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Abstract
Primary liver cancer is a global disease that is on the 
increase. Hepatocellular carcinoma (HCC) accounts for 
most primary liver cancers and has a notably low sur-
vival rate, largely attributable to late diagnosis, resis-
tance to treatment, tumour recurrence and metastasis. 
MicroRNAs (miRNAs/miRs) are regulatory RNAs that 
modulate protein synthesis. miRNAs are involved in 
several biological and pathological processes including 
the development and progression of HCC. Given the 
poor outcomes with current HCC treatments, miRNAs 
represent an important new target for therapeutic in-
tervention. Several studies have demonstrated their 
role in HCC development and progression. While many 
risk factors underlie the development of HCC, one pro-
cess commonly altered is iron homeostasis. Iron over-
load occurs in several liver diseases associated with 
the development of HCC including Hepatitis C infection 
and the importance of miRNAs in iron homeostasis 
and hepatic iron overload is well characterised. Aber-
rant miRNA expression in hepatic fibrosis and injury 
response have been reported, as have dysregulated 
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miRNA expression patterns affecting cell cycle progres-
sion, evasion of apoptosis, invasion and metastasis. In 
2009, miR-26a delivery was shown to prevent HCC pro-
gression, highlighting its therapeutic potential. Several 
studies have since investigated the clinical potential of 
other miRNAs with one drug, Miravirsen, currently in 
phase Ⅱ clinical trials. miRNAs also have potential as 
biomarkers for the diagnosis of HCC and to evaluate 
treatment efficacy. Ongoing studies and clinical trials 
suggest miRNA-based treatments and diagnostic meth-
ods will have novel clinical applications for HCC in the 
coming years, yielding improved HCC survival rates and 
patient outcomes.

© 2013 Baishideng. All rights reserved.
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Core tip: Hepatocellular carcinoma (HCC) has a high 
incidence and low survival rate, largely attributable to 
late diagnosis, resistance to treatment, tumour recur-
rence and metastasis. MicroRNAs (miRNAs) are regula-
tory RNAs that modulate protein synthesis and are in-
volved in several biological and pathological processes 
including the development and progression of HCC. 
miRNAs represent important new targets for therapeu-
tic intervention for HCC and have potential as diagnos-
tic and prognostic HCC biomarkers. Ongoing studies 
and clinical trials suggest miRNA-based treatments and 
diagnostic methods will have clinical applications for 
HCC in the coming years, yielding improved HCC sur-
vival rates and patient outcomes.
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INTRODUCTION
Hepatocellular carcinoma (HCC) accounts for 85%-90% 
of  primary liver cancers; it ranks as the fifth most com-
mon cancer worldwide and the third leading cause of  
death from malignancy[1]. The development and progres-
sion of  HCC is a multistage process, with transformation 
typically beginning in hepatocytes of  livers undergoing 
chronic hepatitis or cirrhosis[2]. The major risk factor 
for HCC is chronic hepatitis due to infection with the 
hepatitis B or hepatitis C virus (HBV/HCV) accounting 
for 80%-90% of  all HCC cases worldwide[3]. The other 
most important risk factors for hepatocarcinogenesis are 
alcoholic and non-alcoholic steatohepatitis-associated 
cirrhosis; less common risk factors include genetic condi-
tions such as hereditary haemochromatosis (HH), alpha-1 
antitrypsin deficiency[4,5] and aflatoxin B1 intake. Regard-
less of  the underlying risk factor, hepatocytes progress 
through several hyperplastic and dysplastic stages before 
eventually acquiring a malignant phenotype, with subse-
quent intrahepatic metastasis and distant spread of  HCC 
cells[6]. The 5-year survival rate of  patients with HCC re-
mains quite low, between 6%-11%. This is attributable to 
late diagnosis, resistance to treatment, tumour recurrence 
and metastasis[2].

Previously, studies investigating HCC development 
and progression have focused on the therapeutic poten-
tial of  targeting various genes and proteins[7]. However, 
a new group of  regulatory RNA molecules has more 
recently been identified, called microRNAs (miRNAs). 
Involvement of  miRNAs in HCC development and 
progression has been demonstrated; as such miRNAs 
have considerable diagnostic and therapeutic potential 
for HCC. Here, the role of  miRNAs in the pathogenesis 
of  HCC is reviewed with a focus on their regulation of  
iron homeostasis and in the setting of  iron overload, a 
common pathological event observed in several liver dis-
eases associated with HCC development. The relevance 
of  miRNAs to HCC progression with regard to hepatic 
fibrosis and response to injury, as well as their contribu-
tion to cell cycle progression, evasion of  apoptosis and 
metastasis is explored. Finally, the potential diagnostic 
and therapeutic value of  miRNAs in HCC is discussed.

miRNAs
miRNAs are endogenous single stranded RNAs, approxi-
mately 22 nucleotides in length. They are non-coding 
but are important post-transcriptional regulators of  gene 
expression. miRNAs were first discovered in 1993, and 
since then the considerable extent of  the gene regulatory 
capacity of  miRNAs has been investigated. These inves-
tigations have demonstrated that specific miRNAs have 
central roles in critical biological processes such as de-
velopment, cell proliferation, apoptosis and oncogenesis. 
The mechanisms of  action and biogenesis of  miRNAs 
have been reviewed in detail[8,9].

Mature miRNAs enter the RNA-induced silencing 
complex (RISC) in the cytosol. In this complex miRNA 
can post-transcriptionally regulate gene expression. Their 

mechanism of  action is determined by the level of  com-
plementarity between the miRNA and the 3’-untranslated 
region (UTR) target on the mRNA. In perfect comple-
mentarity, miRNA-mRNA binding induces mRNA cleav-
age and degradation by RISC. In imperfect complemen-
tarity, miRNA-mRNA binding represses target mRNA 
translation[10]. Occassionally, miRNAs can upregulate 
translation even in conditions of  growth arrest[11]. How-
ever translation is more commonly inhibited and the 
target mRNAs are eventually degraded in cytoplasmic 
processing bodies[12].

Functional target sites on mRNAs usually consist of  
a 6-8-nt long sequence complementary to the miRNA 
sequence (followed by an adenosine), this is termed the 
miRNA “seed” sequence and is located at the 5’ end of  
the miRNA[13]. The complementary sequence commonly 
referred to as a miRNA recognition element (MRE) 
is usually located in the 3’-UTR of  the target mRNA. 
Some recent studies have shown miRNAs can also bind 
to MREs located in the 5’-UTR or the open reading 
frame[14-17]. Unusually miRNAs can act as decoys and bind 
to ribonucleoproteins independent of  a seed sequence 
and RISC, thus interfering with roles requiring mRNA 
binding[18].

Given the considerable potential for variety in miR-
NA-mRNA interaction, it is not surprising that a single 
miRNA can target several genes[19-22]. In addition, approx-
imately 60% of  mRNAs carry at least one evolutionarily 
conserved MRE. Bioinformatic analysis predicts that the 
3’-UTR of  a single transcript is often targeted by several 
miRNAs, a prediction that has been validated experimen-
tally for many genes[22]. The complex, widespread and co-
operative regulation of  gene expression by miRNAs is 
an important consideration when studying normal and 
pathological processes in terms of  understanding the 
processes themselves and identifying potential biomark-
ers. Recently investigators have begun to study the role 
of  miRNAs in the pathogenesis of  HCC. In particular, 
several studies have demonstrated a role for miRNAs in 
HCC development and progression, wherein the impor-
tance of  miRNAs in iron homeostasis and hepatic iron 
overload were highlighted. 

Many risk factors underlie the development of  HCC 
and one process commonly altered is iron homeostasis. 
Iron overload in the liver occurs in several liver diseases 
associated with the development of  HCC, including 
chronic hepatitis due to HCV infection and also due to 
genetic conditions such as HH. Hepatic iron overload 
is an independent risk factor for the development of  
HCC[23] and emerging evidence points towards miRNAs 
as central regulators of  iron homeostasis

miRNAs, HCC AND IRON OVERLOAD
Hepatic iron overload and HCC
Hepatocytes act as the principal site of  iron storage in the 
body, storing iron as ferric oxyhydroxyapatite in the core 
of  ferritin. During iron overload, the ability of  hepato-
cytes to safely sequester iron is exceeded, denaturation of  
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ferritin subunits occurs leading to ionic iron release into 
the hepatocyte cytoplasm[24]. The effects of  hepatic iron 
overload have been particularly well studied in patients 
with the inherited iron metabolism disorder, HH and in 
Africans with dietary iron overload.

Patients with HH, without timely appropriate treat-
ment, almost always develop hepatic fibrosis and cirrho-
sis due to hepatic iron accumulation[25]. Similarly patients 
with African dietary iron overload can develop cirrhosis, 
albeit less often[26,27]. HCC is a potential complication 
in untreated HH patients associated with premature 
death[28,29]. Comparison studies have showed that cirrho-
sis plays a role in the development of  HCC in HH[30,31] 
however, HCC can also develop in HH patients without 
cirrhosis, albeit rarely[32-37]. Together this suggests that he-
patic iron storage could directly contribute to HCC devel-
opment[38,39], in addition to its indirect effect as a cause of  
cirrhosis. This concept is in keeping with a study compar-
ing cirrhosis incidence in HH and non-iron related liver 
diseases, where the risk of  HCC was greater in HH[40]. 
Interestingly, despite HCC initially being thought not to 
occur in dietary iron overload, three case/control studies 
have demonstrated a causal association between African 
dietary iron overload and HCC, even after allowing for 
the confounding effects of  cirrhosis, chronic HBV and 
HCV infection and prolonged aflatoxin B1 exposure[41-43]. 
Dietary iron overload resulting in HCC has also been 
reported in animal models[44,45] supporting the directly he-
patocarcinogenic effects of  hepatic iron accumulation.

HCC can also develop with other causes of  hepatic 
iron accumulation namely, thalassaemia major, sidero-
blastic anaemia and hereditary spherocytosis[46-48]. Lesser 
degrees of  hepatic iron accumulation are seen in other 
liver diseases, such as chronic HCV hepatitis and alco-
holic liver disease. Nonetheless, it is thought to have an 
important role in these diseases[24]. One area of  recent 
interest is hepatic iron accumulation with HCV infection. 
As the main risk factor for HCC development, HCV is 
particularly relevant to HCC. Iron promotes the initiation 
of  HCV translation by increasing expression of  eukary-
otic initiation factor 3a and La protein, whereas inhibiting 
expression of  these proteins suppresses HCV transla-
tion[49,50]. Interestingly the expression of  the chief  iron 
regulatory hormone, hepcidin, is suppressed in chronic 
HCV infected patients. Given that hepcidin expression 
has direct anti-viral activity against HCV in cell culture[51] 
this represents an exciting area of  ongoing research. 

Hepatic iron accumulation has also been implicated 
in non-alcoholic fatty liver disease (NAFLD). Hyperfer-
ritinemia is associated with higher hepatic iron and fat 
content in NAFLD[52], and is also an independent predic-
tor of  liver damage in NAFLD patients[53]. As altered 
iron trafficking is frequent in patients with NAFLD, 
one recent study investigated the role of  the Ala736Val 
polymorphism of  TMPESS6 (an inhibitor of  hepcidin 
expression) in NALFD-associated hepatic iron accumula-
tion[54]. Homozygosity for this polymorphism was associ-
ated with low hepatic iron stores and was negatively as-

sociated with hepatic iron accumulation independent of  
age, gender, human haemochromatosis (HFE) genotype 
and beta thalassaemia trait.

Pathogenesis of HCC in hepatic iron overload
A recent animal study examined the long-term effects 
of  iron overload in HCC[44]. A high-iron diet was given 
to Wistar albino rats over 16 mo to induce hepatic iron 
overload. Altered hepatic foci developed in many animals 
by 20 mo. By 28 mo, these foci were more numerous 
and had become identical to the iron-free preneoplastic 
nodules seen in HH patients who develop HCC[55]. HCC 
was evident at 32 mo in the absence of  portal fibrosis 
or cirrhosis. The mechanisms by which free iron induces 
hepatocarcinogenesis are not yet fully characterised but 
are likely due to the generation of  reactive oxygen in-
termediates (ROI) and oxidative stress which damages 
DNA, lipids, and proteins resulting in both necrosis and 
apoptosis within hepatocytes[56-60]. Oxidative DNA dam-
age correlates with cell immortalisation in HCC through 
induction of  telomerase activity. This process has been 
associated with miR-92 over expression, a miRNA affect-
ing specific cell proliferation and apoptosis pathways[61]. 
Iron overload leading to lipid peroxidation is also thought 
to contribute to HCC development[62-66]. Moreover, ex-
cess hepatic iron may induce immunologic alterations, 
leading to impaired immune surveillance of  malignant 
transformation. Nontransferrin-bound iron can markedly 
suppress lymphocyte proliferation[67]. The same study 
showed that ferritin can inhibit lymphocyte prolifera-
tion. Indeed, the presence of  both iron and ferritin were 
found to significantly reduce the tumouricidal function 
of  macrophages[68]. In addition to its solitary effects, iron 
overload can act in tandem with other HCC risk factors 
to produce hepatocarcinogenesis. For example, dietary 
iron overload and aflatoxin B1 exposure have superaddi-
tive effects on mutagenesis rates[69]. Furthermore ROI 
generation and mutagenesis are synergistically increased 
in animal models with both risk factors, leading to greater 
DNA damage[70-73].

Control of  cellular iron uptake by miRNAs: Most 
cells obtain iron from plasma via iron-bound transferrin 
(Tf-Fe2) uptake. Tf-Fe2 binds to TfR1 on the cell surface 
and the complex is internalised by clathrin-dependent en-
docytosis. Acidification of  early endosomes aids iron re-
lease from transferrin[74], so that it can be reduced to Fe2+ 
by metalloreductases[75]. Transport into the cytoplasm 
occurs via endosomally-expressed Divalent metal trans-
porter 1 (DMT1). Cell surface TfR1 levels reflect cellular 
iron requirements, with regulation of  TfR1 expression 
mainly achieved by the IRE/IRP regulatory system[76]. 
However, recent studies have shown that the transferrin 
cycle is also controlled by miRNAs, at two separate steps 
(Figure 1A).

Cancerous cells have elevated TfR1 expression to 
meet the increased iron requirements of  rapid cellular 
proliferation[77,78]. Conversely, differentiation of  a human 
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IRE-containing isoforms are controlled in response to 
cellular iron levels by IRP binding[83]. All DMT1 isoforms 
can transport iron and, with the exception of  the duode-
nal 1A isoform, are ubiquitously expressed[84]. Of  note, 
miRNA-controlled DMT1 expression by let-7d can con-
tribute to the uptake of  non-transferrin bound iron[85]. 
Further studies are needed to determine how miRNA-
dependent control of  DMT-1 expression is integrated 
with additional DMT-1 control mechanisms.

Importantly, as miRNA maturation requires iron in 
the form of  heme[86], the finding that miRNAs control 
cellular iron uptake suggests a possible regulatory loop in 
which iron is needed for the efficient synthesis of  mature 
miRNAs, while certain mature miRNAs control cellular 
iron uptake.

Control of  cellular iron storage by miR-200b: Ferritin 
heteropolymers consist of  24 subunits of  heavy (FtH1) 
and light (FtL) chains that bind iron from the cytoplasmic 
‘‘labile iron pool’’[87]. The FtH1 subunit has ferroxidase 
activity necessary for iron deposition in ferritin. Ferritin 
detoxifies excess iron into a redox-inactive form, pre-
venting chronic oxidative stress and subsequent cell and 

leukaemia cell line decreases TfR1 expression[79]; this is 
accompanied by reciprocal increases in miRNAs pre-
dicted to bind to the TfR1 3’-UTR (miR-22, miR-200a 
and miR-320). Of  these, miR-320 was demonstrated to 
suppress the activity of  a luciferase reporter vector under 
the control of  the TfR1 3’-UTR[80]. Similarly, enforced 
miR-320 expression in a lung carcinoma cell line can re-
duce TfR1 expression and slow cell cycle progression and 
cell growth. This growth inhibitory effect can be reversed 
by treatment with a soluble iron solution suggesting that 
reduced TfR1 expression in miR-320-overexpressing cells 
lowers iron availability and reduces cell proliferation[81]. 
Currently, it is unknown whether miR-320-mediated 
TfR1 regulation is limited to cancer cells or whether it 
has a role under normal physiological conditions.

In addition to miRNA-dependent TfR1 regulation, 
miRNAs control the transferrin cycle at the release of  
iron from the endosome via DMT1. The gene coding for 
DMT1 (SLC11A2) produces four variant mRNA tran-
scripts. These differ either at their 5’ end due to alterna-
tive promoter usage (DMT1A and 1B isoforms), or at the 
3’ end, due to alternative splicing determining the pres-
ence or absence of  an IRE sequence motif[82]; only the 

FtH1
FtL

Ferritin heteropolymers

FtH1
FtL

Fe2+

Fe2+

Fe2+

miR-200b

Fe

Fe-bound Ferritin

Redox inactive

miR-122

HFE

HJV

24

Hepcidin 
expression

Ferroportin 
degradation

Plasma and tissue 
iron deficiency

A

B C

Figure 1  Effect of microRNAs on iron uptake, storage, and systemic regulation. A: Iron-bound transferrin (Tf-Fe2) binds to the transferrin receptor TfR1 which is 
regulated by microRNA (miR)-22, miR-200a and miR-320. The complex is endocytosed leading to release of iron, its reduction to Fe2+ and transport to the cytoplasm 
via DMT1 which may be regulated by various miRNAs; B: miR-200b regulates ferritin heavy (FtH1) and light (FtL) chains. Ferritin polymers containing 24 subunits de-
toxify excess iron via FtH1’s ferroxidase activity and store intracellular iron; C: Levels of human haemochromatosis (HFE) protein and hemojuvelin (HJV) are regulated 
by miR-122, the levels of which are decreased in hereditary haemochromatosis. Reciprocal increases in HFE and HJV, in turn, enhance expression of hepcidin lead-
ing to decreased iron absorption due to degradation of ferroportin. DMT: Divalent metal transporter.
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tissue damage. Ferritin also acts as an intracellular iron 
store mobilised via proteasomal and lysosomal degrada-
tion. One recent study showed that human breast cancer 
cells with an aggressive mesenchymal phenotype express 
significantly higher FtH1 and FtL mRNA and protein 
levels and have a smaller labile iron pool compared to 
breast cancer cells with a less aggressive epithelial phe-
notype[88]. High FtH1 concentrations correlated with low 
miR-200b expression, a miRNA that binds both FtH1 
and FtL 3’UTRs (Figure 1B). Of  clinical relevance, miR-
200b transfection improved sensitivity of  breast cancer 
cells to doxorubicin. Additionally, patients with higher 
plasma ferritin levels showed worse treatment outcomes, 
emphasising the clinical significance of  this facet of  iron 
regulation. These findings suggest that down regulation 
of  miR-200b in human breast cancer contributes to in-
creased cancer aggressiveness. Whether FtH1 and FtL 
are regulated by miR-200b in hepatocytes and if  this has 
implications for HCC remains to be determined[89,90].

Control of  systemic iron regulation by miR-122: The 
liver regulates systemic iron homeostasis via hepcidin 
and monitors systemic iron availability through genes 
involved in HH (e.g., HFE, hemojuvelin and TfR2), the 
bone morphogenetic protein (Bmp) 6 and the Smad4 
protein. These all function in the regulation of  hepcidin 
transcription. Low hepcidin activity due to mutations in 
HFE, hemojuvelin, TfR2 or hepcidin itself  lead to the 
development of  HH which is associated with increased 
iron uptake from the diet and increased iron release from 
macrophages.

miR-122 is selectively expressed in the liver. One 
recent study demonstrated that miR-122 expression is re-
duced in a mouse model of  HFE-mutated HH[91]. Deple-
tion of  miR-122 in wild type mice led to low systemic 
iron levels, decreased plasma iron levels and lower trans-
ferrin iron binding capacity. These events in turn resulted 
in an insufficient iron supply to erythroid cells and a mild 
impairment of  haematopoiesis[91]. Furthermore, the iron 
contents of  the liver and spleen were also reduced. Inter-
estingly, miR-122 depletion altered systemic iron homeo-
stasis through changes in the level of  expression of  genes 
involved in the sensing of  systemic iron levels (i.e., HFE, 
Hemojuvelin, and Bmpr1a), as well as genes that transmit 
signals via the Bmp/Smad signalling pathway, to regulate 
hepcidin transcription[91]. This study also validated HFE 
and hemojuvelin as direct targets of  miR-122 (Figure 
1C).

This suggests a miR-122-dependent regulatory loop 
that controls systemic iron homeostasis whereby deple-
tion of  miR-122 derepressed HFE and hemojuvelin 
expression, in turn increasing hepcidin transcription. 
As a result, high circulating hepcidin levels can enhance 
the degradation of  ferroportin on target cells, leading 
to lower iron absorption from the diet and iron release 
from macrophages. This likely leads to plasma and tissue 
iron deficiency, with mild impairment of  erythropoiesis. 
miR-122 levels are not regulated as a result of  iron accu-
mulation in the liver of  HH patients, but more likely as a 

consequence of  the signalling activities reduced by a lack 
of  HFE which is known to attenuate BMP/Smad sig-
nalling in HH patients and its respective murine disease 
model[92]. 

The finding that miR-122 regulates systemic iron ho-
meostasis is one of  a growing number of  functions known 
for this liver-specific miRNA. For example, miR-122 is 
necessary for HCV infection and replication, as well as 
for responsiveness to interferon therapy[93-95], all processes 
involving alterations in iron homeostasis[96]. miR-122 levels 
are reduced in cirrhosis[97] and HCC[98,99], two pathologies 
known to be exacerbated by increased liver iron levels[24]. 
Evidently, miRNAs have an important role in the mainte-
nance of  iron homeostasis, given their roles in controlling 
the level of  cellular uptake of  iron-bound transferrin, iron 
storage by ferritin, and hepatic control of  systemic iron 
levels via hepcidin (Figure 1). Furthermore, tissue iron 
overload causes oxidative stress that itself  has been shown 
to alter miRNA expression[100,101].

Overall, these findings suggest that miRNAs control 
large regulatory networks that link microenvironmental 
stress, such as oxidative stress and hypoxia to the regula-
tion of  iron metabolism. As the maintenance of  iron ho-
meostasis is critical for many essential cellular functions, 
it is expected that several more miRNAs that directly or 
indirectly control iron-related genes will be discovered. 
Given the role of  miRNAs in regulating iron homeosta-
sis and the significance of  iron overload to the develop-
ment of  HCC, miRNAs likely play an important role in 
the pathogenesis of  HCC (Table 1). However, further 
studies elucidating the full extent of  miRNAs’ functions 
in iron homeostasis under normal conditions are needed 
to improve our understanding of  the role of  miRNAs in 
pathologies such as HCC. 

miRNAs AND HCC PROGRESSION
In HCC miRNAs can act as oncogenes, promoting he-
patocyte progression to HCC, or as tumour suppressors, 
preventing this process[2]. Increased oncogenic miRNA 
levels result in reduced translation of  their gene targets, 
contributing to HCC development and progression. By 
contrast, miRNAs acting as tumour suppressors prevent 
the expression of  their oncogenic targets and hence the 
downregulation of  such miRNAs permits greater expres-
sion of  these oncogenic genes, again contributing to 
HCC development and progression. Progression from 
normal hepatocytes to HCC is a multistage process. Sev-
eral changes in the liver structure and in normal cell pro-
cesses must occur for this progression to continue, medi-
ated in part by altered miRNA expression profiles. These 
include liver fibrosis and hepatic stellate cell-mediated 
liver regeneration, while at the molecular level changes 
in cell cycle progression, susceptibility to apoptosis and 
capacity for invasion and metastasis are needed.

Liver fibrosis, hepatic stellate cells and liver 
regeneration
miRNA expression profiles show considerable overlap 
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in fibrotic disorders. The most significant mediators are 
the miR-29 family, important in regulating translation of  
extracellular matrix components and effectors of  cellu-
lar differentiation[102]. Also important are miRs affecting 
translation of  proteins involved in the pro-fibrotic trans-
forming growth factor (TGF)-β/SMAD signalling path-
way. Microarray analyses in a CCl4 rodent model of  he-
patic fibrosis have shown 31 differentially expressed miRs, 
10 of  which are over expressed in fibrotic tissue including 
miR-125-p, -199b, -221 and -302c[103]. This same study 
revealed a significant down regulation in 21 miRs, most 
notably the miR-29 family. Down regulation of  miR-29b 
and miR-29c was independently confirmed in a bile duct 
ligation model and similar observations for miRs-29a/b/c 
have been reported in humans liver tissue samples of  pa-
tients with a Desmet fibrosis score of  2-4[104].

Hepatic fibrosis is also affected by miR-132 levels. 
In two different models of  hepatic fibrosis (BDL and 
CCl4), where a significant reduction in miR-132 levels 
was observed, this down regulation was found to alter 
the activity of  hepatic stellate cells (HSCs). HSCs are 
the main effector cells of  hepatic fibrosis, acting as the 
primary source for type Ⅰ collagen deposition following 
liver injury. HSC activation occurs in response to hepatic 
insults including viral infection, alcohol consumption and 
obesity. During their activation, quiescent lipid-rich cells 
are transdifferentiated into fully activated myofibroblasts. 
The activated cells can secrete pro-fibrogenic mediators 
such as TGF-β, and produce extracellular matrix com-
ponents[105]. Involvement of  miRNAs in the process of  
HSC activation has been demonstrated. For example, 
let-7 family members are significantly up regulated in 
HSCs of  BDL animals whereas miR-150, -187, -194 and 
-207 are down regulated[106]: over expression of  miR-150 
and miR-194 in human HSCs can inhibit HSC prolifera-
tion and prevent HSC transdifferentiation[106]. miR-150 
together with another miR, miR-94, inhibits c-Myb and 
Rac-1, two proteins involved in pathways contributing to 
hepatic fibrosis development and progression. Further 

studies investigating differential miRNA expression in 
quiescent and activated rat HSCs showed that miR-15b 
and miR-16 are also implicated in HSC activation[107,108]. 
This process is also regulated by miR-27a and b which 
are up regulated and in turn repress RXRα[109]. Of  inter-
est miR-132 activates the methylCpG binding protein 
MeCP2 and components of  the polycomb repressive 
process. Down regulation of  miR-132, as seen in hepatic 
fibrosis, permits MeCP2 translation. This protein is sub-
sequently recruited to the 5’UTR of  PPARγ mRNA and 
through alteration of  methylation patterns suppresses the 
quiescent profile of  HSCs[110] - this is an example of  a 
miRNA acting as an activator rather than an inhibitor of  
gene expression. Thus as our understanding of  the role 
of  miRNAs in the regulation of  HSC differentiation im-
proves so will the understanding of  liver pathology and 
hepatic responsiveness to injury.

Cell cycle progression
Aberrant cell cycle control is necessary for the develop-
ment and progression of  all human cancers, including 
HCC. Cell cycle regulation by oncoproteins and tumour 
suppressors is often defective resulting in increased cell 
proliferation. miRNAs targeting the main proliferation 
pathways have been identified in HCC. These miRNAs 
exert their effects through an interaction with essential 
regulators of  the cell cycle, including cyclin-dependent ki-
nase enzyme (CDK) complexes, Cip/Kip family proteins 
which act as cell cycle inhibitors, and the phosphoinosit-
ide 3-kinase (PI3K)/AKT/mammalian target of  rapamy-
cin (mTOR) pathway, among others.

Cyclins are positive cell cycle regulators, controlling 
cell cycle stage advancement via activation of  CDKs. Cy-
clin D2 and E2, mediators of  cell cycle arrest, are directly 
targeted by miR-26a; low miR-26a levels are frequently 
found in HCC[111]. Modulation of  cyclin G1 affects tran-
scriptional activity and p53 protein stability, resulting in 
reduced G2-M phase and lower invasive capacity of  HCC 
cells[112]. miR-122 inhibits hepatocyte growth by targeting 
cyclin G1 expression, however it is barely detectable in 
primary human HCC[113]. Levels of  miR-122 are deter-
mined by several key regulatory molecules, including the 
transcription factors HNF1A, HNF3A and HNF3B[114]. 
Low miR-122 correlates with high serum response fac-
tor, a validated miR-122 target and important promoter 
of  tumour development[115]. Expression of  miR-195 is 
also reduced in HCC. Normally it regulates expression of  
cyclin D1, CDK6 and EnF3 however in its absence there 
is a failure to induce cell cycle arrest at the G1-S check-
point[116]. CDK6 is also targeted by miR-124, a miRNA 
which blocks G1-S transition. miR-124 is silenced in 
HCC by CpG methylation, as is miR-203[117]. 

Another method by which oncogenic miRNAs con-
tribute to cell cycle progression is via inhibition of  cyclin-
dependent kinase inhibitors (CDKIs), most notably the 
members of  the Cip/Kip family. Both miR-106b and 
miR-93 are overexpressed in HCC and directly target 

Table 1  MicroRNAs with a role in hepatocellular carcinoma

miRNAs Function Outcomes

miR-22 Predicted to bind iron-
bound transferrin 
receptor (TfR1)

Targets TfR1, DMT1 expression 
thereby inhibiting cell cycle 
progression and growth

miR-200a
miR-320
miR-200b Targets ferritin 

heteropolymers 
(FtH1, FtL)

Decreased miR-200b linked with 
enhanced cancer aggressiveness via 
increased iron indices 

miR-122 Targets HFE, 
hemojuvelin, BMPr1a, 
BMP/SMAD 
signalling, hepcidin

Control of systemic iron homeostasis. 
Decreased miR-122 corresponds to 
decreased HFE and hemojuvelin 
expression. This correlates with 
increased hepcidin expression

HCC: Hepatocellular carcinoma; miR/miRNA: MicroRNA; DMT: Divalent 
metal transporter; HFE: Human haemochromatosis; BMP: Bone morpho-
genetic protein; FtH: Ferritin heavy; FtL: Ferritin light.
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p21 and promote cell cycle progression[118]. miR-221 and 
miR-222 both inhibit expression of  p27 mRNA, another 
member of  the Cip/Kip family[119] whilst miR-221 also 
regulates the CDKI p57[120]. Direct targeting of  these two 
CDKIs leads to greater numbers of  HCC cells in the 
S-phase thus promoting cell growth. 

PI3K has an important role in balancing cell sur-
vival and apoptosis. Its activation leads to increased cell 
growth via phosphorylation of  mTOR by AKT kinase, 
an effect that is inhibited by PTEN. mTOR is a target of  
miR-199a-3p; restoring normal levels of  miR-199a-3p 
can cause cell cycle arrest in HCC by blocking the G1-S 
transition, sensitising cells to doxorubicin[121]. miR-221 
and miR-222, in addition to their effect on p27 also target 
DNA damage-inducible transcription factor 4 (DDIT4), 
a modulator of  mTOR signalling[122]. PTEN is directly 
targeted by miR-21, -221 and -222; all three are often 
found to be overexpressed in HCC[123,124]. As such, sup-
pression of  PTEN resulting in increased PI3K/AKT 
pathway activation is an important mediator of  HCC cell 
survival.

Other important cell cycle regulators are known tar-
gets of  aberrantly-expressed miRNAs in HCC. Let-7g 
down regulates c-Myc, an oncogenic transcription factor. 
This suppresses HCC cell proliferation through reduced 
c-Myc-induced miR-17-92 transcription, a tumour-
promoting miR[125,126]. Others such as miR-1[127] and 
miR-375[128] suppress HCC cell proliferation whereas miR-
18a stimulates proliferation via targeting the ESR1 gene 
thereby preventing oestrogen’s protective effects against 
HCC in females[129].

These studies emphasise the important role that 
miRNAs have in the progression of  HCC by regulating 
oncogenes and tumour suppressors, and a number of  
miRNAs have now been identified in this context. 

miRNAs: INVASION, METASTASIS AND 
APOPTOSIS
Evasion of apoptosis
Evasion of  apoptosis is another key step in malignant 
transformation and tumour progression. This allows 
cells to escape normal surveillance mechanisms, enabling 
continued survival in the tumour microenvironment. The 
tumour suppressor gene p53 increases miR-34 expres-
sion leading to cell cycle arrest and apoptosis, whereas 
low miR-34 levels, as are frequently seen in HCC, are be-
lieved to contribute to apoptosis evasion[130-133]. miRNAs 
directly target the Bcl-2 family of  genes, their proteins 
being either pro-apoptotic (Bim, Bmf, Bax, Bak, Bid) or 
anti-apoptotic (Bcl-2, Bcl-W, Bcl-XL, Mcl-1)[134]. miR-122 
and let-7b regulate Bcl-w and Bcl-XL, respectively, whilst 
Mcl-1 is regulated by miR-101 and miR-29[104,135-137]. Re-
duced levels of  all of  these miRNAs are often seen in 
HCC thus increasing resistance to apoptosis. Bcl-2 is 
also targeted by miR-29[104]; increasing miR-29 levels can 
sensitise HCC cells to pro-apoptotic signals, a finding of  
great therapeutic application potential. With respect to 

miRNA regulation of  pro-apoptotic Bcl-2 family mem-
bers, miR-221 and miR-25 are commonly over expressed 
in HCC and target Bmf  and Bim, respectively[138,139]. 
miRNAs can also target other apoptosis-related genes. 
miR-602 is increased in HBV-related HCC, it targets 
RASSF1A to exert an anti-apoptotic effect[140]. 

Invasion and metastasis
Invasion and metastasis are two hallmarks of  cancers and 
the leading causes of  cancer-related mortality. Survival 
rates after curative resection of  HCC are still poor due 
to high recurrence secondary to intrahepatic metastasis. 
Given this, a better understanding of  the mechanisms 
underlying invasion and metastasis is critical to improve-
ments in patient survival. Several metastasis-related genes 
important in HCC have been identified, and with them, 
several miRNAs promoting and preventing metastasis in 
HCC.

miRNAs promoting metastasis: As mentioned, lev-
els of  miR-21, -221 and -222 are increased in HCC[124]. 
These miRNAs directly target PTEN, contributing to 
cell growth but also mediating cell invasion. miR-221 and 
miR-222 also modulate the expression of  TIMP3 and 
phosphatase 2A subunit B (PPP2R2A), thereby prevent-
ing inactivation of  metalloproteases, important enzymes 
involved in cell migration and invasion, and activating 
the PI3K pathway[124,141]. miR-181b is induced by TGF-β 
and also targets TIMP3 on a functional level, increasing 
MMP2 and MMP9 activity[142]. The TGF-β-mediated 
metastasis pathway is well characterised, and this TGF-β/
miR-181/TIMP3 axis may be an important component. 
One study has also shown a novel miRNA, miR-143 is 
induced by NFκB, promoting metastasis of  HBV-related 
HCC by inhibiting expression of  fibronectin[143]. High 
miR-17-5p levels are often found in HCC. This miRNA 
activates p38 mitogen-activated protein kinase and leads 
to greater heat shock protein 27 phosphorylation thereby 
promoting HCC invasion[144].

The chromosomal region 8q24 is implicated in me-
tastasis in HCC. Two frequently amplified miRNAs con-
tained within, miRNA-30d and miRNA-151, are involved 
in HCC invasion and metastasis[145,146]. An increased miR-
30d expression is frequently seen in HCC enhancing me-
tastasis through repression of  G-αi2. This can contribute 
to metastasis both within the liver and to the lung. RhoG-
DIA, thought to be a suppressor of  HCC metastasis is 
targeted by miR-151; with subsequent activation of  Rac1, 
Cdc42 and Rho GTPases enhancing cell migration and 
invasion[134]. Moreover, this miRNA is often co-expressed 
with host gene focal adhesion kinase (FAK); it can func-
tion synergistically with FAK to increase HCC cell motil-
ity and spread[134].

miRNAs preventing metastasis: ADAM10 (a distinteg-
rin and metalloprotease family 10), serum response factor 
(SRF), and insulin-like growth factor 1 receptor (Igf1R) 
promote tumorigenesis. These are validated targets of  
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miR-122 and their expression is up regulated in primary 
human HCC due to decreased miR-122 levels[115,147]. Met-
astatic HCCs also show significantly lower let-7g levels, a 
miRNA that targets type Ⅰ collagen a2 and when present 
at normal levels should prevent HCC spread[148].

The hepatocyte growth factor (HGF)/c-Met signal-
ling cascade is considered a key pathway in HCC metas-
tasis[134]. HGF interacts with the c-Met receptor tyrosine 
kinase to increase cell motility and invasion, while also 
conferring apoptotic protection. c-Met is associated with 
aggressive HCC and poor outcomes, and is regulated 
by miR-1, -34a, -23b and -199-3p levels of  which are 
low in HCC[134]. Silencing of  miR-1 inhibits HCC cell 
growth, and increases cell invasion, through c-Met down 
regulation[127]. Ectopic expression of  miR-34a prevents 
HCC invasion and migration by reducing c-Met-induced 
phosphorylation of  extracellular signal-related kinases 
1 and 2 in HepG2 cells[149]. Likewise, over expression 
of  miR-23b reduces levels of  c-Met and urokinase-type 
plasminogen activator, a downstream target of  HGF/
c-Met signalling; this inhibits HCC proliferation and 
migration[150]. Regulation of  cell cycle progression by 
restoring miR-199-3p levels to normal leads to induction 
of  G1-phase cell cycle arrest (miR-199-3p targets c-Met 
and mTOR) thereby decreasing HCC cells’ invasive abil-
ity[121]. Finally, miR-101 is also downregulated in HCC 

and reduces HGF-induced cell invasion and migration 
via inhibition of  FOS oncogene expression[151]. Taken to-
gether these studies highlight how miRNAs control the 
central processes of  invasion, metastasis and apoptosis 
that contribute to malignant transformation and tumour 
progression.

miRNAs AS DIAGNOSTICS FOR HCC 
miRNAs are predominantly down regulated in tumour 
tissues[152], a pattern also seen in HCC. Several issues af-
fect the identification and quantification of  aberrantly 
expressed miRNAs in clinical samples confounding their 
potential as biomarkers. Despite these issues, several 
consistently dysregulated miRNAs have been identified 
in HCC (Table 2). Numerous studies have shown that 
circulating miRNA levels are altered in HCC progression. 
For example, serum miR-221 concentrations are 4.8-fold 
higher in HCC patients; high miR-221 levels correlate 
positively with cirrhosis, tumour size and tumour stage, 
and negatively correlate with overall survival[153]. Cur-
rently, there are few clinically useful serum HCC markers; 
α-fetoprotein (AFP), Lens culinaris agglutinin-reactive 
AFP (AFP-L3) and des-γ-carboxyprothrombin (DCP) 
are of  limited use[154]. The American Association for the 
Study of  Liver Diseases discarded AFP as a marker for 
HCC surveillance and diagnosis in its July 2010 Practice 
Guidelines, highlighting the need for new biomarkers. 
miRNAs may have this potential. However, their use 
is complicated by the need for appropriate controls, as 
HCC usually develops from an underlying liver condition. 
For example, one study compared the miRNA expression 
profiles of  three patient groups: one with HCC, one with 
chronic liver disease and one consisting of  normal con-
trols[155]. This study also showed that serum miR-16 and 
miR-199a concentrations were reduced and significantly 
associated with HCC[155]; of  potential clinical relevance, 
miR-16 was more sensitive for detection of  HCC than 
the three currently used biomarkers. Overall, these find-
ings show the feasibility of  miRNAs as serum markers 
for diagnosis of  HCC. Should they continue to outper-
form current HCC markers in further studies, circulat-
ing miRNAs could be used in first-line testing of  HCC 
patients. However, the study of  circulating miRNAs 
as HCC biomarkers is a relatively recent concept, with 
further studies and validation of  results in larger patient 
cohorts needed before miRNAs are used in the clinical 
setting. In particular, the discovery of  a miRNA which 
sensitively and reliably diagnose early stage HCC would 
greatly enhance their potential for clinical use. 

miRNA expression profiles can also be used to as-
sess prognosis. For example, low miR-26 expression is 
associated with high interleukin-6 expression and shorter 
survival[156]; better response to interferon treatment also 
occurs in patients with low miR-26 levels. Furthermore, 
a 20-miRNA signature which accurately predicts survival 
and recurrence of  HCC has been developed[157]. These 
studies suggest that miRNA profiling may play an impor-
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Table 2  MicroRNAs as potential diagnostics and therapeutics 
for hepatocellular carcinoma

miRNAs Detail Relevance 

miR-221 4.8 fold higher in HCC 
patients, positively correlates 
with cirrhosis, tumour size and 
stage. Negatively correlates 
with overall survival

Potential circulating 
biomarker

miR-199a Reduced and significantly 
associated with HCC

Potential circulating 
biomarker

miR-16 Reduced and significantly 
associated with HCC

Potential circulating 
biomarker

miR-26 Low levels associated with 
high IL-6 and shorter survival

Potential biomarker to 
assess prognosis of HCC

miR-375 Lower than normal levels 
associated with β-catenin 
mutation

Potential for HCC 
classification system, 
determine treatment 
allocation

miR-107 Reduced levels associated with 
HFN 1α

Potential for HCC 
classification system, use 
to determine treatment 
allocation

miR-122 Expression inhibited using 
Miravirsen LNA-modified 
oligonucleotides

Direct effect in chimpanzee 
model in reducing HCV 
replication and viraemia

miR-196 Selective target for intervention Implications for treatment
miR-26a Deliverable to HCC sites 

using adeno-associated virus 
serotype 8

Decreased proliferation and 
induced tumour-specific 
apoptosis

miR-124 Induces tumour-specific 
apoptosis

Prevents and suppresses 
HCV development in 
murine model

HCC: Hepatocellular carcinoma; HCV: Hepatitis C virus; miR/miRNA: 
MicroRNA; IL: Interleukin.
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tant role in HCC management in the clinic, both for clas-
sification of  HCC into subtypes determining treatment 
and in assessment of  prognosis. Patterns of  dysregulated 
miRNAs distinguish tumours based on molecular char-
acteristics. For example, β-catenin mutation is associated 
with reduced miR-375 levels, and reduced miR-107 levels 
with HNF1α[158]. Such findings led to the proposal of  a 
miRNA-based HCC classification system[159]; this could 
be used to determine treatment allocation, based on mo-
lecular pathology. 

miRNAs AS THERAPEUTICS FOR HCC
Efficacy of  miRNA-based gene therapy in HCC treatment 
has been demonstrated (Table 2). In one study, miR-122 
expression was inhibited in chimpanzees using SPC3649 
LNA-modified oligonucleotides. As miR-122 up regulates 
HCV replication in infected hepatocytes, its inhibition 
reduced HCV RNA production and decreased virae-
mia[160]. A phase Ⅰ trial for SPC3649 (Miravirsen) resulted, 
becoming the first miRNA-targeted drug to enter human 
clinical trials. Miravirsen was well-tolerated and is cur-
rently undergoing phase Ⅱ trials in HCV null responders 
to pegylated interferon-α and ribavirin. However, issues 
regarding possible viral escape are arising, with one study 
showing that mutations in the miR-122 binding site in 
HCV 5’-UTR decreases Miravirsen efficacy[161]. Similarly, 
therapeutic miR-196 targeting has been investigated, 
with the results of  these and similar studies likely to have 
significant implications for future treatment of  HCV in-
fection and HCC[162]. Recently it was demonstrated that 
HNF4α, a key regulator of  hepatocellular carcinogenesis, 
becomes stably inhibited during hepatocellular trans-
formation. Perturbation of  this event through miR-124 
systemic administration can prevent and suppress HCC 
development in a murine liver cancer model by inducing 
tumour-specific apoptosis without toxic side effects[163]. 
Thus miR-124 has therapeutic potential for treating liver 
cancer.

Several virally-delivered ‘‘classical’’ gene therapy prod-
ucts developed for HCC are currently progressing through 
clinical trial phases; however, virus-delivered miRNA-
based gene therapies have yet to be tested in clinical 
trials[2]. Accurate assessment of  this method’s potential 
risks must be performed before further progress can be 
achieved. Nevertheless, early results from studies investi-
gating the therapeutic delivery of  miRNAs are showing 
promise. One such study in mice used self-complemen-
tary AAV serotype 8 (scAAV8) to deliver miR-26a to the 
HCC site; this delivery restored miR-26a expression in 
HCC cells, specifically decreasing cancer cell proliferation, 
inducing tumour-specific apoptosis, and protecting from 
HCC progression without toxicity[112]. 80% of  treated 
mice had no or small tumours at 3 wk post-transduction, 
while most liver tissue in the untreated control group 
was replaced with HCC tumours. This study is of  critical 
importance to the future of  HCC treatment in that it was 
the first to demonstrate the therapeutic potential of  res-

toration of  expression of  a dysregulated miRNA in the 
liver. Despite this, the relevance of  therapeutic miRNA 
delivery to human HCC patients remains to be deter-
mined, emphasising the considerable amount of  research 
needed in this field before clinical applications can be 
made. Nevertheless, the early successes of  RNA-based 
therapies in clinical trials demonstrate that miRNAs and 
their inhibitors show great therapeutic promise for HCC. 
Future studies will no doubt shed light on how best miR-
NAs have the potential to alter survival rates of  HCC 
patients.

Findings have also pointed towards long non-coding 
RNAs (lncRNA) as important tumorigenic candidates 
actively involved in gene regulation, with lncRNAs sug-
gested as a link in carcinogenesis. Morover, lncRNAs can 
act as negative regulators of  miRNAs and therefore may 
become important factors to consider when developing 
miRNA therapeutics. Several reports demonstrate an as-
sociation of  lncRNA with the development, progression, 
metastasis and poor prognosis in HCC patients[164-168].

CONCLUSION
In summary, studies have demonstrated unequivocally 
that miRNAs are important modulators of  mRNA and 
protein expression. They are known to be involved in a 
variety of  biological and pathological processes, such as 
the regulation of  iron homeostasis and in HCC develop-
ment and progression. As predicted by bioinformatic 
analysis and confirmed by numerous studies, some miR-
NAs target multiple genes involved in HCC progression. 
Similarly, several miRNAs often regulate a single aber-
rantly expressed gene. From these findings, we see that 
HCC progression is determined by a complex interaction 
of  dysregulated miRNAs and their target mRNAs. This 
must be kept in mind when investigating the therapeutic 
potential of  miRNAs, as changing the expression of  a 
single miRNA may not be adequate to alter expression of  
the target gene.

Investigations into the potential clinical uses of  miR-
NAs are ongoing, most notably in the early diagnosis 
and treatment of  HCC. In addition, using miRNAs to 
subdivide HCC cases based on molecular pathology has 
been proposed; this system could also determine treat-
ment allocation and aid in prognostic assessment. Over-
all, it seems likely that miRNAs will play an increasingly 
important role in the diagnosis and treatment of  liver 
diseases associated with HCC over the coming years, 
leading to improved patient survival rates and better pa-
tient outcomes.
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