observed in ballooned hepatocytes with Mallory-
Denk Bodies, co-localized with ubiquitinated proteins in the cytoplasm suggesting the
critical role of SYK in hepatocytes during ER stress[71,72]. SYK regulates hepatic cell
death via TRAF family member associated NF-β activator (TANK)-binding kinase
1/interferon (IFN) regulatory factor 3 (TBK1/IRF3) signaling[20]. SYK has also been
reported to play an important role in lipid accumulation, and treatment with SYK
inhibitor  prevented  progressive  steatosis  by  suppressing  lipid  biogenesis  and
increasing lipid metabolism in both in vitro cell culture and in vivo in ALD mouse
models  exhibiting  moderate  ASH  and  chronic  alcohol  drinking[20].  SYKY525/526

phosphorylation indicates SYK activation and is a prerequisite for its downstream
modulatory function[73]. In addition, total SYK and activated pSYKY525/526 expression
was found to be significantly increased in the circulating blood monocytes,  and
PBMCs in AH/cirrhosis patients[20]. Since SYK is closely involved in the pathogenesis
of  ALD,  SYK  inhibition  could  prevent  and/or  attenuate  alcohol-induced  liver
inflammation, cell death, steatosis and subsequently fibrosis in various phases of
ALD[20,73].

SPLEEN TYROSINE KINASE IN NON-ALCOHOLIC
STEATOHEPATITIS
NASH  is  characterized  by  increasing  accumulation  of  so-called  toxic  lipids  in
hepatocytes, that can develop into cirrhosis and primary liver cancer[74]. NASH is the
more  severe  and clinically  significant  form of  NAFLD (non-alcoholic  fatty  liver
disease)[75], characterized by hepatic cell injury, steatosis together with inflammation,
resulting into fibrosis signified by deposition of extracellular matrix mainly composed
of collagen/fibrin fibrils[76]. The progression of NASH is associated with a progressive
build-up  of  danger  signals  particularly  PRRs  including  TLRs,  and  nucleotide
oligomerization domain-like  receptors  (NLRs)[77]  that  engage multiple  receptors
during immune response[78].

As also mentioned earlier, the interaction of LPS with TLR4 plays a major role in
linking innate immunity with inflammatory response and the activation of KCs[77,79,80].
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Figure 3

Figure 3  Role of spleen tyrosine kinase in alcoholic liver disease and non-alcoholic steatohepatitis pathogenesis. Excessive alcohol consumption and
Increased fat accumulation due to an increased fat biogenesis and reduced metabolism, causes hepatocellular injury that generates reactive oxygen species, release
of pro-inflammatory cytokines and chemokines leading to activation of resident macrophages (Kupffer cells), and recruitment of circulating immune cells including
neutrophils and monocytes. Overconsumption of alcohol also trigger the production of lipopolysaccharides due to increased intestinal permeability. Increased levels of
pathogen-associated molecular patterns (Lipopolysaccharides) and damage-associated molecular patterns (released from dying hepatocytes) that in turn interacts
with toll-like receptors e.g., toll-like receptor 4 resulting in the activation of spleen tyrosine kinase signaling pathway, NF-κB signaling pathway, and inflammasome
activation. These processes develop into liver inflammation and fibrosis via increased infiltration and activation of immune cells and hepatic stellate cells, respectively.
SYK: Spleen tyrosine kinase; LPS: Lipopolysaccharides; PAMPs: Pathogen-associated molecular patterns; DAMPs: Damage-associated molecular patterns; TLRs:
Toll-like receptors; HSCs: Hepatic stellate cells; ROS: Reactive oxygen species.

Activated KCs produce inflammatory cytokines and chemokines such as IL-1β, IL-6,
iNOS, FcγR1, and CCL2 that contribute to the recruitment of circulating monocytes
and macrophages into the inflammed liver during NASH development mostly similar
to ASH[81]. Activated KCs also secrete TNF superfamily ligands such as TNF-α and
TNF-related apoptosis-inducing ligand, inducing apoptosis of adjacent hepatocytes
and inflammation, and is crucial for triggering NASH development[81-83] as shown in
Figure 3.

Activated  KCs  instigates  TLR4  and  recruit  an  activated  SYK,  which  is  also
expressed in HSCs, hepatocytes, and cholangiocytes[77,84-86]. SYK plays a role in IL1-
induced chemokine release via  association with TRAF-6 (TNF receptor activating
factor 6), which is a shared molecule in multiple signalling pathways and is recruited
through interactions of adaptor MyD88 and IRAK-1 (IL1 receptor-associated kinase 1)
with  TLR4[87-89].  Likewise,  TLR4 transduces  signals  via  the  B-cell  receptor  (BCR)
leading to activation of SYK, which is important for B-cell survival, proliferation[90],
and BCR-mediated immune response[5]. Lipid peroxidation products, derived from
phospholipid oxidation are one of the sources of neo-antigens that are able to promote
an adaptive immune response in NASH[91]. The involvement of T and B cells in the
progression of NASH automatically implicate role of SYK in this process.

Recently,  we have shown the positive  correlation of  SYK expression with the
increasing  NAS  score  (NAFLD  activity  score)  in  livers  from  NASH  patients  as
compared to normal livers[44]. As aforementioned, the role of SYK in NASH is not only
via PRR pathways, but also through NLR pathways. The role of several NLRs have
been  crucial  in  the  formation  of  inflammasomes  and  the  nomenclature  of
inflammasomes is  hence based on the NLR[92].  SYK is  required for  NLRP3 (NLR
protein 3) inflammasome activation[93], that forms an IL-1β-processing inflammasome
complex. Inflammasome activation has been shown to be associated with the late
stages of NASH, and not in early steatosis in mice[94]. Inflammasome activation can be
induced by free fatty acids and these free fatty acids can also induce apoptosis and the
release  of  danger  signals  in  hepatocytes[94,95].  Consequently,  pharmacological
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inhibition of NLRP3 inflammasome in vivo  has been demonstrated to reduce liver
inflammation, hepatocyte injury, and liver fibrosis in NASH[44,96].

SPLEEN TYROSINE KINASE IN HEPATOCELLULAR
CARCINOMA
Hepatocyte apoptosis and compensatory proliferation are the key drivers for HCC
development, and SYK has been suggested to play a key role in HCC progression. In
HCC, intestinal microbiota and TLR4 link inflammation and carcinogenesis in the
chronically  injured  liver,  and  SYK  regulate  this  link  mediated  via  LPS-TLR4
interaction[97].  The  intimate  correlation  between  SYK  methylation  and  loss-of-
expression, together with the role of SYK methylation in gene silencing, indicates that
epigenetic inactivation of SYK contributes to the progression of HCC[98] signifying
SYK methylation and loss of SYK expression as predictors of poor overall survival in
patients with HCC. Furthermore,  methylation of SYK promoter was found to be
inversely regulated in HCC cells. Restoring SYK expression in SYK-silenced HCC cell
lines decreased hepatocellular growth, cell migration and invasion but increased cell
adhesion[99,100].

On the other hand, checkpoint kinase 1 (CHK1) was found to be overexpressed and
correlated  with  poor  survival  of  HCC  patients.  CHK1  phosphorylate  tumor
suppressor SYK isoform, SYK (L) at Ser295 and induce its proteasomal degradation.
However, non-phosphorylated mutant form of SYK (L) has been shown to suppress
proliferation, colony formation, migration and tumor growth in HCC lines. Therefore,
a strong inverse correlation between the expression levels of CHK1 and SYK (L) was
observed in patients with HCC[101]. Interestingly, Hong et al[102] showed that another
SYK isoform, SYK (S) promotes tumour growth, downregulates apoptosis, enhances
metastasis and counteracts the opposing effects of SYK (L). These studies suggest that
SYK (L) downregulation or SYK (S) upregulation are the strong predictors of poor
clinical outcome in patients with HCC.

SMALL MOLECULES SPLEEN TYROSINE KINASE
INHIBITORS
Over the past decade, SYK signalling pathway has been recognized as a promising
target for the therapeutic intervention in different diseases including autoimmune
and inflammatory disorders, fibrotic diseases and tumour. However, specificity and
selectivity  remain  the  major  concern  for  the  development  of  drugs  targeting
ubiquitously expressed kinases. Hence, debate about the specificity of SYK inhibitors
has  been  a  major  point  of  discussion  and  has  still  not  reached  an  appropriate
conclusion  since  the  first  SYK  inhibitors  entered  into  medicinal  chemistry
optimization[25,103,104].  Over  the  past  few years,  several  SYK inhibitors  have  been
designed while many are still in development, and the molecular structures of some
of these SYK inhibitors are depicted in Figure 4.  Several SYK inhibitors are been
evaluated in preclinical and clinical studies in different diseases[103,105], as highlighted
in Table 1[106-127].

Some of the above mentioned SYK inhibitors have been explored in liver diseases
and are presented in Table 2. R406 has been shown to reduce SYK expression and
phosphorylation in macrophages,  and other hepatic cells and has been shown to
ameliorate  non-alcoholic  and  alcoholic  steatohepatitis  by  inhibiting  steatosis,
inflammation and fibrosis suggesting multi-faceted effects of this highly selective SYK
inhibitor[20,44]. GS-9973 is a new emerging, selective and potent inhibitor of SYK that
was evaluated in activated HSCs and showed anti-fibrotic effects in rodent liver
fibrosis models[28]. Very recently, two new inhibitors PRT062607 and Piceatannol have
been investigated in myeloid cells to reveal their protective effect against liver fibrosis
and  hepatocarcinogenesis  in  vivo.  Both  inhibitors  selectively  blocked  SYK
phosphorylation, significantly reduced the infiltration of inflammatory cells and HSCs
trans-differentiation, and inhibited malignant transformation in fibrotic livers[128].

Despite  the  encouraging  results  with  SYK  inhibitors,  some  issues  remain
unresolved e.g., their long-term safety has not yet been demonstrated. Moreover, due
to the ubiquitous expression of SYK in different cells, concerns have been raised about
the possibility of side-effects owing to the overall inhibition of the multiple cellular
functions[2,127]. A major challenge therefore is how to inhibit pathological processes
without disrupting physiological cell functions[129]. Nanotechnology is an interesting
and promising alternative to improve the efficacy and therapeutic effect of the SYK
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Table 1  Summary of pre-clinical and clinical studies using spleen tyrosine kinase inhibitors

Compound Medical condition Description/effect Ref.

Fostamatinib (R788) Ulcerative colitis Suppression of TNFα, T cells and
neutrophils

[106]

Rheumatoid arthritis Reduced inflammation and tissue
damage, suppressed clinical arthritis,
pannus formation and synovitis

[107,108]

Chronic lymphocytic leukemia and
Non-Hodgkin lymphoma

Disruption of BCR signaling
inhibiting the proliferation and
survival of malignant B cells

[109,110]

Ischemia-reperfusion induced
intestinal and lung damage

Impaired release of pro-inflammatory
and coagulation mediators, reduced
neutrophils, macrophages and
platelet accumulations

[111]

Glomerulonephritis Reduced proteinuria, glomerular
macrophage and CD8 cells, MCP-1
and IL-1β, and renal injury

[112]

Entospletinib (GS-9973) Chronic lymphocytic leukemia Decreased inflammation and
disruption of chemokine/cytokine
circuits (BCR signaling)

[113-115]

Diffuse large B-cell lymphoma Disruption of BCR signaling
inhibiting the proliferation and
survival of malignant B cells

[116]

Cherubisme (craniofacial disorder) Ameliorates inflammation and bone
destruction in the mouse model of
cherubism

[117]

Cerdulatinib (PRT062070) Diffuse large B-cell lymphoma Disruption of BCR signalling
inhibiting the proliferation and
survival of malignant B cells

[118,119]

TAK-659 Epstein-Barr virus-associated
lymphoma

Inhibited tumour development and
metastases

[120]

Chronic lymphocytic leukemia Decreased tumour survival, myeloid
cell proliferation and metastasis

[121]

R406 (tamatinib) Immunocomplexes mediated
inflammation

Inhibits several critical modes of the
inflammatory cascade

[122]

Human platelets Inhibition of activation of CLEC-2 (C-
type lectin 2, platelet receptor), and
platelet activation

[123]

Chronic lymphocytic leukemia Inhibition of constitutive and BCR-
induced SYK activation, abrogation
of CLL cell survival, migration, and
paracrine signalling

[124]

Leukemia Reduced tyrosine phosphorylation
and c-Myc expression, blockade of
tumorigenic cells proliferation
transformed by oncogenes

[125]

Megakaryocytic leukemia Induced apoptosis, reduced cell
proliferation and blockade of STAT5
signalling

[126]

Glomerulonephritis Downregulated MCP-1 production
from mesangial cells and
macrophages

[112]

Piceatannol Oral squamous cell carcinoma Inhibited tumour cell proliferation,
induced of apoptosis, attenuated
VEGF and MMP9 expression, and
decreased metastases

[127]

TNF-α: Tumour necrosis factor α; BCR: B-cell receptor; MCP-1: Monocyte chemoattractant protein 1; SYK: Spleen tyrosine kinase; VEGF: Vascular
endothelial growth factor.

inhibitor. Using polymeric poly lactic-co-glycolic acid (PLGA) nanoparticles, we have
demonstrated  improved  therapeutic  effectivity  of  R406  in  MCD-diet  induced
NASH[44].  In  this  study,  we have shown that  R406,  when encapsulated in  PLGA
polymeric nanoparticles, reduced expression of total SYK and activation of pSYK in
macrophages in vitro, and attenuated steatosis, inflammation and fibrosis in vivo in
MCD-diet induced NASH mouse model[44].
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Figure 4

Figure 4  Molecular structure of several spleen tyrosine kinase inhibitors. R406, GS-9973, PRT062070, and
Piceatannol have been studied in liver diseases, while R788 and TAK-659 are being investigated in other diseases.

CONCLUSION
In this review, we have highlighted the implication of SYK signalling pathways in
different diseases, more importantly in liver diseases. SYK plays a multifaceted role in
liver  diseases  such  as  liver  fibrosis,  alcoholic  liver  disease,  non-alcoholic
steatohepatitis, viral hepatitis, and hepatocellular carcinoma. Furthermore, several
SYK-related mechanisms have been understood in the past decade which led to the
development of numerous small-molecule inhibitors that have been and are currently
evaluated in vitro, in vivo in different animal models and in clinical trials in patients
for different indications. These inhibitors have shown highly potent effects in the
tested models and therefore is a promising therapeutic target that should be explored
further in pre-clinical and clinical studies. To improve the therapeutic efficacy and
clinical use of SYK inhibitors with improved safety profile and reduce the side effects,
nanotechnology approaches, such as polymeric nanoparticles, liposomal-mediated
delivery, or micelles, and finally organ (tumour)-targeted drug delivery could be
explored.
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Table 2  Spleen tyrosine kinase inhibitors implicated in liver diseases

Inhibitor Mechanism of action Therapeutic effect Ref.

R406 Blocking of Fc receptor signalling
pathway, NF-κB signalling pathway
and inflammasome activation

Reduced SYK expression and
phosphorylation resulting in
attenuated liver steatosis,
inflammation and fibrosis in ASH
and NASH murine models

[20,44]

GS-9973 Decreased expression of HSCs
activation (CBP, MYB, MYC) and
HSCs proliferation factors (MYC and
CCND1)

Inhibition of HSCs proliferation and
HSC activation resulting in
amelioration of fibrosis and
hepatocarcinogenesis

[28]

PRT062607 and piceatannol Increased intra-tumoral p16, p53 and
decreased expression of Bcl-xL and
SMAD4. Decreased expression of
genes regulating angiogenesis,
apoptosis, cell cycle regulation and
cellular senescence. Down-regulation
of mTOR, IL-8 signalling and
oxidative phosphorylation

Reduced HSCs differentiation and
infiltration of inflammatory cells
including T cells, B cells and myeloid
cells, reduced oncogenic progression.
Marked attenuation of toxin-induced
liver fibrosis, associated
hepatocellular injury, intra-hepatic
inflammation and
hepatocarcinogenesis

[128]

SYK: Spleen tyrosine kinase; NASH: Non-alcoholic steatohepatitis; ASH: Alcoholic steatohepatitis; HSCs: Hepatic stellate cells; IL-8: Interleukin-8.
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