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Abstract
Autophagy is a highly conserved intracellular degradation 
pathway by which bulk cytoplasm and superfluous or 
damaged organelles are enveloped by double membrane 
structures termed autophagosomes. The autophago-
somes then fuse with lysosomes for degradation of their 
contents, and the resulting amino acids can then recycle 
back to the cytosol. Autophagy is normally activated in 
response to nutrient deprivation and other stressors and 
occurs in all eukaryotes. In addition to maintaining en-
ergy and nutrient balance in the liver, it is now clear that 
autophagy plays a role in liver protein aggregates related 
diseases, hepatocyte cell death, steatohepatitis, hepati-
tis virus infection and hepatocellular carcinoma. In this 
review, I discuss the recent findings of autophagy with a 
focus on its role in liver pathophysiology.
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INTRODUCTION
The term “autophagy” comes from Greek, auto means 
self  and phagos means to eat. It was first described 
nearly 40 years ago by De Duve et al[1] and was based 
on morphological observations of  the sequestration of  
cytoplasm into closed, membrane-delimited vacuoles. 
There are three modes of  autophagy that differ in how 
the cytoplasmic materials are delivered to lysosomes. 
However, they share a common last step by which the 
materials are degraded in the lysosome with eventual re-
cycling of  the degraded materials via lysosomal permease 
to efflux of  the amino acids (Figure 1). Microautophagy 
results in the direct uptake of  cytoplasm at the lysosomal 
surface by invagination, protrusion or septation of  the 
sequestering organelle membrane. In contrast, macroau-
tophagy sequesters a portion of  cytoplasm, inclusions 
(e.g. glycogen) or whole organelles (e.g. mitochondria, en-
doplasmic reticulum, peroxisomes) into structures with a 
double membrane called autophagosomes. The contents 
of  the autophagosomes are degraded after fusion with 
lysosomes called autolysosomes. Chaperone-mediated 
autophagy (CMA) differs from the other two autophagy 
processes in that vesicular traffic is not involved. Instead, 
particular cytosolic molecules biochemically related to 
KFERQ are recognized by a molecular chaperone com-
plex [including heat-shock protein of  70 kDa (hsp70) 
and its cochaperones] present in the cytosol and on the 
lysosomal membrane where it binds to a CMA receptor; 
i.e. the lysosome-associated membrane protein type-2A 
(LAMP-2A)[2,3]. Among the three different modes of  au-
tophagy, macroautophagy is thought to play a major role 
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in intracellular degradation. Therefore, this review will fo-
cus on macroautophagy (hereafter referred to as autoph-
agy). The molecular machinery and regulatory signals for 
autophagy have been reviewed extensively recently and 
thus will not be discussed in detail in this review[4-7]. This 
review will focus on recent progress regarding the role of  
autophagy in liver pathophysiology.

SIGNIFICANCE IN BIOLOGY AND 
MEDICINE
In yeast, induction of  autophagy plays an important role 
in the response to stress, such as nutrient limitation. The 
primary role of  autophagy is to degrade enveloped cy-
tosol and organelles resulting in the recycling of  amino 
acids. Moreover, autophagy also plays a role in develop-
ment. For instance, it is needed for yeast sporulation, 
for the Caenorhabditis elegans entry into the dauer phase 
of  the life cycle, and for Drosophila melanogaster pupa 
formation. Autophagy is also important for clearance of  
apoptotic cells during embryonic development[8]. During 
caloric restriction, autophagy is involved in the extension 
of  the life span[9,10]. Autophagy is also used as a defense 
mechanism against the invasion of  various bacteria and 
viruses[11]. However, some bacteria or viruses may also 
subvert autophagy to replicate within the autophago-
somes[12]. For example, poliovirus and rhinovirus may 
use the cellular autophagosome to promote viral replica-
tion, probably because the double-membraned struc-
tures of  the autophagosome provide membranous sup-
ports for viral RNA replication complexes[13,14]. Finally, 
autophagy has been shown to be involved in various 
human diseases such as cancer[15,16], innate and adaptive 
immunity by antigen presentation[17,18] and neurodegen-
erative diseases[19].

AUTOPHAGY IN LIVER 
PATHOPHYSIOLOGY
Removal of intracellular protein aggregates
Autophagy has now been recognized to be able to help 
clear up protein aggregates. The two degradation systems, 
the ubiquitin-proteasome system and autophagy, are both 
activated by protein aggregates, but they can differentially 
degrade different forms of  the substrates[20]. Autophagy 
seems to be able to degrade all forms of  misfolded pro-
teins whereas proteasomal degradation is likely limited to 
soluble proteins[21]. Increased accumulation of  ubiquitin 
positive protein aggregates has been observed in Atg7 
liver specific knockout mice, suggesting that autophagy 
is constitutively acting on the turnover of  cytoplasmic 
proteins, a process that has been classified as “basal au-
tophagy”[22,23].

Although autophagy is generally thought to be a non-
selective lysosomal degradation pathway, there are many 
examples showing that autophagy can be selective. In 
addition to providing nutrition during starvation, selec-
tive autophagic degradation of  intracellular misfolded 

proteins plays an important homeostatic function. Insuf-
ficient removal of  these misfolded proteins may cause 
protein aggregate-related pathogenesis (discussed below). 
Accumulating evidence now supports ubiquitination is a 
candidate signal for autophagic degradation of  misfolded 
and aggregated proteins. Recent studies suggest that this 
degradative process is mediated through the mammalian 
protein p62/SQSTM1. p62 directly binds to poly- or 
mono-ubiquitin through its C-terminal ubiquitin bind-
ing domain (UBA) and also binds directly with autophagy 
proteins light chain-3 (LC3) and GABARAP, and thus 
acts as a cargo adapter for ubiquitinated proteins and 
links them to autophagy degradation[24-26]. Using Atg8 as 
the bait, neighbor of  BRCA1 gene 1 (NBR1) is identified 
as an additional LC3- and Ub-binding protein, which is 
structurally and functionally like p62 (Figure 2). Inhibition 
of  autophagy leads to the accumulation of  protein aggre-
gates that are both p62 and NBR1 positive[27]. Therefore, 
it is suggested that p62 together with NBR1 promotes 
autophagic degradation of  ubiquitinated proteins. p62 
has been found to be localized in Mallory bodies in al-
coholic liver disease and p62 may be required for their 
formations[28].

Disruption of  basal autophagy in the liver, by generat-
ing the liver specific Atg7 in knockout mice, leads to the 
accumulation of  inclusion bodies, abnormal membrane 
structures, accumulation of  peroxisomes and deformed 
mitochondria, resulting in hepatomegaly and liver injury. 
Interestingly, deletion of  p62 markedly attenuates liver 
injury induced by the autophagy deficiency due to the 
deficiency of  Atg7[23,29]. The protective effects of  the loss 
of  p62 were thought to be due to the suppression of  
inclusion bodies formation in the liver; however, recent 
studies suggest that p62 may have multiple functions. Ac-
cumulated p62, due to autophagy defects, can promote 
oxidative stress, alter nuclear factor-κB (NF-κB) regula-
tion and gene expression, and promote tumorigenesis[30]. 
In addition, p62 can also promote caspase-8 activation by 
inducing caspase-8 aggregation[31]. Therefore, homeostasis 
of  p62 via autophagy is vital for many cellular functions. 

α-1-antitrypsin (AT) deficiency
Study of  AT deficiency, which causes liver inflammation 
and carcinogenesis, was one of  the first lines of  evidence 
suggesting a role of  autophagy in diseases associated 
with aggregate-prone proteins[32]. AT, the archetype of  
the Serpin supergene family, is the principal blood-borne 
inhibitor of  destructive neutrophil proteases including 
elastase, cathepsin G, and proteinase[33,34]. The classical 
form of  α1AT deficiency affects 1 in 1800 live births in 
Northern European and North American populations[34]. 
The normal AT protein is secreted from hepatic cells 
into the bloodstream, where it inhibits the neutrophil 
proteases. However, a mutation in the AT gene results in 
misfolding of  the mutant protein, which cannot transport 
from the endoplasmic reticulum (ER) and becomes 
stuck in the ER as an aggregated form[20]. In the liver 
cells of  AT deficiency patients, an increased number of  
autophagosome is readily observed[35]. Autophagy mainly 

� January 26, 2010|Volume 1|Issue 1|WJBC|www.wjgnet.com

Ding WX. Autophagy in the liver



serves to degrade the mutant AT aggregates in the ER, 
whereas the soluble mutant proteins are subjected to ER-
associated degradation (ERAD) by proteasomes[20,36].

Hypofibrinogenemia
Hypofibrinogenemia is another liver ER storage disease. 
A mutant form of  fibrinogen, named Aguadilla γD, forms 
protein aggregates in the hepatic ER, causing similar path-
ological alterations to AT deficiency[37]. Although most of  

the mutant forms can be degraded via the ERAD pathway, 
autophagy helps to degrade excess aberrant polypeptide 
formed aggregates within the ER[37]. These studies suggest 
a protective role of  autophagy in relieving the cytotoxicity 
associated with abnormal protein aggregates in the ER. 
When the unfolded protein response and ERAD is satu-
rated or impaired, the accumulated abnormal proteins in 
the ER cause ER stress. The ER stress signaling pathways, 
such as Ire1/, PERK/eIF2α and JNK, may be involved 
in the ER-accumulated aggregates induced-autophagy[38,39]. 
Autophagy may help to remove part of  the abnormal ER, 
presumably together with the accumulated protein aggre
gates to maintain organelle homeostasis. In this context, 
autophagy serves as an “ERAD-like” mechanism and 
contributes to ER quality control[21].

Alcoholic Mallory body
Autophagy may also play a role in alcohol-induced liver 
pathogenesis. Earlier studies have shown that alcohol fed 
to rats produced hepatomegaly, associated with enlarge-
ment of  the hepatocytes and protein accumulation[40,41]. 
The mechanisms for the alcohol-induced protein accu-
mulation in hepatocytes are not completely known. It is 
suggested that alcohol exposure can alter the proteolytic 
activity of  hepatic lysosomes[42], alter the trafficking of  
lysosomal enzymes[43], and probably alter microtubule 
structures and vesicle protein trafficking in hepato-
cytes[44]. Moreover, there is also evidence that ethanol 
administration can inhibit proteasome activity, likely due 
to the ethanol metabolism and generation of  reactive 
oxygen species (ROS)[45]. Suppression of  proteasome 
activity and induction of  ROS have been shown to be 
able to induce autophagy in other cell types and systems. 
We recently found that binge drinking of  alcohol indeed 
could induce autophagy in the mouse liver (Ding et al 
manuscript in press).
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Figure 1  Three forms of autophagy: macroautophagy, microautophagy, and chaperone-mediated autophagy. Macroautophagy starts with the de novo 
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LC3

LC3

LC3

LC3

LC3

LC
3

LC
3

LC
3

LC3

LC3

LC3

p62

NBR1
Aggregates

ub ub
ub
ub
ububub

ubububub

Phagophore/autophagosomeB

aPKC          RIP      TRAF6        LC3           UB

p62/SQSTM1            PB1          ZZ          TB           LIR          UBA

NBR1            PB1          ZZ          CC           LIR          UBA

A

Figure 2  Autophagy regulates protein homeostasis through interaction 
with p62 and NBR1. A: A schematic diagram showing the domain organization of 
p62 and NBR1 proteins. PB1: Phox and Bem1p domain; ZZ: Zinc finger domain; 
TB: TRAF6-binding domain; CC: Coiled-coil domain; LIR: LC3-interacting region; 
UBA: Ub-associated domain; B: p62 and NBR1 are autophagy receptors that 
interact with both ubiquitin-positive protein aggregates through their UBA domains 
and target them to autophagosomes through their LIR regions with LC3 on the 
autophagosomal membranes, thereby promoting autophagy of ubiquitinated 
targets.



Besides the general protein accumulation, alcohol 
exposure also leads to the formation of  inclusion bodies 
known as Mallory bodies in hepatocytes, which are fre-
quently observed in alcoholic hepatitis and cirrhosis[46]. 
Mallory bodies are filaments of  intermediate diam-
eters with intermediate filament components[47]. These 
structures contain cytokeratin 8 and cytokeratin 18 and 
ubiquitin positive protein aggregates and share many 
similar characteristics with other inclusion bodies found 
in neuronal degenerative diseases, such as Lewy bodies 
in Alzheimer’s disease and Huntington inclusions bodies 
in Huntington’s disease[47]. Although Mallory bodies have 
no longer been considered just as a marker of  alcoholic 
disease, the biological significance of  Mallory bodies in 
alcohol-induced liver injury is still unclear. Moreover, the 
mechanisms for the induction of  Mallory bodies are also 
not completely known. Inhibition of  proteasome activity 
by proteasome inhibitor can induce Mallory body-like 
structures in cultured cells and in mouse liver. Interest-
ingly, induction of  autophagy by rapamycin, a mTOR in-
hibitor, significantly suppresses Mallory body formation 
both in vitro and in vivo, suggesting autophagy plays an 
important role in alcoholic Mallory body formation and 
induction of  autophagy may help to attenuate Mallory 
body formation[48,49]. 

Degradation of organelles via autophagy
Unlike proteasomal degradation, autophagy can degrade 
not only cytosolic proteins but also organelles such as 
mitochondria, peroxisome and ER.

Degradation of peroxisome by autophagy (pexophagy)
Autophagy selectively removes peroxisomes (pexophagy), 
which was first discovered in yeast when the culture 
medium was switched and peroxisomal function was no 
longer required for growth[50]. It was further found that 
both macroautophagy and microautophagy could be 
used to degrade peroxisomes in yeast. For example, in  
P. pastoris, glucose-induced peroxisome degradation mainly 
occurs through microautophagy, whereas ethanol-induced 
degradation utilizes macroautophagy[51].

In mammalian cells, autophagic degradation of  per-
oxisomes has been observed in hepatocytes treated with 
clofibrate or dioctyl phthalate[52], two drugs that activate 
the peroxisome proliferators-activated receptors to induce 
accumulation of  peroxisome in mammalian cells[52,53]. 
The requirement of  autophagy to degrade peroxisomes 
in hepatocytes is further proved in a recent study using 
the liver specific Atg7-deficient mouse challenged with 
phthalate esters, an agent that can induce marked increase 
of  peroxisome numbers and size in the liver[54].

Pexophagy has been well known to be a selective 
process, and its mechanisms have been best studied in 
yeast. In P. pastoris, PAtg30 functions as an adapter mol-
ecule to interact with peroxisomal membrane proteins 
PpPex14 and PpPex3 and autophagy proteins PpAtg11 
and PpAtg17, and in turn, links peroxisomes to autoph-
agy degradation[55]. In mammalian cells, it seems that 
peroxisomes can be removed by autophagy similar to the 

ubiquitinated protein aggregates. A recent study reveals 
that fusion of  a single ubiquitin moiety to a peroxisome 
integral membrane protein, PMP34, is sufficient to trig-
ger selective autophagy degradation of  peroxisomes. In-
terestingly, this kind of  selective pexophagy is also medi-
ated by p62, similar to the role of  p62 in the autophagic 
degradation of  protein aggregates as discussed above[56]. 

Mitophagy
Enveloped mitochondria in autophagosomes have been 
observed by De Duve et al[1] as early as 1966 in drug 
injected rat liver cells. This process is now termed “mi-
tophagy”[1,57]. Increasing evidence now supports mitopha-
gy as a selective process. In yeast, Atg32, a mitochondria-
anchored protein, has recently been found to be essential 
for selective mitophagy, although a mammalian homo-
logue of  Atg32 has not been found[58,59]. Except for Atg32, 
Uth1p and Aup1 have also been found to be involved in 
mitochondrial autophagy although it seems that they only 
play roles in certain models[60,61]. The mechanisms of  mi-
tophagy are more complicated in mammalian cells and the 
following mechanisms discussed below have been impli-
cated in mammalian cell mitophagy. 

Mitochondrial permeability transition (MPT)
MPT, an event that has long been proposed to regulate 
apoptosis and necrosis in mammalian cells, may also play 
a role in regulating mitophagy. When cultured hepato-
cytes were deprived of  nutrition, mitochondria became 
depolarized and moved into acidic vesicles[62]. Cyclosporin 
A, a MPT inhibitor, significantly inhibited mitochondria 
depolarization and mitophagy during nutrient deprivation 
in hepatocytes[62]. Besides the nutrient deprivation, mi-
tophagy in hepatocytes was also induced when selected 
mitochondria inside living hepatocytes were subjected to 
laser-induced photodamage[63]. Mitophagy after nutrition 
deprivation was further confirmed by using cultured he-
patocytes from the GFP-LC3 transgenic mouse, in which 
some mitochondria were enveloped by the green GFP-
LC3 signals[63]. As mitophagy could selectively remove 
those damaged mitochondria, it has been proposed that 
mitophagy could be protective against cell death, as these 
mitochondria produce toxic free radicals and release mi-
tochondria apoptotic factors[57]. Indeed, in drug induced 
pathogenesis of  Reye syndrome, salicylate induced mi-
tochondria damage by inducing MPT in hepatocyte[64]. 
Interestingly, autophagic degradation of  damaged mito-
chondria was found in liver biopsies of  Reye syndrome 
patients[65], and also in an influenza B virus model of  
Reye’s syndrome in mice[66].

Mitochondrial fragmentation
Mitochondria are dynamic organelles undergoing fusion 
and fission constantly. It is tempting to speculate that 
fragmented mitochondria are more readily taken up by 
autophagosomes due to their size. In a nitric oxide (NO)-
induced neuron damage model, it was found that Fiss1, a 
protein that regulates mitochondria fission, was involved 
in mitophagy[67]. We and others found that inhibition of  

� January 26, 2010|Volume 1|Issue 1|WJBC|www.wjgnet.com

Ding WX. Autophagy in the liver



mitochondria fragmentation such as by overexpression 
of  a mutant form of  mitochondrial fission molecular, 
Drp1K38A, can also suppress mitophagy[67]. Moreover, 
using the Mfn1 deficient mouse embryonic fibroblasts, in 
which mitochondria are already fragmented due to the lack 
of  mitochondrial fusion protein Mfn1 in these cells, we 
found a much higher rate of  mitophagy in Mfn1-deficient 
cells than that of  wild type cells (Ding et al, unpublished 
observations). Interestingly, in the nutrition deprivation-
induced mitophagy in hepatocytes, it is found that only a 
portion of  individual mitochondria becomes sequestered, 
in some cases sequestered from both the ends and middle 
parts of  mitochondria[63]. These data tend to support that 
the mitochondrial fission process may also be coordinated 
with autophagosome formation[63].

Nix and BNIP3
How the damaged mitochondria are recognized by the 
autophagy machinery in mammalian cells is not clear. 
BNIP3 (Bcl-2/E1B-19kDa interacting protein 3) was 
first identified in a yeast two-hybrid screen for proteins 
that interact with adenovirus E1B 19 kDa[68]. BNIP3 is 
a pro-apoptotic mitochondrial protein that contains a 
Bcl-2 homology 3 (BH3) domain and a carboxyl terminal 
transmembrane (TM) domain[69,70]. BNIP3 is inserted 
into the outer mitochondrial membrane through its 
C-terminus transmembrane domain while its N-terminus 
is exposed in the cytoplasm. Unlike other BH3-only pro-
apoptotic proteins, the TM domain of  BNIP3, but not its 
BH3 domain, is required for mitochondria targeting and 
pro-apoptotic function[70,71]. Nix/BNIP3L is a homolog 
of  BNIP3 and they share 53%-56% amino acid sequence 
identity[72]. In addition to apoptosis, BNIP3 has been 
implicated in necrosis and autophagic cell death[73-75]. 
However, BNIP3 is not ubiquitously expressed under 
normal conditions. It is only expressed in skeletal muscle 
and brain at a low level under physiological conditions. 
It is markedly expressed in regions of  solid tumors or 
normal tissue in response to hypoxia and appears to be 
regulated by hypoxia-inducible factor (HIF), which binds 
to a site on the BNIP3 promoter[76,77].

BNIP3 has been found to be important for ceramide 
or arsenic trioxide induced autophagy in malignant glio-
ma cells[75,78]. Using cultured mouse embryonic fibroblast 
(MEF) cells, it is demonstrated that mitophagy is induced 
by hypoxia. This mitophagy requires the HIF-1-inducible 
expression of  BNIP3. Mitophagy serves as an adaptive 
metabolic response to prevent increased levels of  ROS 
via removal of  damaged mitochondria, and in turn to 
mitigate cell death[79]. The critical role of  BNIP3 in mi-
tophagy has further been supported by an elegant genetic 
model. During the maturation, reticulocytes completely 
eliminate their mitochondria partly through autophagy, 
a process that provides a physiological model to study 
mitophagy. In Nix-deficient mice, mitochondrial clear-
ance in reticulocytes is significantly inhibited or retarded, 
suggesting that Nix is required for the selective elimina-
tion of  mitochondria[80]. Later on, it was discovered by 
another group that the role of  Nix for mitophagy is likely 

due to the loss of  mitochondria membrane potential 
(MMP) induced by Nix, because treatment with a mito-
chondria uncoupler or a BH3 mimetic, induces the loss 
of  MMP and restores the sequestration of  mitochondria 
into autophagosomes in Nix-deficient erythroid cells[81]. 
Their results thus suggest that Nix-dependent loss of  
MMP is important for targeting damaged mitochondria 
to autophagosomes. This notion may also help to explain 
why mitochondrial permeability transition is involved in 
hepatocytes mitophagy, because in most cases, the onset 
of  mitochondria permeability transition can lead to the 
loss of  MMP.

Parkin and ubiquitin
As discussed above, ubiquitin plays an important role for 
the autophagic removal of  not only protein aggregates 
but also organelles such as peroxisomes. This is mainly 
achieved through several adapter molecules, such as p62 
and NBR1, which can directly interact with poly- and 
mono-ubiquitin and LC3. Therefore, it is very tempt-
ing to hypothesize that ubiquitin may also play a role in 
mitophagy. Indeed, it is recently found that Parkin, an 
ubiquitin E3 ligase, could be recruited selectively to im-
paired mitochondria and to promote their degradation via 
autophagy[82]. Interestingly, although Parkin was first iden-
tified as a gene implicated in autosomal recessive Parkin-
sonism, Parkin knockout mice have enhanced hepatocyte 
proliferation and hepatocellular carcinoma (HCC)[83]. It is 
not known whether the lack of  Parkin in the hepatocytes 
would affect the hepatocyte mitochondrial turnover re-
sulting in an increased number of  damaged mitochondria, 
increased levels of  oxidative stress and genome instability, 
which contribute to tumorigenesis. Although direct exper-
imental evidence is not yet available to show the role of  
ubiquitination of  mitochondria in mitophagy, it has been 
noted that sperm-derived mitochondria are completely 
eliminated after fertilization to ensure that only maternal 
mitochondrial DNAs are inherited. Interestingly, sperm 
mitochondria have been found to be tagged with ubiqui-
tin, although whether autophagy was involved in this pro-
cess has not been determined. 

ER-phagy
The ER was first identified as being selectively seques-
trated by autophagic vacuoles as early as 1973, when 
hepatocytes were previously treated with phenobarbital 
followed by cessation of  the treatment[84]. In this case, 
based on morphological study, the elimination is mainly 
of  smooth ER. This was later confirmed by a study us-
ing a biochemical approach, in which two typical ER 
membrane proteins, phenobarbital (PB)-inducible cyto-
chrome P-450 and NADPH-cytochrome P-450 reduc-
tase, were selectively degraded by autophagy in rat liver 
when rats were treated with phenobarbital followed by 
removal[85]. It will be interesting if  this model can also be 
applied in the liver specific Atg-7 knock out mouse.

Currently, how ER is selectively removed by autoph-
agy is not known. The ER is a major intracellular site for 
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proper protein folding and posttranslational modifica-
tions. Disrupting the oxidized environment of  ER by di-
thiothreitol (DTT), calcium homeostasis by thapsigargin, 
or inhibition of  glycosylation by tunicamycin, can all lead 
to the accumulation of  misfolded proteins in the ER and 
causes the so called unfolded protein response (UPR)[21]. 
We and others have demonstrated that ER stress can in-
duce autophagy, likely through the UPR components such 
as Ire1, perk and eif2α or the ER calcium leakage[38,39,86,87]. 

Lipohagy
Lipid droplets (LDs) are intracellular storage depots for 
neutral lipid that are found in all kinds of  cells, ranging 
from bacteria to human. The LD has been considered as 
an organelle with a polar lipid monolayer membrane that 
envelops the hydrophobic core of  triglycerides (TGs), 
diacyglycerol (DG), cholesterol ester (CE), and other 
esters in various proportions[88]. The phospholipid com-
position of  the LD is very similar to the ER membrane, 
which includes phosphatidylcholine (PC), phosphati-
dylethanolamine (PE), and phosphatidylinositol (PI)[89]. 
There are also a variety of  proteins associated with the 
LD membrane. For example, more than 10 Rab proteins, 
including Rab5, -7, -11 and -33, have been detected in 
isolated LDs. However, among them, only Rab18 has 
been confirmed by microscopic co-localization stud-
ies[90]. In addition to the Rab proteins, PAT proteins are 
perhaps the most characterized LD associated proteins. 
PAT proteins, named after perilipin, ADRP, and the 
tail-interacting protein of  47 kDa (TIP47), mainly regu-
late cytosolic lipase mediated lipolysis, which has been 
thought to be a major pathway for the regulation of  
lipid homeostasis[88]. However, recent work by the Czaja 
and Cuervo groups clearly demonstrates that autophagy 
also plays an important role in lipid homoeostasis in he-
patocytes by autophagic lipolysis[91]. Suppression of  the 
autophagic pathway, either by a genetic or pharmacologi-
cal approach, leads to the accumulation of  LDs in hepa-
tocytes and other cells. The autophagic marker LC3-II is 
highly enriched in the LD fractions, and LDs are found 
to be enveloped by GFP-LC3 positive vesicles. More 
importantly, it seems that autophagy plays an important 
role in the clearance of  the accumulated LDs in hepato-
cytes, in particular, in response to the methionine- and 
choline-deficient (MCD) diet or oleate addition-induced 
lipid load[91]. However, in starvation-induced hepatic lipid 
accumulation, it is found that knockout of  Atg7 actually 
leads to less lipid accumulation in the liver, suggesting 
that different stress-induced lipid accumulation or a dif-
ferent source of  lipids maybe differentially regulated by 
autophagy or some of  the Atg proteins may have non-
autophagic functions such as to regulate the LD forma-
tion[92]. Nevertheless, these findings open a new possible 
therapeutic approach for treating liver steatosis induced 
by a high fat diet or obesity via induction of  autophagy.

Xenophagy for hepatitis virus
There is an increasing body of  evidence now supporting 
autophagy and/or the autophagy genes as having both 

anti-viral and pro-viral capacities against various viruses. 
Autophagy can directly recognize and enwrap virions 
and/or viral components and target them for degrada-
tion in lysosomes, a process termed as “xenophagy”[11,93,94]. 
Autophagy may also regulate the innate and adaptive im-
mune system to protect against viral infections. In order 
to counteract autophagy to survive, it is not surprising 
that some viruses can use some mechanisms to either 
inhibit autophagy or escape from autophagy recognition. 
In support of  this concept, it has been shown that herpes 
viruses and lentiviruses can use some viral proteins to in-
hibit autophagy. For example, ICP34.5, a neurovirulence 
protein from Herpes simplex virus type 1 (HSV-1), binds 
protein phosphatase 1α to counter PKR-mediated phos-
phorylation of  eIF2α and in turn suppresses autophagy. 
In addition, ICP34.5 may also suppress autophagy by 
binding to the autophagy-promoting protein Beclin 1[93]. 
Some other intracellular pathogens can escape from au-
tophagic degradation by either suppressing the fusion of  
autophagosomes with lysosomes or escaping autophagy 
recognition[95,96].

In the liver, both hepatitis B and C viruses have been 
shown to be involved in the regulation of  autophagy. 
Beclin-1, an essential autophagy protein, is found to be 
upregulated in hepatitis B virus-infected cancerous liver 
tissues. Enforced expression of  HBV X protein induces 
Beclin-1 upregulation in cultured hepatoma cells and, 
more importantly, enhanced starvation-induced autoph-
agy[97]. In contrast to hepatitis B, hepatitis C virus repli-
cation is more complicated. Transfection of  HCV viral 
RNA into Huh7.5 cells leads to the accumulation of  
autophagosomes and this induction seems to depend on 
HCV virus-induced ER stress and an unfolded protein 
response (UPR)[98]. However, this autophagic response is 
not complete because the long lived protein degradation 
is not changed, suggesting accumulated autophagosomes 
are either due to a defect of  fusion with lysosomes or 
alterations of  the lysosomes due to the infection of  
HCV. Interestingly, siRNA knockdown of  some essential 
autophagy genes, such as Atg7, LC3, Beclin-1, Atg5 and 
Atg12 all suppress HCV replication[98,99]. Moreover, chlo-
roquine, an autophagy inhibitor by increasing lysosomal 
pH, also significantly suppresses HCV replication in 
hepatocytes[100]. However, it is found that HCV proteins 
failed to co-localize with autophagy proteins in infected 
cells, suggesting the HCV replication complex does not 
assemble on autophagic vesicles[101]. It remains unknown 
exactly how autophagy proteins affect HCV replication, 
and it is possible that the autophagy pathway may pro-
vide an initial membranous support for translation of  in-
coming RNA before the accumulation of  viral proteins 
or some autophagy proteins may have non-autophagic 
effects for viral replication.

AUTOPHAGY IN LIVER TUMORIGENESIS 
AND TUMOR METASTASIS
As one protein degradation and recycling pathway, au-
tophagy has been generally believed to be a pro-survival 
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pathway. In nutrient starvation conditions, the pro-sur-
vival function of  autophagy has been very well charac-
terized[102]. Under the conditions of  nutrient starvation, 
autophagy can recycle the macromolecules and thus help 
to overcome the moment of  stress[102]. This hypothesis is 
clearly supported by the fact that deletion of  autophagy 
genes leads to increased cell death under nutrient depri-
vation. Autophagy’s role in organism survival has been 
observed in yeast, plants, worms, flies and mice. Atg5, 
Atg3 or Atg7 knockout mice die during the neonatal 
period when the placental blood is no longer supplied. 
Atg5 knockout mice exhibit reduced amino acid concen-
trations in plasma and tissues and show signs of  energy 
depletion. This situation can be considered a form of  
starvation, during which autophagy is critical for sur-
vival[23,103]. Autophagy also acts in a protective role during 
other cell stress, and in this setting, autophagy is used 
as a strategy to remove either toxic protein aggregates 
or damaged mitochondria and mitochondrial-generated 
ROS that could activate apoptosis[30,38,39]. However, au-
tophagy can also contribute to cell death if  the process 
is over activated and deregulated, resulting in excessive 
catabolism and/or hijacking of  the apoptosis machin-
ery[104,105]. When hepatocytes are under starvation condi-
tions, it was reported that ferritin could be degraded in 
the autophagosomes. The subsequent generated pool of  
free iron sensitized hepatocytes to be killed by oxidative 
stress, likely through the iron-mediated Fenton-reaction 
and, in turn, enhanced oxidative stress[106]. 

Although constitutive autophagy is important for cel-
lular homeostasis and cell survival, paradoxically, loss of  
autophagy has been found to promote tumorigenesis. An 
essential autophagy gene, Beclin 1, was frequently found 
monoallelically deleted in many human cancers, such as 
breast, prostate and ovarian cancers[107]. Mice with allelic 
loss of  Beclin 1 are prone to HCC, lung adenocarcinoma, 
mammary hyperplasia, and lymphoma. Loss of  heterozy-
gosity of  UVRAG, a Beclin 1 interacting protein, is fre-
quently observed in colon cancers[108,109]. Moreover, loss 
of  other autophagy regulatory genes, such as bif-1 and 
atg4C, also increased tumorigenesis in mice[109,110]. To fur-
ther support the concept that autophagy may suppress 
tumorigenesis, many other known tumor suppressor 
genes, such as Lkt, Ampk, Pten, are positive regulators of  
autophagy[111-114]. In contrast, many oncogenes products, 
including phosphatidylinosital 3-kinase, Akt and anti-
apoptotic Bcl-2 family proteins, suppress autophagy[115]. 

Mice that have autophagy defects develop liver injury, 
steatohepatitis and HCC[16,29,91,115]. Autophagy defects can 
lead to an increased level of  oxidative stress, accumulation 
of  damaged mitochondria and intracellular p62, an adap-
tor protein that functions to direct polyubiquitinated pro-
teins to autophagosomes for degradation. Sustained p62 
expression resulting from autophagy defects is sufficient 
to alter NF-κB regulation and gene expression and to 
promote tumorigenesis. In contrast, suppression of  ROS 
production and p62 expression inhibit tumorigenesis[30]. 
Increased levels of  p62 have been documented in alcohol-
ic liver disease as a major component of  Mallory body and 

alcoholic liver injury and have been implicated to promote 
HCC[28,116]. However, whether p62 contributes to alco-
holic related HCC is not known. Steatohepatitis has been 
implicated to promote HCC but also could result from 
autophagy suppression. Moreover, hepatitis C virus can 
also inhibit autophagy and thus may provide an additional 
mechanism to promote HCC[98]. Taken together, autoph-
agy plays multiple essential roles in liver pathophysiology 
by removing misfolded proteins, regulating hepatocellular 
organelle turn over, maintaining hepatic lipid homeosta-
sis, and influencing hepatitis virus infection (Figure 3). 
Therefore stimulation of  autophagy in liver may thus have 
therapeutic effects to mitigate steatohepatitis, mitochon-
dria damage, accumulation of  62 and virus infection and 
may provide a novel means to suppress HCC.

CONCLUSION
Research progress on autophagy has been growing sub-
stantially in the past few years and understanding of  the 
molecular mechanisms of  its regulation and its impact 
on human diseases has increased. As a vital cellular pro-
cess, autophagy plays an important role in maintaining 
cellular homeostasis by removing toxic protein aggre-
gates, damaged or superfluous organelles and protects 
cells by mitigating ER and oxidative stress and by pro-
viding energy and macromolecules to maintain essential 
cellular process. As outlined in this review, autophagy 
plays significant roles in at least four areas of  liver patho-
physiology: removal of  misfolded proteins and balance 
of  nutrients and energy, regulating organelle turn over, 
maintaining lipid homeostasis, and affecting hepatitis vi-
rus infection and replication (Figure 3). Defects or sup-
pression of  autophagy can lead to hepatocyte cell death, 
steatohepatitis and hepatocellular carcinoma. 
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Figure 3  Role of autophagy in liver pathophysiology. At least 4 different 
roles that autophagy may play in liver physiology and liver diseases: remove 
misfolded proteins, regulate hepatocellular organelle turn over, maintain hepatic 
lipid homeostasis, and influence hepatitis virus infection. As a result, defects in 
autophagy may lead to accumulation of alcoholic Mallory bodies, α-antitrypsin 
deficiency-induced liver injury, increased hepatocyte cell death, steatohepatitis 
and hepatocellular carcinoma. ER: Endoplasmic reticulum; ROS: Reactive oxy-
gen species; LDs: Lipid droplets.
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