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Abstract
Artificial intelligence (AI) using machine or deep learning algorithms is attracting 
increasing attention because of its more accurate image recognition ability and 
prediction performance than human-aid analyses. The application of AI models to 
gastrointestinal (GI) clinical oncology has been investigated for the past decade. 
AI has the capacity to automatically detect and diagnose GI tumors with similar 
diagnostic accuracy to expert clinicians. AI may also predict malignant potential, 
such as tumor histology, metastasis, patient survival, resistance to cancer 
treatments and the molecular biology of tumors, through image analyses of 
radiological or pathological imaging data using complex deep learning models 
beyond human cognition. The introduction of AI-assisted diagnostic systems into 
clinical settings is expected in the near future. However, limitations associated 
with the evaluation of GI tumors by AI models have yet to be resolved. Recent 
studies on AI-assisted diagnostic models of gastric and colorectal cancers in the 
endoscopic, pathological, and radiological fields were herein reviewed. The 
limitations and future perspectives for the application of AI systems in clinical 
settings have also been discussed. With the establishment of a multidisciplinary 
team containing AI experts in each medical institution and prospective studies, 
AI-assisted medical systems will become a promising tool for GI cancer.

Key Words: Artificial intelligence; Gastric cancer; Colorectal cancer; Endoscopy; 
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Core Tip: Artificial intelligence (AI) is attracting increasing attention because of its 
more accurate image recognition ability and prediction performance than human-aid 
analyses. The application of AI models to gastrointestinal clinical oncology has been 
investigated, and the findings obtained indicate its capacity for automatic diagnoses 
with similar accuracy to expert clinicians and the prediction of malignant potential. 
However, limitations in the evaluation of gastrointestinal tumors by current AI models 
have yet to be resolved. The limitations of and future perspectives for the application of 
AI-assisted systems to clinical settings have been discussed herein.
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INTRODUCTION
Recent advances in diagnostic technology and treatment strategies for gastrointestinal 
cancer have improved clinical outcomes. Even with the development of novel imaging 
modalities with high accuracy and resolution, image reading, and novel biomarkers, 
such as the genetic screening of tumors, circulating tumor DNA, and micro RNA, the 
diversity and quantity of data on tumor malignant potential is beyond the limits of 
human interpretation[1-8]. Therefore, the establishment of more accurate diagnostic 
methods with high objectivity using computer-aided diagnosis systems (CAD), such as 
technologies involving artificial intelligence (AI), is needed in clinical settings[9-11].

AI is defined by the intelligence of machines in contrast to the natural intelligence of 
humans. It is generally applied when a machine mimics the cognitive functions of 
humans, such as learning and problem solving[12]. The concept of AI was initially 
advocated in 1956 by McCarthy et al[13], and the development of machines with the 
ability to think like humans with intelligence was anticipated. However, machines or 
computer programs that function as classifiers or detectors, such as image 
classification and recognition and the prediction of characteristics in populations, are 
currently regarded as AI.

Recent AI technologies were developed due to technical advances in machine 
learning and deep neural network algorithms[14-17]. Convolutional neural networks 
(CNN) are one of the deep neural networks that are useful for image analyses. 
Algorithms using CNN models have been applied to many research fields in 
gastrointestinal cancer, such as the automatic endoscopic detection of tumors, the 
automatic diagnosis of cancer in pathological specimens, and image analyses of 
radiological modalities[10,18]. In endoscopic research, CNN are trained using thousands 
of endoscopic images to detect tumors, differentiate between benign and malignant 
tumors, and predict tumor invasion depth[9,19-22]. In recent years, a real-time CAD 
endoscopic system was developed using trained CNN. In the area of pathology, deep 
learning has been performed using non-cancerous and cancer images to automatically 
identify and segment the cytoplasm, nucleus, and stromal cells. CNN and machine 
learning models with image analyses, such as a texture analysis, were subsequently 
built to identify cancerous regions or diagnose cancer[23]. In the field of radiology, a 
CAD system of image modalities, such as X-ray, computed tomography (CT), and 
magnetic resonance images (MRI), was developed using a deep learning model 
constructed using cancer and non-cancer images to recognize anatomy and detect and 
segment tumors[24]. The malignant potential of tumors has been analyzed using a 
radiomics approach, which aims to quantitatively assess tumor heterogeneity by an 
analysis of medical images through the deep or machine learning of histograms, 
textures, and shapes[25-27]. AI models of gastrointestinal cancer are summarized in 
Figure 1.

AI with strong analytical power has attracted the attention of many researchers; 
therefore, the number of studies on diagnostic AI systems in gastrointestinal cancer 
has rapidly increased in the past decade. We herein investigate recent advances and 
future perspectives through a review of the literature.

In this minireview, the bibliographic search was performed using the database 
MEDLINE (through PubMed) for identifying studies published on AI technology in 

https://www.wjgnet.com/2644-3236/full/v1/i4/71.htm
https://dx.doi.org/10.35712/aig.v1.i4.71
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Figure 1 Clinical research using artificial intelligence in gastrointestinal cancer. Deep learning based on convolutional neural networks showing the 
input layer with raw data of the image, such as endoscopic, pathological, and radiological images, the hidden layer with a series of convolutions computed for each 
layer and the classification of the image, the prediction of malignant potentials, and the segmentation of tumor in the output layer.

the endoscopy, pathology, and radiology of gastric and colorectal cancer between 2016 
and 2020. We summarized the application of AI in each area according to the extracted 
49 Literatures; subsequently, the consideration about current issues and future 
perspectives of AI in gastrointestinal cancer was stated with some literature review.

APPLICATION OF AI TO ENDOSCOPY IN GASTROINTESTINAL CANCER
Previous studies on the endoscopic diagnosis of gastric cancer (GC) and colorectal 
cancer (CRC) using AI between 2016 and 2020 were summarized in Tables 1 and 2.

Gastric cancer
The purposes of the studies reviewed on AI for GC were (1) tumor detection; (2) the 
diagnosis of malignancy; (3) real-time detection; and (4) the prediction of tumor 
invasion depth. The basic method of these studies was as follows: Endoscopic images 
of GC, gastritis, and non-cancerous mucosae, which were diagnosed pathologically or 
by an expert endoscopist, were captured and CNN was subsequently trained using 
these images. Diagnostic and detection accuracy were then assessed using the 
constructed CNN models.

Yoon et al[28] attempted to develop CNN models with the ability to detect early GC 
and predict invasion depth. The areas under the curves of receiver operating 
characteristic curves (AUC) for early GC detection and depth prediction were 0.981 
and 0.851, respectively. Moreover, the diagnostic accuracy of invasion depth was 
lower for undifferentiated GC than for differentiated GC[28]. Zhu et al[29] also trained a 
CNN model to predict the invasion depth of GC. The AUC, positive predictive value 
(PPV), and negative predictive value (NPV) of their model were 0.94, 89.6%, and 
88.9%, respectively. The CNN-CAD system achieved significantly higher accuracy and 
specificity than a human endoscopist. Li et al[30] also developed CNN models for the 
detection of GC with high diagnostic accuracy (sensitivity: 91.1%, specificity: 90.6%, 
and PPV: 90.9%). Hirasawa et al[31] reported that CNN models exhibited difficulties 
distinguishing between differentiated-type intramucosal cancers with a diameter of 6 
mm or less and gastritis. Ishioka et al[32] examined the detection accuracy of a real-time 
endoscopic diagnosis of GC using CNN models that they had constructed; the 
detection rate of GC using these models was 94.1%. CNN identified the region of GC 
that had been difficult to distinguish from background gastritis, even by experienced 
endoscopists. Luo et al[33] developed a gastrointestinal AI diagnostic system (GRAIDs) 
and compared its diagnostic accuracy with that of expert and trainee endoscopists. 
PPV was 0.814 for GRAIDs, 0.932 for the expert endoscopist, and 0.824 for the trainee 
endoscopist, while NPV was 0.978 for GRAIDs, 0.980 for the expert endoscopist, and 
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Table 1 Previous studies on upper endoscopy of gastric cancer using artificial intelligence

Ref. Targets Sample sizes Inputs Tasks Analysis 
method

Diagnostic 
performance

Yoon et al[28] GC 
(ESD/surgery)

800 cases GC/non-GC images in 
close-up and distant views

Detection and invasion 
depth prediction

CNN AUC: detection, 0.981; 
depth, 0.851

Zhu et al[29] GC 993 images GC images Diagnosis of invasion 
depth

CNN Sensitivity: 76.4%, PPV: 
89.6%

Li et al[30] GC and healthy 386 GC and 1702 NC 
images

NBI images Diagnosis of GC CNN Sensitivity: 91.1%, PPV: 
90.6%

Hirasawa 
et al[31]

GC 13584 training and 
2296 test images

GC images Diagnosis of GC CNN Sensitivity: 92.2%, PPV: 
30.6%

Ishioka 
et al[32]

EGC 62 cases Real-time images Detection CNN Detection rate: 94.1%

Luo et al[33] GC 1036496 images GC images Detection CNN PPV: 0.814, NPV:0.978

Horiuchi 
et al[34]

GC and gastritis 1492 GC and 1078 
gastritis images

NBI images Detection CNN Sensitivity: 95.4%, PPV: 
82.3%

GC: Gastric cancer; CNN: Convolutional neural network; AUC: Area under the curve; PPV: Positive predictive value; NC: Non-cancer; NBI: Narrow-band 
image; EGC: Early gastric cancer.

Table 2 Previous studies on colonoscopy using artificial intelligence

Ref. Targets Sample sizes Inputs Tasks Analysis 
method Diagnostic performance

Akbari 
et al[35]

Screening 
endoscopy

300 polyp images Polyp 
images

Auto segmentation of 
polyps

CNN Accuracy: 0.977, Sensitivity: 74.8%

Jin et al[36] Screening 
endoscopy

Training: 2150 polyps, 
test: 300 polyps

NBI 
images

Differentiation of adenoma 
and hyperplastic polyps

CNN The model reduced the time of 
endoscopy and increased accuracy by 
novice endoscopists

Urban 
et al[37]

Screening 
endoscopy

8641 polyp images and 
20 colonoscopy videos

Polyp 
images

Detection of polyps CNN AUC: 0.991, Accuracy: 96.4%

Yamada 
et al[38]

Screening 
endoscopy

4840 images, 77 
colonoscopy videos

Real-time 
images

Differentiation of the early 
signs of CRC

CNN Sensitivity: 97.3%, Specificity: 99.0%

CNN: Convolutional neural network; NBI: Narrow-band image; AUC: Area under the curve.

0.904 for the trainee endoscopist. These findings demonstrated that the diagnostic 
accuracy of GRAIDs for the detection of GC was similar to that of the expert 
endoscopist and superior to that of the trainee endoscopist. CNN models of narrow-
band imaging (NBI) for GC have been reported, with sensitivity and PPV of 91.1-95.4% 
and 82.3-90.6%, respectively[34].

Colorectal cancer
The purposes of the studies reviewed on AI for CRC were (1) the segmentation and 
detection of polyps; and (2) the diagnosis of polyp pathology. In the development of 
efficient automatic diagnostic models, models need to automatically segment polyps 
and extract their features. Akbari et al[35] attempted to construct CNN models of 
colonoscopy for automatic segmentation and feature extraction. The accuracy, 
specificity, and sensitivity of the model for automatic segmentation were 0.977, 0.993, 
and 0.758, respectively. An ideal CAD system of colonoscopy needs to have the ability 
to predict the pathological diagnosis of an automatically detected tumor and 
subsequently recommend appropriate treatment strategies for lesions. Jin et al[36] 
reported a CNN model for predicting the pathological diagnosis of small lesions (≤ 5 
mm) using NBI data from colonoscopy. The accuracy, sensitivity, specificity, PPV, and 
NPV of their model for predicting the pathological diagnosis of polyps, adenoma vs 
hyperplasia were 86.7%, 83.3%, 91.7%, 93.8%, and 78.6%, respectively. On the other 
hand, the accuracies of polyp diagnoses by novices, experts, and NBI-trained expert 
endoscopists were 73.8%, 83.8%, and 87.6%, respectively. Using CNN-processed 
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results, overall accuracy by novice endoscopists significantly increased to 85.6%. A 
real-time diagnostic system in colonoscopy was developed using CNN models. Urban 
et al[37] constructed CNN models to identify polyps, which were subsequently adapted 
to colonoscopy videos, and these models exhibited the ability to detect either type of 
polyp equally well and identify polyps with an ROC value of 0.991 and accuracy of 
96.4%. Yamada et al[38] applied their CNN model, which was developed to detect early 
signs of CRC, to colonoscopic videos. The sensitivity and specificity of their AI system 
for detecting the regions of CRC were 97.3% and 99.0%, respectively, while the 
sensitivity and specificity of endoscopists were 87.4% and 96.4%; respectively. 
Therefore, the AI system may be used to alert endoscopists in real-time to overlooked 
abnormalities, such as non-polypoid polyps, during colonoscopy, thereby increasing 
the early detection of this disease.

APPLICATIONS OF AI TO THE PATHOLOGICAL DIAGNOSIS OF 
GASTROINTESTINAL CANCER
Previous studies on the pathological diagnosis of GC and CRC using AI between 2016 
and 2020 are summarized in Tables 3 and 4. An automatic pathological diagnosis of 
gastrointestinal cancer generally involves the following processes: (1) Automatic 
segmentation: Distinguishing various structures, such as the cytoplasm, nuclei, and 
stoma, and the recognition of atypia; (2) The diagnosis and grading of carcinoma; (3) 
The diagnosis of malignant potential, such as invasion depth and lymphovascular 
invasion; and (4) The prediction of survival. Therefore, previous studies aimed to 
develop a CAD system with the ability to perform these processes.

Gastric cancer
Qu at al[39] attempted to develop CNN models for (1) and (2), proposed a novel 
stepwise fine-tuning-based deep learning scheme for gastric pathology image 
classification, and established a novel protocol to further boost the performance of 
state-of-the-art deep neural networks and overcome the insufficiency of well-
annotated data. In their proposed two-stage method, CNN was initially trained using 
tissue-wise data on the background, epithelium, and stoma as well as cell-wise data on 
nuclei and the cytoplasm, and was then tuned using well-annotated data from benign 
or malignant data sets. The diagnostic accuracy of their constructed two-stage CNN 
models was higher than that of one-stage models. Yoshida et al[40] attempted to develop 
CNN models for (1) and (2) with the ability to automatically segment malignant 
regions in full-slide images of biopsy samples and subsequently diagnose histological 
classifications through a nuclear analysis at high magnification. In negative biopsy 
specimens, the concordance rate between their AI system and expert pathologists was 
90.6%; however, the concordance rate for positive biopsy specimens was less than 50%. 
Mori et al[41] trained CNN models for (3) to discriminate the tumor invasion depth of 
gastric signet-ring cell carcinoma. Their models exhibited the ability to diagnose 
intramucosal or advanced histological characteristics with an accuracy of 85%, 
sensitivity of 90%, specificity of 81%, and AUC of 0.91. The prediction of survival in 
GC patients using the deep learning method has also been examined. Jiang et al[42] 
investigated the efficacy of deep learning models for (4) using a support vector 
machine (SVM). They classified GC patients into two groups using SVM based on 
patient characteristics and immunohistochemistry (IHC) data on the following 
immunomarkers: CD3, CD8, CD45RO, CD45RA, CD57, CD68, CD66b, and CD34. The 
findings obtained revealed that the classifier of SVM was a stronger prognostic factor 
than the TNM stage or CA19-9.

Colorectal cancer
Numerous studies on the pathology of CRC using AI were reported compared to GC, 
are classified as follows.

Studies on AI models for automatic segmentation: Van Eycke et al[43] and Graham 
et al[44] developed CNN models to segment the glandular epithelium. The F1 values of 
these models ranged between 0.9 and 0.912. Abdelsamea et al[45] developed tumor 
parcellation and quantification (TuPaQ), which is a tool for refining biomarker 
analyses through the rapid and automated segmentation of the tumor epithelium. 
Tissue microarray (TMA) cores from CRC were manually annotated and analyzed to 
provide the ground truth, epithelial or non-epithelial tissue. CNN (TuPaQ) was 
trained using these data. The accuracy, sensitivity, and specificity of TuPaQ were 
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Table 3 Previous studies on the pathology of gastric cancer using artificial intelligence

Ref. Targets Sample size Input Task Analysis 
method Diagnostic performance

Qu et al[39] GC 15000 images Pathological images Evaluation of stepwise 
methods

CNN AUC: 0828-0.920

Yoshida 
et al[40]

GC 3062 biopsy 
samples

Pathological images stained by 
H&E 

Automatic segmentation, 
diagnosis of carcinoma

CNN Sensitivity: 89.5%, specificity: 
50.7%

Mori 
et al[41]

GC 
(surgery)

516 images 
from 10 GC 
cases

Pathological images stained by 
H&E 

Diagnosis of invasion 
depth in signet cell 
carcinoma

CNN Sensitivity: 90%, Specificity: 
81%

Jiang 
et al[42]

GC 
(surgery)

786 cases IHC (CD3, CD8, CD45RO, 
CD45RA, CD57, CD68, CD66b, 
and CD34)

Prediction of survival SVM The immunomarker SVM was 
useful for predicting survival

GC: Gastric cancer; AUC: Area under the curve; H&E: Hematoxylin eosin staining; CNN: Convolutional neural network; IHC: Immunohistochemistry; 
SVM: Support vector machine.

0.939, 0.779, and 0.946, respectively. Yan et al[46] examined the diagnostic accuracy of 
their AI models for the classification, segmentation, and visualization of large-scale 
tissue histopathology images. The accuracies of their models ranged between 81.3 and 
93.2%. Haj-Hassan et al[47] attempted to develop CNN models for the automatic 
segmentation of benign hyperplasia, intra-epithelial neoplasms, and carcinoma, and 
the findings obtained showed that the models segmented tumors with a high accuracy 
of 99.1%.

Diagnosis and grading of carcinoma: Rathore et al[48] reported deep learning models 
for cancer detection and grading. The features of CRC biopsy samples were extracted 
based on pink-colored connecting tissues, purple-colored nuclei, and white-colored 
epithelial cells and lumina. The extracted features, particularly white-colored epithelial 
cells and lumina, were classified using SVM and classification performance was 
subsequently assessed. The accuracies of cancer detection and grading by their model 
were 95.4 and 93.4%, respectively. Yang et al[49] proposed a combination of SVM and 
color histograms to classify pathological images. The AUC of the model for diagnosing 
carcinoma was 0.891. Chaddad et al[50] reported that the classification of images using a 
texture analysis effectively diagnosed carcinoma (accuracy: 98.9%). Yoshida et al[51] 
showed that a CAD system using a previously described CNN model for GC was 
useful for diagnosing adenoma and carcinoma (undetected rate of carcinoma and 
adenoma: 0-9.3% and 0-9.9%, respectively).

Diagnosis of malignant potential: Takamatsu et al[52] reported the prediction of lymph 
node metastasis using a machine learning analysis of morphological parameters (such 
as shape and roundness) in cytokeratin-stained T1 CRC images. The AUC of the model 
was 0.94. The automatic evaluation of tumor budding in IHC with CNN and machine 
learning was previously performed[53]. Models were constructed to assess tumor 
budding using TMA on pan-cytokeratin-stained tumors, and the R2 value of the 
correlation of the models with manual counting for the diagnosis of tumor budding 
was 0.86.

Prediction of survival: Bychkov et al[54] proposed AI models for the automatic 
prediction of survival in CRC patients using the TMA of CRC pathological images. 
The automatic detection of tumors was initially achieved using CNN; CNN cases were 
subsequently classified by a recurrent neural network. Predicted survival by their 
model correlated with actual clinical outcomes. Kather et al[55] reported automatic 
models for discriminating structures in tissue samples and then predicting survival. 
Their models predicted the survival of CRC more accurately than the TNM stage or 
manual evaluations of cancer-associated fibroblasts. Moreover, survival prediction 
SVM models using immunomarkers evaluated by IHC, such as CD3 and CD8, have 
been developed[56], and the classifier correlated with patient survival.
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Table 4 Previous studies on the pathology of colorectal cancer using artificial intelligence

Ref. Targets Sample 
size Input Task Analysis method Diagnostic performance

Van Eycke 
et al[43]

CRC H&E staining, 
IHC image

Segmentation of the glandular 
epithelium

TMA, CNN F1 value: 0,912

Graham 
et al[44]

CRC H&E staining Differentiation of intratumor 
glands 

CNN F1 values: 0.90

Abdelsamea 
et al[45]

CRC 333 
samples

H&E staining, 
IHC (CD3)

Differentiation of the tumor 
epithelium

TMA, CNN Accuracy: 0.93-0.94

Yan et al[46] CRC H&E staining Tumor classification,segmentation 
of tumors, 

CNN Accuracy: Classification, 97.8%; 
segmentation, 84%

Haj-Hassan 
et al[47]

CRC Multispectral 
images

Segmentation of carcinoma CNN Accuracy: 99.1%

Rathore 
et al[48]

CRC Biopsy 
samples 

H&E staining Detection and grading of tumors Texture and 
morphology patterns, 
SVM

Recognition rate: Detection, 
95.4%; grading; 93.4%

Yang et al[49] CRC 180 
samples

H&E staining Diagnosis of benign tumors, 
neoplasms, and carcinoma

SVM, histogram, 
texture 

AUC: 0.852

Chaddad 
et al[50]

CRC 30 cases H&E staining Diagnosis of carcinoma, adenoma, 
and benign tumors

Automatic 
segmentation, texture

Accuracy: 98.9%

Yoshida 
et al[51]

CRC 1328 
samples

H&E staining Diagnosis of benign tumors, 
neoplasms, and carcinoma

CNN, automatic 
analysis of structure

Undetected rate of carcinoma 
and adenoma: 0-9.3% and 0-
9.9%, respectively

Takamatsu 
et al[52]

CRC 
surgery

397 
samples

H&E staining Prediction of lymph node 
metastasis

LR, shape analysis AUC: 0.94

Weis et al[53] CRC 596 cases IHC (AE1/AE3) Automatic evaluation of tumor 
budding

TMA, CNN Correlation; R2 value: 0.86

Bychkov 
et al[54]

CRC 
surgery

420 cases H&E staining Prediction of survival TMA, CNN Good biomarker for predicting 
survival

Kather et al[55] CRC 973 slides H&E staining Prediction of survival Stromal pattern, 
CNN

Good biomarker for predicting 
survival

Reichling 
et al[56]

CRC 
surgery

1018 cases HE, IHC (CD3, 
CD8)

Prediction of survival RF, monogram Good biomarker for predicting 
survival

CRC: Colorectal cancer; H&E: Hematoxylin eosin staining; IHC: Immunohistochemistry; TMA: Tissue microarray; CNN: Convolutional neural network; 
SVM: Support vector machine; AUC: Area under the curve; LR: Linear regression.

APPLICATIONS OF AI TO A RADIOLOGICAL DIAGNOSIS OF 
GASTROINTESTINAL CANCER
Previous studies on the radiological diagnosis of GC and CRC using AI between 2016 
and 2020 were summarized in Tables 5 and 6.

Gastric cancer
Regarding GC, many researchers have attempted to develop AI models using (1) a 
radiomics approach; or (2) CNN models predicted malignant potential, such as 
survival, lymph node metastasis, and post-operative recurrence, through analyses of 
the radiological image features of GC.

Radiomics approach: Li et al[57] developed a survival prediction model involving a 
general radiomics analysis of CT. The region of interest was manually drawn along the 
margin of the tumor on CT images, and radiological features were extracted. After 
manual image segmentation, the heterogeneity of the extracted feature was quantified 
using an image analysis, such as texture and histogram analyses. Analyzed cases were 
then classified based on the risk score (R-signature) evaluated using the least absolute 
shrinkage and selection operator method. The performance of a radiomics nomogram, 
including factors correlating with survival, was then evaluated. The findings obtained 
showed that the R-signature correlated with the survival of GC patients. Furthermore, 
the prediction of survival by the radiomics monogram including the R-signature was 
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Table 5 Previous studies on the radiological diagnosis of gastric cancer using radiomics or artificial intelligence

Ref. Targets Sample 
size Input Task Analysis method Diagnostic performance

Li 
et al[57]

GC, radical 
surgery

181 cases Primary tumor, 
preoperative CT

Prediction of survival Manual segmentation, 
radiomics, 
Nomograms

The TNM stage and radiomics signature 
were good biomarkers 

Zhang 
et al[58]

GC, radical 
surgery

669 cases Primary tumor, 
preoperative CT

Predication of early 
recurrence

Manual segmentation, 
radiomics, 
Nomograms

AUC: 0.806-0.831

Li 
et al[59]

GC, radical 
surgery

204 cases Primary tumor, pre-
operative dual-
energy CT

Pre-operative 
diagnosis of LNM

Manual segmentation, 
radiomics, Nomogram

AUC; 0.82--.84

Li 
et al[60]

GC, radical 
surgery

554 cases Primary tumor, 
preoperative CT

Prediction of a 
pathological status, 
survival

Semi-automatic 
segmentation, 
radiomics

AUC for prediction of the pathological 
status: 0.77, the TNM stage and radiomics 
signature were good biomarkers

Wang 
et al[61]

GC, radical 
surgery

187 cases Primary tumor, 
preoperative 
dynamic CT

Pre-operative 
prediction of 
intestinal-type GC

Manual segmentation, 
radiomics, 
Nomograms

AUC: 0.904 

Jiang 
et al[62]

GC, 
surgery

214 cases Primary tumor, 
preoperative PET-CT

Prediction of survival Manual segmentation, 
radiomics, 
Nomograms

C-index: DFS, 0.800; OS, 0.786

Chen 
et al[63]

GC, 
surgery

146 cases Primary tumor, 
preoperative MRI

Pre-operative 
diagnosis of lymph 
node metastasis

Manual segmentation, 
radiomics analysis

AUC: 0.878

Gao 
et al[64]

GC, 
surgery

627 cases, 
17340 
images

Lymph nodes, 
preoperative CT

Pre-operative 
diagnosis of lymph 
node metastasis

Manual segmentation, 
deep learning

AUC: 0.9541.

Huang 
et al[65]

GC, 
surgery

Primary tumor, 
preoperative CT

Pre-operative 
diagnosis of 
peritoneal metastasis

Manual segmentation, 
CNN

Ongoing, retrospective cross-sectional 
study

GC: Gastric cancer; CT: Computed tomography; AUC: Area under the curve; LNM: Lymph node metastasis; DFS: Disease-free survival; MRI: Magnetic 
resonance imaging; CNN: Convolutional neural network.

more accurate than that by normal nomograms (T and N stages and differentiation). 
Previous studies investigated the prediction of malignant potential using a radiomics 
approach. Zhang et al[58] evaluated the diagnostic accuracy of CT radiomics models for 
predicting post-operative recurrence in GC patients, and the AUC of the models were 
0.806-0.831. Li et al[59] reported CT radiomics models for predicting lymph node 
metastasis, with an AUC of 0.82-0.84. Li et al[60] also developed CT radiomic models 
with the ability to predict the pathological status and survival with high accuracy. 
Wang et al[61] analyzed primary tumors on CT images of the arterial phase, portal 
phase, and delay phase for the discrimination of intestinal-type GC by a radiomics 
approach. The AUC of their model was 0.904. Jiang et al[62] described a radiomics 
model of PET-CT for predicting survival. The C-indexes of this model for overall 
survival and disease-free survival were 0.786 and 0.800, respectively. A radiomics 
analysis of MRI for GC has also been conducted. Chen et al[63] examined the 
heterogeneity of primary tumors on MRI using a radiomics approach, and showed 
that the model was useful for predicting the N stage.

CNN model: Gao et al[64] developed a CNN model of CT for predicting lymph node 
metastasis. Radiologists initially labeled upper abdominal-enhanced CT images of 
metastatic lymph nodes. CNN models were then constructed using the labeled image 
data, and the AUC of the model was 0.954. Huang et al[65] described a protocol for 
predicting peritoneal metastasis using CNN models, and this research is ongoing.

Colorectal cancer
Treatment strategies for lower rectal cancer (LRC) have recently been attracting 
increasing attention because of the difficulties associated with achieving curative 
treatment. Therefore, many researchers have targeted LRC patients for the 
development of AI models for radiological diagnoses. The aims of a recent AI study on 
CRC were (1) the automatic detection or segmentation of primary tumors; (2) the 



Kudou M et al. AI in GI cancer

AIG https://www.wjgnet.com 79 November 28, 2020 Volume 1 Issue 4

Table 6 Previous studies on the radiological diagnosis of colorectal cancer using radiomics or artificial intelligence

Ref. Targets Sample 
size Input Task Analysis method Diagnostic 

performance

Trebeschi 
et al[66]

LRC 140 cases Primary tumor, MRI Automatic detection, 
segmentation 

CNN DSC: 0.68-0.70, AUC: 
0.99

Wang et al[67] LRC 568 cases Primary tumor, MRI Automatic segmentation CNN DSC: 0.82

Wang et al[68] LRC 93 cases Primary tumor, MRI Automatic segmentation Deep learning DSC: 0.74

Men et al[69] LRC 278 cases Primary tumor, CT Automatic segmentation CNN DSC: 0.87

Shayesteh 
et al[70]

LRC, NCRT followed 
by surgery

98 cases Primary tumor, pre-
treatment MRI

Prediction of CRT 
responses

Manual segmentation, 
radiomics, machine 
learning

AUC: 0.90

Shi et al[71] LRC, NCRT followed 
by surgery

45 cases Primary tumor, pre-
treatment MRI, mid-
radiation MRI

Prediction of CRT 
responses

Manual segmentation, 
CNN

AUC: CR, 0.83; good 
response, 0.93

Ferrari 
et al[72]

LRC, NCRT followed 
by surgery

55 cases Primary tumor, MRI 
before, during and after 
CRT

Prediction of CRT 
responses

Manual segmentation, 
radiomics, RF

AUC: CR: 0.86, non-
response: 0.83

Bibault 
et al[73]

LRC, NCRT followed 
by surgery

95 cases Primary tumor, pre-
operative CT

Prediction of CRT 
responses

Manual segmentation, 
radiomics, CNN

80% accuracy

Dercle 
et al[74]

CRC, FOLFILI 
with/without 
cetuximab

667 cases Metastatic tumor, CT Prediction of tumor 
sensitivity to 
chemotherapy

Manual segmentation, 
radiomics, machine 
learning

AUC: 0.72-0.80

Ding et al[75] LRC, radical surgery 414 cases Lymph nodes, pre-
operative MRI

Pre-operative diagnosis 
of lymph node 
metastasis

Manual segmentation, 
CNN

AI system > 
radiologist 

Taguchi 
et al[76]

CRC 40 cases Primary tumor, CT Prediction of the KRAS 
status

Manual segmentation, 
radiomics

AUC: 0.82

LRC: Lower rectal cancer; MRI: Magnetic resonance imaging; CNN: Convolutional neural network; DSC: Dice similarity coefficient; AUC: Area under the 
curve; NCRT: Neoadjuvant chemoradiotherapy; CR: Complete response; RF: Random forest; CT: Computed tomography; CRC: Colorectal cancer.

prediction of treatment responses; and (3) the prediction of malignant potential.

Automatic detection or segmentation of primary tumors: Trebeschi et al[66] reported a 
CNN model for the automatic segmentation of primary tumors on MRI. CNN models 
were trained using T2-weighted images (T2WI) and diffusion-weighted images with 
primary tumor labeling by expert radiologists. The CNN model showed high 
segmentation accuracy, with a dice similarity coefficient (DSC) of 0.68-0.70. The AUC 
of the resulting probability maps was 0.99. Two CNN models were also developed for 
the automatic segmentation of primary tumors on T2WIs, with DSC of 0.82 and 0.74, 
respectively[67,68]. Men et al[69] attempted to develop CNN models for automatic 
segmentation on CT images with an application to the delineation of the clinical target 
volume (CTV) and surrounding organs for radiotherapy. The mean DSC values of the 
models were 87.7% for the CTV, 93.4% for the bladder, 92.1% for the left femoral head, 
92.3% for the right femoral head, 65.3% for the intestines, and 61.8% for the colon.

Prediction of treatment responses: Shayesteh et al[70] reported radiomics models 
predicting treatment responses to neo-adjuvant chemoradiotherapy. Primary tumors 
on MRI T2WI were manually segmented and an image analysis of the data, shape, 
texture as well as a histogram analysis were performed. The relationship between the 
pathological features and treatment responses to CRT was assessed by a machine 
learning approach, which revealed that the AUC and accuracy of the model were 95 
and 90%, respectively. Shi et al[71] and Ferrari et al[72] also described the efficacy of 
radiomics models for predicting CRT responses using pre-treatment, mid-radiation, 
post-treatment MRI (AUC for predicting a complete response (CR): 0.83 and 0.86, 
respectively). Bibault et al[73] compared the diagnostic accuracy of several models, 
Cox’s regression, CNN, and SVM for predicting CR in pre-operative CRT using CT 
data. CNN exhibited the ability to predict CR with the highest accuracy (80%). A 
radiomics model for predicting chemotherapeutic responses has also been reported. 
Dercle et al[74] demonstrated that their radiomic model using CT images successfully 
predicted sensitivity to anti-EGFR therapy (AUC: 0.80).
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Prediction of malignant potential: Ding et al[75] developed AI models to predict 
lymphatic node metastasis using pre-operative MRI. CNN models were constructed 
using MRI lymph node images manually labeled by radiologists. They compared the 
diagnostic accuracy of CNN and a radiologist for predicting lymph node metastasis. 
As a result, CNN was more accurate than radiologists in identifying pelvic metastatic 
lymph nodes. A model for predicting gene profiles was also reported. These research 
methods are generally called radiogenomics. Taguchi et al[76] showed that a machine 
learning model using a texture analysis of CT images and SUV values of PET-CT 
predicted KRAS mutations with high accuracy (AUC: 0.82).

CURRENT ISSUES AND FUTURE PERSPECTIVES
AI research for endoscopy
The majority of studies previously reported that a CAD system using AI for 
endoscopy had the ability to diagnose gastrointestinal tumors with high accuracy; 
however, there were many limitations. Researchers were more likely to use high-
quality endoscopic images to construct AI models, which cannot always be acquired in 
clinical settings[9]. Furthermore, outcome indicators for clinical applications have not 
yet been defined. Therefore, parameters to assess the functional performance of AI 
models need to be established[19]. In addition, the majority of studies have been 
retrospective in nature using still images from non-clinical settings. These conditions 
do not mimic real-time clinical settings, in which endoscopists often encounter 
difficult-to-analyze images in daily practice. Moreover, it currently remains unclear 
whether AI models will enhance medical performance, reduce medical costs, and 
increase the satisfaction of patients and medical staff in clinical settings. Another 
limitation is that many clinicians and clinical researchers do not have sufficient 
knowledge to understand AI systems; therefore, non-AI experts as well as medical 
journal reviewers may encounter difficulties when assessing research on AI and its 
applications. Furthermore, the number of medical staff with the skill to educate 
physicians on AI is very limited[19].

Nevertheless, once these limitations are resolved, CAD systems using AI will 
markedly improve diagnostic quality in endoscopic examinations. CAD systems for 
endoscopy are expected to serve as a second observer during real-time endoscopy, 
facilitating the detection of more neoplasms by endoscopists. Some CAD systems may 
also provide “optical biopsies” to differentiate the types of colon polyps[9]. Therefore, 
CAD systems have a promising future in the effective training of junior endoscopists 
as assistant observers.

AI research for pathology
Previous studies reported that AI models distinguish structures in tissues and detect 
cancerous regions with high accuracy. Furthermore, survival may be predicted using 
image analyses by AI. However, there are also a number of limitations in research. AI 
models are educated using pathological images of cancer tissue labeled by 
pathologists. However, interobserver disagreement in pathological diagnoses 
commonly occurs between pathologists[77,78]. Therefore, the quality of teaching data 
varied in each study. Furthermore, the majority of AI models were constructed using a 
small cohort. It might be possibility non-reproducible laboratory-specific machine 
learning methods. In addition, the clinical use of AI models requires a digital slide 
scanner, image storage, maintenance contracts, image analysis software, and IT 
support systems, which may be expensive in clinical settings. Moreover, many 
pathologists and technicians do not have sufficient knowledge to understand AI 
systems. Therefore, the recruitment of AI experts to introduce AI systems into clinical 
settings is needed for education and the adjustment of systems to different clinical 
settings.

Despite these limitations, whole-slide scanning using AI models, such as the TMA 
method, is advantageous for pathologists and clinicians. This method may be a second 
observer in the prevention of false diagnoses by pathologists and the teaching of 
trainees. Furthermore, the heterogeneities of cancer tissue cannot be precisely 
evaluated by the human eyes of pathologists. Therefore, the assessment of cancer 
tissue using AI models is a novel research method beyond human cognition that is 
expected to predict proteomics, genomics, and the molecular signaling pathways of 
tumors as precision medicine by cancer genome sequencing.
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AI research for radiology
Previous studies reported the efficacy of automatic segmentation or diagnosis in solid 
malignant tumors[77-79]. However, difficulties are associated with automatic 
segmentation by AI models in the field of gastrointestinal cancer because of large 
individual differences in imaging features of the gastrointestinal tract, except for the 
rectum. The radiomics approach represents an attractive method for detecting 
malignant potential and imaging biomarkers for precision medicine through image 
analyses of intratumor heterogeneity. However, a number of limitations need to be 
considered. The manual or semi-automatic segmentation of tumors is generally 
needed in the radiomics approach. Interobserver variability in manual segmentation 
often occurs in this process, resulting in the poor reproducibility of data by the 
radiomics model. Furthermore, previous studies demonstrated that radiomic features 
may be affected by a number of parameters, such as the scanning equipment[80], image 
pre-processing[81], acquisition protocols[82,83], image reconstruction algorithms[84,85], and 
delineation. In addition, although researchers of radiology or AI experts are 
knowledgeable about radiomics and AI models, they often cannot target the clinical 
task that needs to be improved for clinicians or patients in clinical settings. However, 
clinicians are not sufficiently aware of AI, and few reviewers of scientific literature on 
clinical medicine often are developing AI models or are able to judge research 
involving AI. Therefore, a multidisciplinary team needs to be introduced into research 
and medical teams to promote AI-supported medicine.

Despite these limitations, radiomic models for the image diagnosis or prediction of 
malignancy have the potential to support clinical teams for more accurate and rapid 
diagnoses. These models may increase patient satisfaction levels for homogenized 
diagnostic accuracy. Moreover, radiogenomics may have a major impact on precision 
medicine. Non-invasive assessments of the entire tumor tissue may be possible, 
without having to rely on a single biopsy to represent all cancer lesions within a 
patient. As further information becomes available on these imaging markers, the 
characteristics of cancers will be elucidated in more detail. Therefore, the radiomics 
approach will enhance the treatment effects of molecular biological approaches for 
oncological precision medicine.

DISCUSSION
AI will be an important component of diagnostic methods to diagnosis patient disease, 
determine most appropriate treatments, and predict prognosis and drug resistance. A 
lot of research methods have been developed with the aims and found to have varying 
levels of performance. For clinical use of disease diagnosis, AI seems valuable for use 
in endoscopy, where it could increase detection of benign polyp and malignant tumor. 
Meanwhile, AI may be useful to analysis intratumor heterogeneity of radiological and 
pathological images in order to predict malignant potentials, such as the prognosis of 
patients and therapeutic effects. Our minireview covered only articles listed in 
MEDLINE, and might have missed some literatures in medical image analysis journals 
and computer science. Despite of the limitation, AI has become an important part of 
clinical cancer research in recent years.

There is no turning back for the development of AI in gastrointestinal cancer, and 
future implications are large. However, some limitations that require caution should 
be recognized. Most studies were performed using low-quality datasets from pre-
clinical studies. Furthermore, AL algorithms are often considered to be black-box 
models. The difficulty in understanding the process of AI decision may prevent 
physicians from finding the potential confounding factors. Ethical challenge is one of 
the problems to be considered. In the present AI system, AI is not aware of the human 
preferences or legal liabilities. Therefore, medical staff will have to make decisions for 
patients according to their preferences, environment, and ethics. AI will not 
completely replace doctors, and computer technology and medical staff will always 
have to work together. However, the diagnostic accuracy of AI systems has markedly 
increased and may detect novel biomarkers that cannot be identified by the human eye 
or in human-aid analyses. AI systems will be introduced into general hospitals in the 
near future under the management of multidisciplinary teams consisting of medical 
staff and AI experts.
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CONCLUSION
We reviewed the recent published literatures on AI in gastrointestinal cancer, 
suggesting that AI may be used to accurately diagnose clinical images, identify new 
therapeutic targets, and process clinical data from large patient datasets. Although the 
physicians must recognize the limitations of AI diagnostic system, AI-assisted medical 
systems will become a promising tool for gastrointestinal cancer.
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