
Mechanotransduction in bone: Intervening in health and 
disease

Anastasia Spyropoulou, Efthimia K Basdra

Anastasia Spyropoulou, Efthimia K Basdra, Department of 
Biological Chemistry, Cellular and Molecular Biomechanics 
Unit, University of Athens Medical School, GR-11527 Athens, 
Greece
Author contributions: Spyropoulou A and Basdra EK contrib-
uted to this paper equally.
Correspondence to: Efthimia K Basdra, PhD, Associate Pro-
fessor, Department of Biological Chemistry, Cellular and Mo-
lecular Biomechanics Unit, University of Athens Medical School, 
75, M. Asias Street, GR-11527 Athens, 
Greece. tegk.84@gmail.com
Telephone: +30-210-7462547  Fax:+30-210-7791207
Received: June 28, 2013           Revised: September 27, 2013
Accepted: November 1, 2013
Published online: November 20, 2013

Abstract
Mechanotransduction has been proven to be one of the 
most significant variables in bone remodeling and its al-
terations have been shown to result in a variety of bone 
diseases. Osteoporosis, Paget’s disease, orthopedic 
disorders, osteopetrosis as well as hyperparathyroid-
ism and hyperthyroidism all comprise conditions which 
have been linked with deregulated bone remodeling. 
Although the significance of mechanotransduction for 
bone health and disease is unquestionable, the mecha-
nisms behind this important process have not been fully 
understood. This review will discuss the molecules that 
have been found to be implicated in mechanotransduc-
tion, as well as the mechanisms underlying bone health 
and disease, emphasizing on what is already known as 
well as new molecules potentially taking part in convey-
ing mechanical signals from the cell surface towards the 
nucleus under physiological or pathologic conditions. It 
will also focus on the model systems currently used in 
mechanotransduction studies, like osteoblast-like cells 
as well as three-dimensional constructs and their ap-
plications among others. It will also examine the role 
of mechanostimulatory techniques in preventing and 
treating bone degenerative diseases and consider their 

applications in osteoporosis, craniofacial development, 
skeletal deregulations, fracture treatment, neurologic 
injuries following stroke or spinal cord injury, dentistry, 
hearing problems and bone implant integration in the 
near future.

© 2013 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: Mechanotransduction has been shown to be of 
major significance in modulating bone remodeling un-
der physiological and pathological conditions. Therefore 
the study of the underlying mechanisms is of major im-
portance and necessary step towards the better under-
standing of bone biology as well as the development of 
therapeutic strategies against conditions characterised 
by deregulated mechanotransduction. This review will 
consider the molecular mechanisms behind mechano-
transduction as well as the scientific models currently 
used for its better understanding. It will also focus on 
mechanostimulatory techniques that could be used 
against a variety of deregulated mechanotransduction-
related diseases. 
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INTRODUCTION
Bone tissue biology
The importance of  bones for a living organism is unde-
niable and goes far from just providing structural support 
for the body, protecting vital organs and exchanging min-
erals. Bones also comprise a multi-functional system that 
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interacts with other systems and abnormalities in bone 
tissues may result in mild or severe diseases.

Bone tissue is composed of  the bone matrix and five 
different cell types. The bone matrix contains an inor-
ganic (carbonated hydroxyapatite) and an organic phase 
(mainly type Ⅰ collagen and several growth factors) whilst 
the cellular content of  the bone tissue comprises of  os-
teoprogenitors, osteoblasts, osteocytes, osteoclasts and 
lining cells[1]. Osteoprogenitor cells comprise pluripotent 
cells of  mesenchymal origin, localised on bone surfaces[1] 
which have the ability, under the appropriate conditions, 
to commit and differentiate towards osteoblasts[1]. On the 
same bone osteoblasts, the bone forming cells, are cited. 
They are responsible for the protein synthesis of  the 
bone matrix as well as its calcification[1]. The cavities of  
the calcified bone matrix bear osteocytes which comprise 
entrapped inactive osteoblasts forming a net of  com-
municating cells inside the calcified matrix[1]. Osteoclasts 
are large multinucleate cells of  blood monocyte origin, 
settled inside bone resorption lacunae and they are re-
sponsible for bone resorption in bone remodeling areas[1]. 
Lining cells comprise inactive osteoblasts with the ability 
to protect bone surfaces from bone resorption[1].

Runt-related transcription factor 2 transcription factor in 
bone biology
Runt-related transcription factor 2 (Runx2) or core-
binding factor subunit alpha-1 (Cbfa1), the major osteo-
specific transcription factor[2] is responsible for the 
regulation of  osteoblast differentiation as well as for hy-
pertrophic cartilage synthesis[2,3]. Its expression is neces-
sary and sufficient for the commitment of  mesenchymal 
cells towards the osteoblastic cell line[4]. 

Abnormalities in Runx2 expression are indicative of  
its importance in bone biology. When Runx2 is expressed 
ectopically it has been shown to lead to increased expres-
sion of  osteocalcin, alkaline phosphatase, collagenase-3, 
bone sialoprotein and collagen type Iα1[5]. Osteoblast 
maturation in mice bearing a mutant runx2 gene is inhib-
ited and thus so are the procedures of  intramembranous 
and endochondral ossification[6,7]. Furthermore, it has 
been shown that differentiation of  stem cells in adipo-
cytes and chondrocytes in runx2 knockout mice has not 
been impaired. In addition, heterozygous mice (runx2-/+) 
developed characteristic skeletal abnormalities similar to 
human heritable skeletal disorder cleidocranial dysplasia 
(CCD) abnormalities[8]. On the other hand, tissue-specific 
Runx2 over-expression in transgenic mice results in de-
creased bone density, bone fractures and osteopenia[7,9,10].

Bone remodeling
Bone remodeling, the continuous bone reconstruction is 
of  major importance for conserving bone structural integ-
rity as well as for the bone to perform its metabolic role by 
modulating calcium and phosphorus levels in the body[1]. 

Shortly, bone remodeling activation depends mostly 
on local factors and their effects on mesenchymal pro-
genitor cells. Bone reconstruction initiates with osteo-

clasts performing bone resorption and forming cavities 
inside the bone. At the end of  this phase, osteoclasts 
produce the appropriate signals for the initiation of  bone 
synthesis[1]. Osteoblasts quickly cover the cavity surfaces 
and synthesize new bone. Those two bone remodeling 
phases, bone formation and resorption are closely corre-
lated and interconnected. This means that under normal 
conditions, the newly formed and the reabsorbed bone 
quantities are equal[11]. Impaired bone remodeling may 
lead in pathophysiological bone conditions like osteopo-
rosis, Paget’s disease, orthopedic disorders and osteope-
trosis among others[1].

Research has shown that the GH-IGF-1 axis may 
also be of  significance in the modulation of  bone mass 
quantity and quality. More specifically, growth hormone 
(GH) is suggested to potentially play a role on bone re-
modeling[12]. However, the exact mechanisms through 
which GH acts on osteoblast biology have not been elu-
cidated[12].

Role of RANK/RANKL/OPG pathway in bone remodeling
The receptor activator for nuclear factor κb (RANK)/ 
receptor activator for nuclear factor κb ligand (RANKL)/ 
osteoprotegerin (OPG) system comprises the main 
modulator of  bone remodeling[13]. More specifically, pre-
osteoclasts express RANK in their surface. Its ligand, 
RANKL, is produced in osteoblasts, stromal cells as well 
as activated T cells[14]. In osteoblasts and under steady-
state conditions, vitamin D, parathyroid hormone and 
prostaglandins lead in induced RANKL expression. The 
binding of  RANK and RANKL leads in osteoclast dif-
ferentiation[15,16]. More specifically, during normal bone 
remodeling, RANKL is produced by cells of  the bone 
marrow- supporting tissue and osteoblasts. RANKL 
binds to RANK on pre- osteoclasts resulting in their 
maturation and activation. Nuclear-factor κB (NF-κB), 
which is of  importance in inflammation response, also 
plays a central role in osteoclast activation. NF-κB per-
forms both aforementioned functions through regulation 
from interleukin-6 (IL-6). Pro-inflammatory cytokines 
play an important role in bone remodeling as indicated 
by the presence of  interleukin-1 (IL-1), IL-6 and tumor 
necrosis factor-α (TNF-α) receptors on pre-and mature 
osteoclasts[17]. OPG is produced by osteoblasts and has 
the ability to bind to RANKL and block its functions re-
sulting in decreased bone resorption[17,18]. 

MECHANOTRANSDUCTION
Bone remodeling and mechanotransduction
Bone remodeling is a strictly regulated process, largely 
modulated by the application of  different mechanical 
stimuli or by metabolic stress on the bone[3].

More specifically, local mechanical stress leads in bone 
resorption as an initial response[19]. The nature of  the 
mechanical stimulus is of  importance in the regulation 
of  bone remodeling since different types of  mechanical 
stimuli result in different responses. For example, con-
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stant repetitive application of  mechanical force inducing 
high stress levels or unusual load distribution result s in 
elevated bone synthesis and high bone mass. Further-
more, short pauses between long periods of  mechanical 
loading have been shown to enhance bone strength and 
structure[20]. However, static load, slow rates of  pressure 
rotation as well as “predictable” pressure application, lead 
in decreased bone synthesis, enhanced bone resorption 
and thus low bone mass[21,22]. 

Bone remodeling and mechanostimulation have been 
shown to roughly follow these rules: Bone synthesis is 
promoted by dynamic and not static loading application. 
Short-term load applications are sufficient for adaptive 
response initiation and lead in increased bone formation 
whereas long-term load applications result in decreased 
bone synthesis and enhanced resorption[23,24]. In addition, 
the repentance of  the same mechanical stimulus results in 
decreased response due to signaling prediction[25]. The ap-
plication of  these rules is evident in the effects of  space 
microgravity, osteoporosis or paralysis on bone tissues, 
where bone loss is observed[20,26], as well as in the effects 
of  tennis at a professional level on bone tissues, where 
bone growth is observed[27].

Mechanisms in mechanotransduction
Signals of  mechanical nature induce in osteoblasts and os-
teocytes the production and secretion of  different types of  
molecules, which modulate osteoblast differentiation and 
proliferation[3]. Such mechanical stimuli can include flow 
of  fluids, strain of  the substrate, membrane deformation 
or stimulation of  integrins, vibration, altered gravity forces 
and compressive loading[3]. Bone remodeling functions, 
after the application of  different mechanical stimuli, are 
locally regulated by cytokines and growth factors among 
other molecules. More specifically, IL-1β, TNF-α, prosta-
glandin E2 (PGE2)[26,28], IL-6, IL-8, RANKL, OPG[27,29-31], 
insulin-like growth factor (IGF), transforming growth fac-
tor β-1 (TGFβ-1) and fibroblast growth factor (FGF)[32,33] 
have been demonstrated to be induced after application 
of  mechanical stimuli. Additionally, it has been shown that 
mechanical stimulation in osteoblasts results in increased 
mRNA levels of  osteopontin, osteocalcin, platelet derived 
growth factor and collagen types Ⅰ and Ⅲ[34,35].

Although some of  the molecules taking part in mech-
anotransduction are known, the mechanisms behind it 
have not been fully elucidated. 

The stage of  osteoblast differentiation is shown to be 
of  importance in osteoblast proliferation, apoptosis and 
translation of  mechanical cues[36]. Furthermore, it has 
been shown that undifferentiated mesenchymal stem cells 
seem to respond more successfully to load application 
than mesenchymal stem cells that have already started to 
differentiate[37].

A diversity of  molecules have been considered to 
play the role of  mechano-sensors in differentiated osteo-
blasts: mechanical stimulation has been shown to lead in 
enhanced sensitivity and elevated open cation channels 
number[38,39], increased communication through gap junc-

tions between osteoblasts as well as increased integrin 
production in osteoblasts[39]. Actin cytoskeleton abnor-
malities have been shown to prevent mechanical signaling 
and therefore the integrin network has been considered 
as the main candidate for transduction of  mechanical 
signals[39]. On the other hand, a considerable number of  
research groups argue that cytoskeletal components in-
volved in mechanotransduction differ depending on dif-
ferent types of  stress or the response under study[39]. 

Integrins comprise transmembrane receptors con-
necting the extracellular matrix to the cytoskeleton[40]. 
Under mechanical signal application, integrins form com-
plexes with molecules of  the cytoskeleton with the help 
of  the Rho family of  Ras-related GTPases[40]. Rho family 
members also induce multiple kinase cascades and par-
ticularly mitogen-activated protein kinase (MAPK) cas-
cades[40]. Rho and other Ras-related GTPases have been 
shown to play a role in osteoblast response after applica-
tion of  mechanical pressure[41]. More specifically, it has 
been shown that the continuous application of  mechani-
cal forces leads in deregulation of  Rab and Rho GTPases 
activity in osteoblast-like cells[41].

Recently, another molecule, Polycystin-1 (PC1), was 
suggested to provide a link between environmental me-
chanical signals and their transformation towards bio-
chemical signals. It has been shown that PC1 not only 
functions as a mechanosensor but that also conveys me-
chanical signals through the calcineurin/nuclear factor of  
activated T-cells (NFAT) signaling pathway and thereby 
regulates osteoblast- specific gene transcription as well as 
osteoblast differentiation[42].

The primary cilium, a cellular sensory system, has also 
been demonstrated to be of  importance in the transfer 
of  mechanical signals as well as in mesenchymal stem 
cell differentiation. Additionally it was shown that the 
cilium modulates fluid flow mechanotransduction in hu-
man mesenchymal stem cells by maintaining fluid flow-
induced osteogenic gene expression elevation and pre-
venting fluid flow-induced increased proliferation[43].

Following the reception of  mechanical cues, the signal 
conveying the mechanical conditions of  the extracellular 
environment is carried towards the nucleus through MAPK 
kinases and more importantly through extracellular signal-
regulated kinases (ERKs) and c-Jun N-terminal kinases 
(JNKs)[44,45]. ERKs, which in human osteoblasts seem to be 
induced by growth factors, estrogen and fluoride among 
others[45], have been shown to play a significant role in 
osteoblast maturation and in osteoblast biology in gener-
al[45-49]. Furthermore, duration and strength of  JNK/ERK 
signaling is indicated to be significant in gene expression[50].

Following ERK/JNK activation, the signal is trans-
mitted to transcription factors that alter gene expression, 
like Jun and Fos family members[51]. In their turn, c-Jun 
and Fos family members interact to form activator pro-
tein-1 (AP-1) transcription factor, which has been shown 
to be of  major importance in osteoblast differentiation[52] 
since it regulates the expression of  collagen type Ⅰ, os-
teocalcin, osteopontin and osteonectin[52]. 
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and BMP-2 expression promotes Runx2, Osx and Dlx5 
expression[71]. 

Mechanical cues also promote the expression of  
genes that encode for c-Fos, early growth response fac-
tor 1 (Egr-1) and basic fibroblast growth factor (bFGF) 
which have been shown to promote cell growth in 
MC3T3-E1 osteoblasts[22].

The nature the mechanical signal determines whether 
bone or cartilage formation will occur[72]. More specifi-
cally, application of  pressure of  high frequency and low 
intensity in bone cells in vitro, results in elevated extracel-
lular matrix (ECM) disposition and thus increased bone 
formation[73]. On the contrary, mechanical loading of  
high intensity on osteoblasts leads in BMP extracellular 
antagonists expression and therefore results in inhibition 
of  osteoblast development[74]. In addition, the application 
of  continuous mechanical forces on osteoblastic cells in 
vitro promotes inflammatory cytokines and their receptors 
expression[75]. More specifically, IL-1b production is found 
elevated under such mechanical stimuli, and is accompa-
nied by RANK-RANKL signaling pathway activation and 
thus bone resorption[76]. Stimuli from short periods of  
fluid flow or cyclic substrate tension at physiological inten-
sity levels promote osteoblast proliferation and survival[77]. 
Mechanical signals of  physiological intensity levels are 
associated with survival of  human osteoblasts and several 
studies suggest that pro-survival proteins promote the 
production of  survival factors like IGF-1 or IGF-2 and 
activate estrogen receptor[78]. It has also been shown that 
gravitational force maintains osteoblast survival whereas 
when gravitational force is not taking place, osteoblasts 
are led to apoptosis through reduced DNA binding of  
an important for survival transcriptional factor[18]. In vivo, 
the absence of  mechanical signals promotes osteoblast 
apoptosis and thus osteoporosis[72]. The application of  
excessive mechanical force in vitro leads in cell detachment 
from their adhering surface[79] as well as in a form of  pro-
grammed cell death called anoikis[80]. 

Mechanical stimulation in osteocytes has also been 
under investigation since it may lead in better mechano-
transduction understanding and may represent a potent 
therapeutic target against bone degenerative diseases. 
Recent studies have underlined the role of  osteocytes in 
bone remodeling since their absence in mice led in fragile 
bones, microfractures, deregulated osteoblast functions, 
bone loss in the trabeculae as well as adipose tissue prolif-
eration in the marrow indicating an aging skeleton. In ad-
dition, these mice could not experience bone loss due to 
unloading, an event that indicates osteocytes’ importance 
in the procedure of  mechanotransduction[81] (Figure 1).

Runx2 in mechanotransduction
Runx2 which is known to play a significant role in osteo-
blast differentiation has been shown to be the recipient 
of  mechanical signals in human osteoblast-like cells[82]. 
As it has been demonstrated, continuous mechanical 
stimuli of  low intensity in human osteoblast-like cells of  
the periodontal ligament (PDL) result in elevated Runx2 

Application of  continuous mechanical pressure in 
osteoblast-like cells as well as osteoblasts resulted in in-
creased production of  AP-1 components through activa-
tion of  MAPK cascades[41,53,54]. However, data on c-Jun 
expression after mechanical stimulation are inconclusive 
with some research groups arguing that human osteoblast-
like cells after mechanical loading over-express c-Jun[53] 
whereas others have opposing results[55,56]. However, the 
above mentioned differences could be attributed to ap-
plication of  different stress type or usage of  different cell 
system. Finally, different types of  mechanical pressure 
applied on osteoblasts seem to result in different compo-
sition AP-1 and therefore regulate gene transcription ac-
cordingly depending on the extracellular signal applied[57]. 

Application of  short-term mechanical pressure acti-
vates both JNK2 and ERK2, with following activation of  
downstream molecules, like c-Jun, which alter the expres-
sion of  osteoblastic genes[54]. More specifically, it has been 
demonstrated that short-term continuous mechanical 
stimuli of  physiological intensity in osteoblast-like cells 
activates JNK and ERK members resulting in enhanced 
AP-1 DNA binding activity on the human L/B/K ALP 
gene and thus osteoblast differentiation[54]. This is further 
evidenced by the observation that osteoblast-like cells 
receiving mechanical stimuli synthesized increased quan-
tities of  type 1 collagen and osteocalcin, markers of  early 
osteoblast differentiation[58].

PGE2 production has been shown to be induced in 
osteoblast-like cells after mechanical stimulation[59] and 
in osteoblasts under the effect of  physiological stress, 
growth factors, hormones, trauma or inflammatory cy-
tokines and its production leads in cAMP-dependent 
IGF-1 induction in osteoblasts[3]. IGF-1 and IGF-2, in 
turn, induce osterix (Osx) transcription factor expres-
sion in osteoblasts[60], induce osteoblast function in vitro 
as well as lead in increased bone mass in vivo[61]. PGE2 
is also shown to lead in increased Runx2 expression in 
vivo[62]. Downstream of  PGE2, TGF-β expression, which 
leads in proliferation of  osteoblasts and extracellular 
matrix synthesis[63], has been found increased in human 
osteoblast-like cells under mechanical stimulation. Fur-
thermore, TGF-β receptor 1 comprises a Runx2 target in 
osteoblasts[64]. Those two observations combined explain 
why Runx2 knockout mice demonstrate characteristic 
abnormal extracellular matrix formation due to decreased 
number of  mature osteoblasts[65,66].

Nitric oxide (NO) production in osteoblasts is an-
other response to mechanical stimulation. NO functions 
through the MEK/ERK cascade by binding to a regulato-
ry site on Ras leading in cell proliferation and extracellular 
matrix production[67]. Following, cyclooxygenase 1 (Cox1), 
Cox2, ERK1 and ERK2 are activated and result in bone 
matrix formation[68]. 

Additionally, signals of  mechanical nature have been 
shown to promote vascular endothelial growth factor-, 
bone morphogenetic protein 2 (BMP-2)- and BMP-4- de-
pendent and PGE2- independent increased expression of  
IGF-1[69]. BMPs result in bone synthesis in osteoblasts[70] 
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expression and DNA- binding capacity. The mechanical 
signal, according to the researchers, initiates at the plasma 
membrane and more specifically from integrins and trav-
els towards the nucleus through MAPK cascades. In the 
nucleus, the signal targets Runx2 and induces its expres-
sion[82]. More specifically, Runx2 demonstrates increased 
expression at both mRNA and protein levels as well as el-
evated DNA binding activity. During this process, ERK1 
and ERK2 are activated in a parallel manner with the 
Runx2 DNA- binding capacity elevation. After their acti-
vation, ERKs interact, phosphorylate and activate Runx2 
in vivo causing osteoblast maturation[7,82]. 

Runx2 expression depends on an autoregulatory mecha-
nism[83]. More specifically, activated by mechanical stimuli 
ERKs phosphorylate and activate already existing Runx2 
molecules. Those activated Runx2 molecules bind to Runx2 
promoter inducing Runx2 expression[82]. In addition, a 
canonical AP-1 binding site has been found in Runx2 pro-
moter which potentially plays a role in the regulation of  
Runx2 expression. AP-1 and Runx2 proteins have also been 
shown to interact and regulate collagenase-3 expression[84].

NF-κB transcription factor in mechanotransduction
NF-κB transcription factor which is implicated in in-
flammatory response signaling[31] also plays a crucial 

role in osteoclast formation and thus bone resorp-
tion[85]. NF-κB, which is activated either through the 
RANK-RANKL system or potentially through integ-
rins that transmit signals of  mechanical nature to src-
kinases[86], besides its role in osteoclast maturation, 
may be implicated in osteoblast differentiation under 
mechanical stimulation. This is indicated by the fact 
that NF-κB is found to be activated and then trans-
located in the nucleus of  osteoblasts that receive me-
chanical stimuli[26,87] where it has been hypothesized to 
promote the transcription of  osteoblast-specific genes. 

MODEL SYSTEMS IN 
MECHANOTRANSDUCTION STUDY
The in vitro study of  mechanostimulation in osteoblasts, 
has been made possible with the usage of  osteoblast-
like cells that are acquired either from healthy tissue (hu-
man PDL or mouse MC3T3-E1 calvaria cells) or from 
osteosarcomas (MG-63, SaOs cells). Different types of  
mechanical stimulation are applied on the aforemen-
tioned cell models, each causing a different response in 
osteoblast-like cells[3]. Such types of  mechanical stimula-
tion include fluid flow, four-point bending and substrate 

Causes of deregulated mechanotransduction:
Alterations in mechanical environment

Variations in extracellular matrix structure
Deregulation of mechanotransduction-related pathways

Diseases caused by deregulated mechanotransduction: 
Ankylosing spondylitis

Carpal tunnel syndrome
Chronic back pain disc degeneration

Osteoporosis
Muscle atrophy and bone mass loss during and after space flight

Decreased bone density following stroke or spinal cord injury

Abnormal
mechanotransduction

Therapeutic mechanical
stimulation:

Application of different types of 
mechanical stimuli

Strengthening exercise
Low-level vibrations

Low-intensity pulsed ultrasound 
Extremely low-frequency pulsed

electromagnetic field

Applications of mechanical
stimulation:
Osteoporosis

Dental medicine
Orthopedics

Craniofacial development
Treatment of fractures

Degenerative disc disease
Bone implant integration

Hearing deficiencies
Stroke

Spinal cord injury

PC1
NH2

TGF-β/
BMPs Integrins

Wnt

Ca2+ COOH

MAPK 
pathways β-cat

Runx2,
Osteospecific genes

IGF

Bone Osteocyte Osteoid
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Figure 1  Mechanotransduction: Deregulation, associated disorders and therapeutic implications. Causes and effects of distorted mechanotransduction and 
the role of mechanical stimulation in the treatment of various pathophysiologies. PC1: Polycystin-1; IGF: Insulin-like growth factor; TGF-β: Transforming growth factor β; 
BMP: Bone morphogenetic protein. NFAT: Nuclear factor of activated T-cells; MAPK: Mitogen-activated protein kinase; Runx2: Runt-related transcription factor 2.

Calcineurin/
NFAT 

pathway
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stretch, gravity force, vibration, magnetic bead twisting 
and atomic force or shockwaves among others[88].

Periodontal ligament (PDL) cell system is a helpful 
model for the study of  mechanotransduction signaling 
cascades in osteoblasts[89]. More specifically, PDL cells are 
undifferentiated mesenchymal fibroblasts[90] that bear all 
the characterized properties of  osteoblasts. Furthermore, 
these cells are adapted to receive mechanical pressure, 
either because of  physiological conditions or orthodontic 
treatments. Under specific conditions, PDL cells have 
the ability to differentiate towards more specialized cells 
capable of  taking part in the regeneration and repair of  
the periodontal ligament as well as its surrounding hard 
tissue[91].

Furthermore, three dimensional (3-D) constructs, like 
polydimethylsiloxane microdevices and human trabecular 
3-D bone scaffolds, have been used to investigate the ef-
fects of  mechanical stimulation on osteoblasts[92].

Scientists are trying to develop an effective way to 
monitor the levels and characteristics of  mechanical 
pressure applied as well as a way to measure the rates 
of  tissue regeneration. In order to achieve the first part, 
scientists have made either fixation devices with differ-
ent mechanical pressure characteristics and then monitor 
their effects in vivo or custom-made devices that accu-
rately control the mechanical stimulation characteristics. 
With the first type of  devices they are able to study bone 
tissue regeneration under more physiological conditions 
while with the second they assess the effects to a specific 
loading signal[93]. In order to study the effect of  mechani-
cal signals on healing processes at organs, it is necessary 
to develop techniques to assess their mechanical environ-
ment in vivo. Today, we have found ways to determine 
loading applied on the affected limb[94], load distribution 
between implant and bone[95-97], and assess interfragmen-
tary movements[94,98] but the development of  techniques 
to study the intermediate steps and not only the final out-
come of  loading are imperative.

MECHANOTRANSDUCTION IN BONE 
DISEASE
As mentioned before, deregulated bone remodeling is the 
main cause of  a number of  bone diseases. Bone remod-
eling abnormalities may be due to genetic alterations. For 
example, a mutant runx2 gene can result in human herita-
ble skeletal disorder CCD[99,100]. A mutation in runx2 gene 
may also lead in cancer metastasis to bone tissues since 
Runx2 is responsible for the expression of  genes that are 
implicated in cancer development and more specifically, 
in cell metastasis in bone. Among those genes regulated 
by Runx2 are those encoding matrix metalloproteinases 
(MMPs) MMP-9 and MMP-13 as well as osteopontin and 
bone sialoprotein[101]. Abnormal mechanotransduction 
due to lack of  mechanical loading or other causes may 
result in bone remodeling deregulations like ankylosing 
spondylitis, carpal tunnel syndrome, chronic back pain 
disc degeneration and osteoporosis. 

Recent studies have shown that annulus fibrosus (AF) 
cells that originate from non degenerative tissue respond 
to cyclic tensile strain through IL-1 and IL-4 dependent 
mechanisms, something that does not apply in AF cells 
coming from degenerative tissue[102]. Furthermore, an-
nulus fibrosus cells from degenerative discs have been 
found to have little capacity to successfully respond to 
application of  mechanical stimuli and exhibit an intense 
response to inflammatory stimuli. The above observa-
tions may explain the different responses observed in pa-
tients with intervertebral disc degeneration after specific 
therapies[103].

During space flight, astronauts are exposed to micro-
gravity and thus altered mechanical stimuli are applied 
on their skeletons. As a result, their muscles atrophy and 
their bones experience bone mass loss. Short exposure to 
microgravity has been shown to result in increased bone 
resorption evidenced by the urinary calcium excretion ob-
served[104]. Under long periods of  microgravity, the struc-
tural alterations occurring in bones have even more cru-
cial effects on bone strength than was previously thought 
while counteracting measurements like exercise seem 
to have little or no effects[104]. The mechanism behind 
bone loss is not yet clarified but probably is a result of  
decreased hydrostatic pressures and thus decreased intra-
medullary pressure which may lead in reduced fluid flow 
shear stresses on osteocytes and thus enhanced bone loss. 
Since exercise does not seem to prevent bone loss, it has 
been suggested that the decreased hydrostatic pressure 
may result in impaired mechanosensitivity in the bone 
tissue. Furthermore, other physiologic alterations on the 
body under reduced gravity conditions may contribute to 
the observed bone loss in co-operation with the reduced 
hydrostatic pressures like low vitamin D levels, oxidative 
stress, radiation exposure and acidosis[105-109].

Neurologic injury results in bone loss in the affected 
paretic limb whereas the other limb is characterized either 
by reduced or increased bone mass. Those effects are 
probably due to alterations in muscle mass and strength 
and load pressure applied. More specifically, strokes re-
sult in decreased bone density mostly in the paretic limb 
and its effects are more intense in the upper extremities. 
The pattern of  bone loss observed in stroke patients is 
generally limited to the paretic side and is more evident 
in the upper extremities than in the lower extremities. 
The pathogenesis of  the observed bone loss after stroke 
probably depends between others on immobilization, 
duration of  paresis, loss of  muscle activity, endocrine dis-
orders, nutritional deficiencies as well as medications[110]. 

Following spinal cord injury, bone loss is observed 
in pelvis and lower extremities of  paraplegics and in the 
upper and lower extremities of  tetraplegics after spinal 
cord injury[111]. Those effects are predominantly observed 
in trabecular bone. Recent data indicate the presence of  
endocortical resorption without periosteal synthesis[112]. 
Absence of  mechanical stimulation, muscle contraction, 
neuroendocrine alterations as well as neural innervation 
alteration are probably responsible for the observed bone 
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loss after those types of  injuries[113,114] (Figure 1).

MECHANOSTIMULATION IN THERAPY 
OF BONE DISEASE
Pharmaceutical treatments like anabolic treatments or 
treatments with anti-resorptive agents have been the 
norm in order to achieve increased bone density until 
now[3]. Nowadays, mechanical stimulation is considered 
to be of  great importance in designing new therapies for 
bone diseases, avoiding this way the unwanted side ef-
fects of  pharmaceutical products. 

A number of  studies demonstrate the role of  mecha-
nostimulation in acquiring a higher bone mass quantity 
and thus its role in treatment of  bone diseases. For ex-
ample, it has been shown that low intensity mechanical 
signals result in bone remodeling activation and increased 
bone mass and that following a period of  time confer 
regenerative abilities to bone tissues[115]. It has also been 
observed that mechanical signal application on PDL 
and osteoblast cell lines leads in enhanced OPG expres-
sion[116,117] and therefore in RANK-RANKL signaling in-
terruption which results in decreased osteoclastogenesis. 
Furthermore, mechanical stimulation has been shown to 
activate Cox enzymes and prostaglandins which reduce 
RANKL production and thus block bone resorption in 
vitro[77,118]. Mechanical stimuli have also been demonstrat-
ed to activate the Wnt-b-catenin pathway on osteoblasts 
resulting in enhanced osteoblast differentiation and bone 
synthesis[119]. Studies on three dimensional models have 
showed that osteoblasts receiving dynamic application of  
mechanical pressure, expressed elevated ALP, Runx2 and 
osteocalcin levels[120,121]. Additionally, application of  me-
chanical pressure resulted in increased mineralized matrix 
production in 3-D, partially demineralized bone scaffold- 
cultured human bone marrow stromal cells[122]. 

Considering the aforementioned and other results, 
researchers have turned to mechanical stimulation in or-
der to design treatments against bone diseases which will 
avoid the undesirable effects of  pharmacological treat-
ments[115]. Application of  mechanostimulation has already 
a variety of  applications in dentistry, orthopedics, the 
craniofacial development and treatment of  fractures.

More specifically, strengthening exercises in osteo-
porotic patients has been shown to result in increased 
bone mineral content[123] and physical exercise has been 
observed to prevent post-menopausal and age-related 
ECM bone mineral decrease[124]. Moreover, other types of  
mechanical stimulation like low-level vibrations at inten-
sity safe for the bone integrity may play a protective role 
in osteoporosis[125]. A functional mechanical environment 
seems to be of  importance in the treatment of  degenera-
tive disc disease as well as other skeletal deregulations[126]. 
Mechanical signals of  specific ratio[127], form[128] and inten-
sity in osteoblasts have also been shown to be beneficial 
in bone fracture treatment[128]. Additionally, low-intensity 
pulsed ultrasound has been indicated to promote osteo-
blast differentiation and bone formation in bone frac-

tures[129]. Extremely low-frequency pulsed electromagnetic 
field has been demonstrated to result in osteoblast prolif-
eration and maturation[130].

In addition, mechanostimulation was found to have 
positive effects in bone implant integration by modu-
lating osteoblast differentiation through regulation of  
Cbfa1 as well as osteocalcin levels. Cbfa1 and osteocal-
cin levels were shown to be frequency-, magnitude-, and 
duration of  mechanical application- dependent. Further-
more, osteoblast cells under strain in the implant seem 
to produce factors that have the ability to activate DNA 
synthesis and thus cell proliferation in a larger scale than 
non-strained cells[131].

Mechanical stimulation has also its applications in the 
treatment of  hearing problems. For example, SPAHA, 
which comprises a novel bone conduction hearing device, 
whose effects are accomplished through elastic bend-
ing of  the bone and not the application of  a point force 
which results in cochlea vibration as previous devices 
used to do[132].

Exercise has not been shown to meliorate bone loss 
in space flights until now[104]. Furthermore, there is no 
indication that osteoporosis drug therapies would be suc-
cessful during or following space flight. Exercise seems 
to be helpful in increasing bone density after stroke 
or spinal cord injury according to a recent study[133,134]. 
Bisphosphonates have been shown to be able to prevent 
bone loss after a stroke[134]. Mechanical stimulation may 
have some positive effects on preventing bone loss after 
spinal cord injury, with early application demonstrated to 
bear better results[135,136]. Furthermore, bisphosphonate 
early administration after spinal cord injury may be able 
to prevent bone loss[137].

Researchers have investigated whether sympathetic 
nervous system inhibition could be beneficial against 
bone loss in osteopenia induced by absence of  mechani-
cal signals. They found that its inhibition led in blockade 
of  neurectomy-induced bone resorption but further stud-
ies need to be conducted[138].

Although mechanical loading is thought to be an ana-
bolic beneficial procedure against osteoporosis, abnormal 
mechanotransduction in conjunction with age seem to 
counteract its beneficial effects in elderly people. Recent-
ly, a research group presented an agent-based model of  
real-time Ca2+/NFAT signaling in bone cells that success-
fully described periosteal bone synthesis induced by dif-
ferent types of  mechanical stimulation in young and aged 
animals. The model demonstrated age-related pathway 
changes being responsible for the decrease in bone syn-
thesis during senescence. This way the group managed 
to identify important pathway alterations that comprise 
potent therapeutic targets. In accordance, the researchers 
applied an in vivo intervention and showed that applica-
tion of  mechanical stimuli along with Cyclosporin A can 
prohibit the decrease in bone synthesis in the bones of  
elderly people. This study not only provided a potent 
inexpensive treatment for osteoporosis in the elderly but 
also demonstrated the significance of  real-time cellular 
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signaling and in silico techniques in studying, intervening 
and treating bone diseases like osteoporosis[139].

The primary cilium was shown to modulate fluid 
flow mechanotransduction in human mesenchymal stem 
cells by maintaining fluid flow-induced osteogenic gene 
expression elevation and preventing fluid flow-induced 
increased proliferation[43]. Therefore, fluid flow systems 
may be effective in designing techniques to develop bone-
like tissues for bone regenerative purposes. Furthermore, 
the role of  cilium in developing techniques that imitate 
loading in order to treat bone loss in bone diseases needs 
to be investigated. Last but not least, studying the events 
taking place during acute proliferation of  mesenchymal 
stem cells with not functional cilia receiving mechanical 
cues could help in understanding the mechanisms behind 
ciliopathies and cystic diseases[43] (Figure 1).

CONCLUSION
Bone remodeling is of  major importance for the proper 
structure and metabolic functions of  the bone. Deregu-
lations in bone remodeling can result in a variety of  
bone diseases like osteoporosis, hyperparathyroidism, 
hyperthyroidism, Paget’s and osteopetrosis among others. 
Therefore, the investigation of  mechanisms and path-
ways behind bone remodeling and mechanotransduction, 
which comprises of  the most important variables of  
bone remodeling, is of  great significance.

There is a lot that we don’t know about bone biology 
and bone diseases as well as the implication of  mechani-
cal signals in the aforementioned procedures. The better 
understanding of  the underlying mechanisms will poten-
tially result in designing a successful strategy for treating 
bone diseases, avoiding the unpleasant side effects of  
conventional treatments like the administration of  phar-
maceutical substances. Furthermore, it will help us design 
techniques to successfully predict and prevent bone dis-
eases when possible. 

Undeniable is the necessity of  innovative new ways 
to monitor bone density, to identify hormonal or meta-
bolic risk factors for bone loss, to develop effective ways 
to apply mechanical stimulation with successful results 
against reduced bone density, to assess the effect of  newly 
developed anabolic drugs against osteoporosis and their 
effects on bone loss characterizing bone diseases due to 
absence of  mechanical stimuli, as well as to develop trials 
investigating the improvement of  bone health under the 
afore mentioned conditions. In addition, the study on the 
effects of  mechanostimulation on bone tissue and organ 
healing is of  great significance for future interventions. 
In order for this to be achieved, we need to develop an 
effective way to monitor the levels and characteristics of  
mechanical pressure applied on bone tissue, a way to mea-
sure the rates of  tissue regeneration as well as techniques 
to assess mechanical environment of  organs in vivo[106]. 

Currently, researchers have started using mechano-
stimulation with encouraging results for certain bone 
conditions but further study is required. Mechanostimula-

tion is considered to comprise the future in treating bone 
diseases that have their origin in absence of  mechanical 
cues. Further investigation of  the molecular players and 
pathways involved in mechanotransduction and bone re-
modeling will amplify our knowledge and understanding 
of  these processes and help us build successful preven-
tion, prediction and treatment strategies for a variety of  
bone diseases.
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