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Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is an important public 
health concern. Early diagnosis of NAFLD and potential progression to 
nonalcoholic steatohepatitis (NASH), could reduce the further advance of the 
disease, and improve patient outcomes. Aiming to support patient diagnostic and 
predict specific outcomes, the interest in artificial intelligence (AI) methods in 
hepatology has dramatically increased, especially with the application of less-
invasive biomarkers. In this review, our objective was twofold: Firstly, we 
presented the most frequent blood biomarkers in NAFLD and NASH and 
secondly, we reviewed recent literature regarding the use of machine learning 
(ML) methods to predict NAFLD and NASH in large cohorts. Strikingly, these 
studies provide insights into ML application in NAFLD patients' prognostics and 
ranked blood biomarkers are able to provide a recognizable signature allowing 
cost-effective NAFLD prediction and also differentiating NASH patients. Future 
studies should consider the limitations in the current literature and expand the 
application of these algorithms in different populations, fortifying an already 
promising tool in medical science.
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Core Tip: The ability of machine learning approaches to process multiple variables, map linear and 
nonlinear interactions, ranking the most important features, in addition to the capability of building 
accurate prediction models, sets a future direction to its application in complex diseases such as 
nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Future studies should consider the 
limitations in the current literature and expand the application of these algorithms in different populations, 
fortifying an already promising tool in medical science.
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INTRODUCTION
Nonalcoholic fatty liver disease (NAFLD) affects an expressive part of the population worldwide and is 
a major cause of liver-disease related morbidity[1]. The most common cause of death in NAFLD patients 
is related to cardiovascular diseases, which is partially explained by the presence of metabolic 
comorbidities, such as obesity, type 2 diabetes, dyslipidemia, and hypertension[2]. Recently, there was 
concordance that the term NAFLD cannot represent the multisystemic metabolic disruption associated 
with the disease, resulting in the novel term MAFLD - metabolic associated fatty liver disease. 
Moreover, MAFLD considers the hepatic manifestation of a multimodal disease that is heterogeneous in 
its causes, symptoms, progression, and outcomes[3]. Nevertheless, the progression of liver fibrosis could 
lead to Nonalcoholic steatohepatitis (NASH), a condition characterized by histological lobular inflam-
mation and hepatocyte ballooning[2]. Hence, detecting possible elements related to a worse prognosis in 
these conditions in the early stages of the disease could improve the treatment and its efficiency. 
Considering the significance of advanced fibrosis in NAFLD patients, differentiating NASH from 
steatosis is vital, reinforcing the need for cost-effective methods for risk stratification in this population
[4]. Although liver biopsy is widely considered the gold standard in liver diseases investigation, it is 
also invasive, expensive, and prone to sampling error. In this context, the use of non-invasive bio-
markers gains considerable importance[5].

The interest in artificial intelligence (AI) methods in different medical specialties, including 
hepatology, has dramatically increased during the last decade[6]. Advances in technology and data 
acquisition have simplified the collection and storage of large data sets with long time series, leading to 
increasingly varied fields of application, including biomedical areas. In this context, large-volume data 
mining evaluations had been showing promising results in recent clinical studies using machine 
learning methods[7-9]. More specifically, supervised machine learning (SML), can automatically detect 
patterns in existing training data and then use the detected patterns to predict future data[6]. Rather 
than considering differences between groups (as traditional statistical comparisons do), SML methods 
address individual differences, classifying individuals in ways that contribute to the clinical decision-
making process.

The commonly late diagnosis of liver disorders contributes to suboptimal treatment and poor results. 
More specifically, as the prevalence of NAFLD is an important public health concern, early diagnosis of 
NAFLD and potential progression to NASH, could reduce the further advance of the disease, and 
improve patient outcomes. Using SML methods allows for collecting patient data and identifying their 
profile regarding the risk of developing comorbidities associated with liver damage, such as the 
development of metabolic syndrome or even predicting the patient's prognosis. Several recent reviews 
highlighted the application of artificial intelligence in hepatology, while broadly discussing how 
different approaches present potential applications in several areas of hepatology[10-12]. However, 
specific discussion of machine learning approaches using cost-effective biomarkers could help to guide 
future studies towards the improvement of NAFLD diagnosis. Therefore, the objective of this mini-
review is to discuss the application of SML approaches using biomarkers for the diagnosis of NAFLD 
and the prediction of NASH presence.

https://www.wjgnet.com/2644-3236/full/v3/i3/80.htm
https://dx.doi.org/10.35712/aig.v3.i3.80
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BLOOD BIOMARKERS IN NAFLD
Biomarkers are a "defined characteristic that is measured as an indicator of normal biological processes, 
pathogenic processes or responses to an exposure or intervention”. This includes a plethora of possible 
assessments commonly investigated in NAFLD, such as blood profile, imaging (histo-
logical/radiographic) exams, specific anthropometric characteristics (body composition), and also phase 
angle derived from bioimpedance[13]. Noteworthy, blood biomarkers are a less invasive approach from 
a biological point of view and could complement imaging techniques to improve disease monitoring. In 
clinical settings, liver biopsy is the diagnostic gold standard for NAFLD, allowing the assessment of 
lipid content, inflammation, hepatocellular ballooning, and fibrotic alterations, which can also 
determine NASH diagnostics[14]. However, non-invasive techniques provide limited inflammation and 
hepatocellular ballooning determination, making objective biomarker panels for the assessment and 
monitoring of NAFLD or NASH a current challenge[14,15].

Nevertheless, abnormal liver function is often initially identified by nonspecific hepatocellular 
damage through elevations in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in 
addition to alkaline phosphatase and gamma-glutamyl transferase (GGT)[16]. However, ALT and AST 
can present normal levels while GGT can present a 1.5 - fold elevation, and this response does not reflect 
hepatic inflammation, fibrosis, or patient metabolic risks[17,18]. Recently, cytokeratin (CK)-18 gained 
attention as a more specific approach for hepatocyte apoptosis since CK-18 is a major intermediate 
filament protein cleaved by caspases creating fragments during the apoptotic processes[19]. Assays of 
CK-18 fragments provide moderate accuracy due to high variability between cut-offs and respective 
diagnostic accuracy among studies[19]. More specifically, M30 measures caspase-cleaved CK18 
produced during apoptosis, and M65 measures the total levels of (both cleaved and intact) CK18[20]. 
The CK-18 fragments could independently predict NAFLD severity and detect the presence of NASH 
with a specificity close to 90%[21,22]. In a large and heterogeneous cohort, the blood concentration of 
CK-18 fragments of patients with NAFLD was higher when compared with healthy volunteers and 
correlated to several biomarkers of liver damage and steatosis[22]. Moreover, several "biomarker 
panels" to grade NAFLD patients’ steatosis and fibrosis through specific scores comprise different 
biomarker combinations, summarized in Table 1. Notably, the FibroTest, Fibrometer, Hepascore, and 
Enhanced Liver Fibrosis scores are patented and commercially available panels. Nevertheless, most of the 
biomarker panels for the diagnosis of NAFLD and NASH, lack validation in specific cohorts, such as 
bariatric patients and patients with varying ethnicities[23,24]. Further, recent evidence reinforces that a 
combination of different commonly assessed blood-based biomarkers in addition to direct fibrogenesis 
markers can provide higher diagnostic accuracy in detecting advanced fibrosis when compared to 
current protocols. The study of Vilar-Gomez et al[25], reviewed the diagnostic accuracy of several blood-
based biomarkers, suggesting an algorithm to diagnose NAFLD patients at risk of fibrosis development. 
Additionally, the European guidelines recommend the combination of different tests to assess NAFLD, 
stating that the Fibrometer is a non-invasive alternative to liver biopsy, albeit the guidelines are not clear 
regarding which specific version of the FibroMeter is preferred[26]. Also, the commercially available 
biomarker panels and other complementary methods are not accessible for most health services, 
justifying the search for alternative approaches[25].

The validation study by Wu et al[27] compared different panels of biomarkers in 417 NAFLD patients 
(156 with advanced fibrosis), showing that when predicting liver fibrosis scores Fibrosis-4 (FIB-4), 
NAFLD Fibrosis Score (NFS), AST to Platelet Ratio Index (APRI) and BARD score (BARD), it is possible 
to obtain a prediction of moderate fibrosis based on the receptor operator area under the curve 
(AUROC; 0.724, 0.671 and 0.609, respectively). The authors argued that FIB-4 and NFS performed better 
compared to both APRI and BARD scores, which resulted in high false-positive rates. Importantly, this 
study evaluated NAFLD patients based on the new definition of MAFLD, highlighting that the invest-
igated biomarker panels provided poor performance in this setting[27]. In conclusion, the fact that the 
aforementioned biomarkers come from different types of procedures makes it hard for human experts 
to jointly analyze all this information, which motivates the use of machine learning techniques. These 
models can work with different types of data and discovering the relationship between them to obtain a 
better prediction.

ARTIFICIAL INTELLIGENCE APPLICATION IN NAFLD
Briefly, AI is an umbrella term, referring to a structured utilization of software and algorithms that 
analyze a wide range of data, ultimately simulating human cognition and intelligence[6]. Machine 
learning (ML) is one of the subdisciplines of AI, focusing on learning from data and associating specific 
patterns with different outcomes. An important advantage of ML techniques is that they allow the 
modeling of complex problems that depend on multiple input variables, justifying the application of ML 
methods to potentially fill several gaps in the study of complex diseases, such as NAFLD[6]. This is 
especially important in the case of NAFLD, which is closely related to metabolic disturbances associated 
with obesity and metabolic syndrome[28]. Given its complexity, NAFLD presents in different forms, 
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Table 1 Blood biomarker panels for nonalcoholic fatty liver disease and nonalcoholic steatohepatitis

Blood biomarker panels for steatosis

Panel Patient Anthropometry Blood biomarkers

FLI - BMI, Waist circumference GGT and TG 

HSI Presence of DM BMI AST:ASL

Steatotest Sex BMI ALT, GGT, TG, A2M, ApoA1, haptoglobin, 
bilirubin,cholesterol, and glucose

LAP Sex Waist circumference TG

ION Sex Waist to hip ratio ALT, TG

NAFLD LFS Presence of DM and MS - AST:ALT, Insulin

Blood biomarker panels for fibrosis

Panel Patient Anthropometry Blood biomarkers

APRI - - Platelet count, AST

FIB-4 Age - Platelet count, AST, ALT

FibroTest Age, sex BMI GGT, A2M, ApoA1, haptoglobin, and total bilirubin

Fibrometer Age Body weight Platelet count, AST, ALT, glucose, ferritin 

ELF - - Hyaluronic acid, PIIINP and TIMP-1

Hepascore Age, sex - GGT, Hyaluronic acid, PIIINP and TIMP-1

BARD Presence of DM BMI AST:ALT

NFS Age, sex, Presence of DM - Platelet count, AST:ALT, Albumin

A2M: Alpha-2-macroglobulin; ALT: alanine aminotransferase; ApoA1: Apolipoprotein A1; AST: Aspartate aminotransferase; BMI: body mass index; DM: 
Diabetes mellitus; GGT: gamma-glutamyl transpeptidase; MS: Metabolic syndrome; NAFLD: Nonalcoholic fatty liver disease; PIIINP: Amino-terminal 
propeptide of type III procollagen; TG: Triglycerides; TIMP1: tissue inhibitor of matrix metalloproteinases-1.

from simple asymptomatic lipid accumulation to symptomatic non-alcoholic steatohepatitis (NASH) 
characterized by several factors, including steatosis, hepatocellular ballooning, lobular inflammation, 
and often fibrosis[28]. Machine learning methods are becoming increasingly popular, which has also 
motivated an increase in the complexity of these models. Particularly, deep learning (DL) models, like 
convolutional neural networks (CNN), showed promising results in hepatology, especially with high-
resolution data such as images and spectrograms[29]. Likewise, CNN models encompass several layers 
that involve operations like convolution, pooling, and nonlinear activations, making their decisions 
difficult to understand. Therefore, they represent black-box models, as opposed to interpretable (white-
box) techniques, such as regression/decision trees and Bayesian networks[30,31]. Hence, ML could 
identify patients at risk and guide clinical treatments, whilst considering that the clinical manifestations 
of NAFLD appear in advanced disease status and the availability and cost of screening methods for the 
clinicians. Also, ML can help to rank and categorize specific biomarkers and help to elaborate specific 
"disease signatures", contributing not only to clinical diagnostics, but also provide mechanistic insights 
for the study of the disease and the development of specific treatments.

MACHINE LEARNING APPROACHES USING BLOOD BIOMARKERS IN HEPATOLOGY
As stated above, the interest in using AI approaches to support clinical decision-making processes in 
hepatology has increased, albeit current literature is still scarce. Table 2 summarizes the specific studies 
addressing NAFLD and NASH classification. Initially, the study of Sowa et al[32] showed no differences 
in the investigated biomarkers (ALT, AST, and apoptotic signaling) between patients with a fibrosis 
score of 1 or 2. However, combining these parameters using random forests (RF) reached 79% accuracy 
in fibrosis prediction with a sensitivity of more than 60% and specificity of 77%. Moreover, RF identified 
the cell death markers M30 and M65 as more important for the decision than the classic liver 
parameters. Similarly, Yip et al[33] built a model to predict steatosis in a study including 922 individuals 
with assessment for NAFLD. The four models developed presented good diagnostic precision for 
steatosis (AUROC was 0.87-0.9), albeit the authors claimed that the “NAFLD ridge score” offered the 
best balance between efficacy and simplicity. This model included six parameters (serum triglycerides, 
alanine aminotransferase, high-density lipoprotein cholesterol, hemoglobin A1c, white cell count, and 
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Table 2 Machine learning studies in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis patients

Ref. Patients Investigated biomarker Model with best 
performance Results

Sowa et al
[32], 2013

126 patients Alanine aminotransferase; Aspartate aminotransferase; M30; M60; Hyaluronic 
acid

Randon forest 79% Accuracy in 
fibrosis prediction; 
60% sensitivity; 77% 
specificity

Yip et al
[33], 2017

922 patients Alanine aminotransferase; High-density lipoprotein cholesterol; Triglycerides; 
HbA1c; White blood cells; Hypertension

Ridge score 88% Accuracy in 
steatosis prediction; 
92% sensitivity; 90% 
specificity

Ma et al
[34], 2018

10.508 patients; 
2522 NAFLD 
patients

Age; Sex; Body mass index; Alanine aminotransferase; Aspartate aminotrans-
ferase; Alkaline phosphatase; Gamma-glutamyl transpeptidase; Triglycerides; 
Blood urea nitrogen; Bilirubin; Cholesterol; Creatinine; Fasting glucose; Uric 
acid

Bayesian network 
model

83% Accuracy in 
NAFLD prediction; 
68% sensitivity; 94% 
specificity

Canbay et 
al[35], 
2019

164 patients; 122 
(validation)

Age; HbA1c; Gamma-glutamyl transpeptidase; M30; Adiponectin Logistic 
regression

70% Accuracy in 
separate NAFLD and 
NASH

Liu et al
[36], 2021

15.315 
patients5878 with 
NAFLD 

Body mass index; Waist circumference; Waist-to-height ratio; Alanine 
aminotransferase; Fasting blood glucose; Gamma-glutamyl transpeptidase; 
Very-low-density lipoprotein cholesterol; Low-density lipoprotein cholesterol; 
High-density lipoprotein cholesterol; Systolic blood pressure; Alkaline 
phosphatase; Diastolic blood pressure

XGBoost model 79% Accuracy in 
NAFLD prediction; 
61% sensitivity; 90% 
specificity

Pei et al
[37], 2021

3.419 patients; 
845 with fat liver 
diseases

Age; Height; Hemoglobin; Aspartate aminotransferase; Glucose; Uric acid; 
Low-density lipoprotein; Alpha-fetoprotein; Triglycerides; High-density 
lipoprotein; Carcinoembryonic antigen

XGBoost model 94% accuracy of 
prediction; 90% 
sensitivity; 95% 
specificity

NAFLD: Nonalcoholic fatty liver disease; XGBoost: Extreme gradient boosting.

the presence of hypertension) that are routinely available for individuals undergoing medical checkups, 
and it does not require anthropometric measures, which are not always available. Although there is 
evident feasibility of the NAFLD ridge score to screen individuals, it still needs additional validation in 
other ethnicities. The study of Ma et al[34], investigated the predictive power for NAFLD of eleven 
machine learning techniques, demonstrating that the Bayesian network model had the best 
performance, revealing that the five most discriminating features (based on information gain scores) to 
be weight, TG, ALT, GGT, and serum uric acid levels. Thus, in practice, users could focus on these 
features. Furthermore, Canbay et al[35] compared different scores for the non-invasive detection of 
NASH. Briefly, using an ensemble feature selection approach for biomarker selection, the authors built a 
logistic regression model and validated in an independent study cohort of 122 patients. The logistic 
regression model generated from age, GGT, hemoglobin A1c, M30, and adiponectin had a strong 
correlation with the non-alcoholic steatohepatitis activity score and demonstrated reasonable 
performance to discriminate between NAFL and NASH. Likewise, Liu et al[36] performed a retro-
spective cross-sectional study on 15315 Chinese subjects, where 5878 patients presented NAFLD. The 
biomarker ranking indicated the body mass index as the most valuable indicator to predict NAFLD, 
followed by waist circumference, triglycerides, waist-to-height ratio, and alanine aminotransferase. 
Notably, among seven machine learning models, the extreme gradient boosting (XGBoost) model 
demonstrated the best prediction ability. Similarly, the XGBoost also presented the highest AUC (0.93), 
accuracy (0.94), and sensitivity value (0.90) in the study of Pei et al[37], comparing different models for 
predicting fatty liver Disease risk in 3419 participants, of which 845 had diagnostic confirmation. 
Importantly, regarding the biomarkers, uric acid, body mass index, and triglycerides were the most 
decisive risk factors for the ML models, whilst high-density lipoprotein and hemoglobin also counted as 
important risk factors for prediction. Strikingly, these studies provide insights into ML application in a 
complex context such as NAFLD patients' prognostics. Notably, while there are investigations using AI 
techniques and common biomarkers to predict NAFLD and NASH, approaches using AI and novel 
proposed biomarkers are scarce. For instance, a recent meta-analysis showed that CK-18 is the only 
marker for NASH presenting external validation, with an AUROC of 0.82[38]. Conversely, a large study 
conducted by the multicenter NASH Clinical Research Network demonstrated that the addition of 
routinely available clinical-laboratory parameters to CK-18 measurement did not significantly improve 
its diagnostic performance[22]. However, it remains unknown whether the use of AI techniques 
combining different biomarkers in a large and diverse cohort could provide different results. Taken 
together, the data suggests that ranked blood biomarkers can provide a recognizable signature allowing 
cost-effective NAFLD prediction and also differentiating NASH patients.
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CURRENT CHALLENGES IN SML APPROACHES IN HEPATOLOGY
The term "AI-Chasm" describes the gap between developing and testing an algorithm and the definitive 
application of the algorithm in clinical practice[39]. Unequivocally, the AI application in medical 
sciences is auspicious, and current literature is shading light on a plethora of potential applications; 
however, many challenges for SML approaches using biomarkers in hepatology still await scrutiny.

Firstly, the collection, curation, and preprocessing of patient data is a major concern, since SML 
methods are data-driven[10]. Notably, the cited studies in this mini-review provide relatively small data 
from specific populations which could lead to sampling bias whilst limiting the generalization of the 
obtained results. Further, data collection should be standardized and precise, but should also be 
monitored for privacy and data security breaches. Secondly, as recently discussed by Quinn et al[40], 
one of the main aspects of concern in future studies is the understanding that transdisciplinary 
approaches require cooperation to build a conceptually appropriate framework while also focusing on 
evaluating the performance of SML algorithms in terms of clinical endpoints and not just predictive 
accuracy. In addition to these technical challenges, there is also an increasing demand for transparency 
concerning the predictions of these models, especially in areas that have no computing background. For 
instance, healthcare professionals and other stakeholders that can benefit from these solutions are still 
reluctant to the idea of employing these methods, evidencing the necessity of educational programs 
aimed to explicit information about the involved decision processes. Nevertheless, the field of 
explainable AI has emerged to address these issues, with the purpose of creating ML techniques that 
produce explainable models while maintaining a high level of learning performance, enabling humans 
to understand and trust the predictions to support their decisions[41].

CONCLUSION
Recent advances in the field of biosciences applying machine learning algorithms resulted in promising 
results for the diagnosis of disease and biomarker study. The main idea is that SML could overcome the 
limitations of common statistical techniques. For instance, SML identifies data patterns for classification, 
considering multiple features at once, allowing the ranking and selection of the available blood 
biomarkers related to disease pathogenesis for the prediction of NAFLD or NASH, minimizing potential 
errors between the predicted values and the real data. Although the cited studies provide promising 
results, there are specific limitations that future studies should reduce. For example, most of the studies 
involved the Chinese population, and these algorithms still need additional validation in heterogeneous 
populations. The strong association between NAFLD and metabolic syndrome, obesity, and alcohol 
consumption may be a confounding factor in previous studies, and the application of these methods in 
diabetic patients with and without NAFLD could shed light on the influence of specific treatments on 
the performance of these ML methods. Nevertheless, the ability of ML approaches to process multiple 
variables, map linear and nonlinear interactions, and rank the most important features, in addition to 
the capability of building accurate prediction models, sets a future direction to its application in 
complex diseases, including NAFLD and NASH. Future studies should consider the limitations in the 
current literature and expand the application of these algorithms in different populations, fortifying an 
already promising tool in medical science.
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