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Abstract
Early detection of pancreatic cancer has long eluded clinicians because of its 
insidious nature and onset. Often metastatic or locally invasive when symp-
tomatic, most patients are deemed inoperable. In those who are symptomatic, 
multi-modal imaging modalities evaluate and confirm pancreatic ductal ade-
nocarcinoma. In asymptomatic patients, detected pancreatic lesions can be either 
solid or cystic. The clinical implications of identifying small asymptomatic solid 
pancreatic lesions (SPLs) of < 2 cm are tantamount to a better outcome. The 
accurate detection of SPLs undoubtedly promotes higher life expectancy when 
resected early, driving the development of existing imaging tools while pro-
moting more comprehensive screening programs. An imaging tool that has 
matured in its reiterations and received many image-enhancing adjuncts is 
endoscopic ultrasound (EUS). It carries significant importance when risk 
stratifying cystic lesions and has substantial diagnostic value when combined 
with fine needle aspiration/biopsy (FNA/FNB). Adjuncts to EUS imaging include 
contrast-enhanced harmonic EUS and EUS-elastography, both having improved 
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the specificity of FNA and FNB. This review intends to compile all existing enhancement 
modalities and explore ongoing research around the most promising of all adjuncts in the field of 
EUS imaging, artificial intelligence.

Key Words: Pancreatic ductal adenocarcinoma; Pancreatic cancer; Endoscopic ultrasound; Contrast-enhanced 
endoscopic ultrasound; Endoscopic ultrasound contrast agents; Endoscopic ultrasound elastography; 
Artificial intelligence; Fractal analysis; Endoscopy; Imaging

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Several reviews have evaluated the use of contrast-enhanced endoscopic ultrasound (CE-EUS), 
EUS-elastography (EUS-E), and artificial intelligence in separation. Not many have reviewed all three 
modalities' strengths in a single article. This article elaborates on current methods and outcomes of CE-
EUS and EUS-E while reviewing the impact of artificial intelligence on the field of EUS imaging.
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INTRODUCTION
Pancreatic ductal adenocarcinoma (PDAC) is the 5th most fatal cancer globally, and those receiving a 
diagnosis have only a 6% 5-year survival rate[1]. Fortunately, early detection of a PDAC, especially 
when smaller than 1 cm, along with timely resection can aggrandize 5-year survival rates by up to 80.4%
[2]. This disease's increasing incidence and mortality trend have brought different specialists (i.e. 
radiologists and gastroenterologists) together to create a framework to enhance early detection. 
Computed tomography (CT), magnetic resonance imaging (MRI), and endoscopic ultrasound (EUS) 
have all emerged as essentials in the multidisciplinary diagnostic approach of PDAC. EUS images of the 
pancreas are distinct from all modalities above because of their increased spatial resolution, making it 
94% sensitive for PDAC detection[3]. Successive generations of EUS imaging transducers and post-
processing software have markedly improved the spatial resolution of conventional B-mode EUS 
images. When used alone, it boasts a superior diagnostic accuracy over multidetector CT and MRI, 
singularly for solid pancreatic lesions (SPLs), but a meager specificity when differentiating pancreatic 
cancer from other pathologies[3,4]. However, with the advent of image-enhancing technologies such as 
contrast-enhanced EUS (CE-EUS) and EUS-elastography (EUS-E), there is evidence to suggest that even 
smaller SPLs are now detectable with good sensitivity and specificity[5-7]. Although promising, these 
advances' overarching impact in the face of early pancreatic cancer detection and diagnosing benign 
pancreatic diseases is still largely underwhelming. Pancreatic cancer remains a leading cause of death in 
industrialized populations, and the new case burden is estimated to grow steadily for the next 20 years
[8]. Thus far, we know that the diagnostic accuracy of EUS, when coupled with EUS-guided tissue 
sampling, holds good outcomes, but reproducing its performance with ease remains a global challenge. 
The learning curve to master and competently perform an EUS examination is steep[9,10]. In this 
context, the introduction of artificial intelligence (AI), alone or in combination with existing enhanced 
EUS imaging technologies, may contribute to filling the gaps in accurately and consistently diagnosing 
pancreatic diseases[11]. This commentary highlights existing enhanced EUS imaging technologies while 
paving the way for AI, postulating its possible role in this arena.

EUS-E
Elastography is an ultrasonographic tool to measure the stiffness of the desired study area. The desired 
study area for a suspicious pancreatic lesion is also known as a region of interest (ROI). Akin to the 
clinical aspect of palpating a mass by hand and describing its characteristics, elastography does this 
similarly, but instead for deeper structures[12]. The two types of elastography include strain 
elastography (SE) and sheer wave elastography (SWE). However, SWE is still unstable in its use to 
measure the elasticity of SPLs and will not be discussed further in this article[13].
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The type of elastography used in EUS is quasi-static or SE. It measures tissue displacement from a 
compressive force generated internally by the patient’s physiology like breathing and vascular 
pulsations or externally by the tip of the echoendoscope pressing against the GI wall[14]. The 
compressive force deforms the tissue momentarily. The amount the tissue deforms or the degree to 
which it gets displaced is known as strain. Softer or more elastic tissue, i.e. more benign, will have more 
displacement while stiffer, inelastic, and generally more malignant tissue, will have less strain[15]. The 
images can be seen side by side on the EUS display, with the EUS-E overlayed on the B mode image.

We present examples for PDAC (Figure 1A and B) and for a metastatic lymph node (Figure 1C). The 
color spectrum represents a qualitative measurement, blue being the hardest and red being the softest. 
Quantitative measurements are seen on the strain histogram or valued as the strain ratio (SR; the strain 
of the larger round-shaped ROI area A divided by the strain of smaller round-shaped region of 
surrounding normal tissue area B). Suggested surrounding normal homogenous tissue to be used as 
reference include either healthy surrounding pancreatic parenchyma (pSR) or healthy GI tract wall 
(wSR). Suggested elastography SR values are automatically computed and estimated using the built-in 
software found in the Olympus EU-ME2 processor and the Hitachi United States machines. However, 
the reference areas have yet to be standardized.

Outcomes
One of the earliest prospective multicenter studies by Giovannini[16] evaluated the elastography of 
pancreatic masses from 121 patients on initial EUS referenced against final histological diagnoses. 
Elastography successfully demonstrated “intense blue” on qualitative measurement for all PDAC, 
endocrine tumors, pancreatic metastasis, and pancreatic sarcomas. According to his scoring system of 1 
through 5 (5 being the stiffest and most intense blue), scores 1 and 2 had a negative predictive value 
(NPV) of 77.4%, whilst scores 3 and 4 had a positive predictive value (PPV) for malignancy of 92.8%[16].

In the interest of detecting smaller ductal adenocarcinomas (< 15 mm), which if resected earlier, have 
shown a 5-year survival mark in PDAC survivors to exceed 30%-60%, Ignee et al[7] evaluated SRs for 
SPLs of < 15 mm from 218 patients across 13 international centers. They found that EUS-E patterns of a 
small lesion (average size 11 ± 3 mm), if found to be soft, could confidently rule out malignancy (NPV 
98%). Although PDAC was diagnosed in these small lesions with a sensitivity of 96%, elevated stiffness 
in a detected lesion had a specificity of only 67% with a PPV of 56% when diagnosing malignancy[7]. 
These small lesions’ final etiological percentage breakdown was 66% benign, while 52% were neuroen-
docrine tumors (NETs). Notably, 36% of the NETs were stiff lesions, while 64% were soft compared to 
surrounding tissue. The remaining 23% were PDAC, 17% other entities, and 8% metastasis (which 
showed stiffness only 59% of the time)[7].

In 2012, Pei et al[17] and in 2013, Ying et al[18], the Asian groups conducted separate metanalyses, but 
with additions to pooled data on the subject matter of EUS-E’s diagnostic accuracy, a more recent meta-
analysis of 17 studies analyzing 1544 lesions from 1537 patients was conducted in 2017. From their 
pooled results, EUS-E reported an accumulated sensitivity of 97% (95%CI: 95%-99%) and a sensitivity of 
67% (95%CI: 59%-74%) for qualitative methods; 97% sensitivity (95%CI: 95%-98%) and 67% specificity 
(95%CI: 61%-73%) for Strain Histograms, and lastly, 98% specificity (95%CI: 96%-99%) and 62% 
sensitivity (95%CI: 56%-68%) for strain ratios, suggesting its value as a complement to EUS-guided 
tissue sampling, i.e. EUS-FNA[19].

Similarly, guidelines proposed by the European Federation of Societies for Ultrasound in Medicine 
and Biology (EFSUMB) advocate using elastography as a complementary tool for focal pancreatic lesion 
characterization[20]. When a EUS-FNA sample is negative, but the index of suspicion for malignancy 
remains, the EFSUMB recommends using elastography and CE-EUS for repeat tissue sampling or 
referring the patient directly to the surgeons for operative intervention without further delay[20]. We 
demonstrate the clinical application of EUS-E (with CE-EUS) to target FNB sampling in a patient with a 
degenerated intraductal papillary mucinous neoplasm (IPMN) under our surveillance (Figure 2). This 
patient had positive cytology, warranting early surgery. Although documented to be helpful in the 
diagnosis of early autoimmune pancreatitis due to an idiosyncratic distribution of tissue stiffness, the 
guidelines cannot recommend the use of elastography in differentiating advanced chronic pancreatitis 
from pancreatic cancer[20].

One of EUS-E’s many inherent limitations is evident here: Its low specificity and inability to 
consistently distinguish between pancreatic diseases (inflammatory vs neoplastic) or even types of 
pancreatic malignancies.

Inbuilt elastography software reduces intra-observer variability by overcoming the selection bias of 
images by providing the operator with a real-time movie of all recorded frames. However, there 
remains significant inter-observer variability when differentiating NETs from normal pancreatic 
parenchyma, as both may appear green i.e. soft.

Here are a few other scenarios where misdiagnoses occur: (1) If the endoscopist places too much 
compressive pressure between the probe and the examined tissue; and (2) False image reconstruction 
due to the heterogeneity of the examined tissue i.e. in the case of pancreatic cancer where some areas 
within the lesion are either necrotic, fibrous from desmoplasia, or have become inhomogeneous from 
vessel infiltration.
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Figure 1 Endoscopic ultrasound-elastography. A and B: Endoscopic ultrasound-elastography (EUS-E) use in demonstrating stiffness of pancreatic ductal 
adenocarcinoma tissue (encircled A) against normal pancreatic parenchyma (encircled B); C: EUS-E use in demonstrating stiffness of metastatic lymph nodes in 
patient from B. The nodes in B-mode when seen with elastography are blue, indicating that it’s hard and potentially malignant.

Figure 2 The clinical application of endoscopic ultrasound-elastography (with contrast-enhanced endoscopic ultrasound) to target fine 
needle biopsy sampling in a patient with a degenerated intraductal papillary mucinous neoplasm under our surveillance. A: Case 
demonstration of a degenerated intraductal papillary mucinous neoplasm and combination use of endoscopic ultrasound-elastography (EUS-E) to direct fine needle 
biopsy (FNB) sampling. Pre-EUS-E, the area of concern was iso-echoic, resembling normal parenchyma; however, under EUS-E, the area is stiff (blue); B: Contrast 
use post-FNB showing hypo-enhancement of the area of concern, confirming the area previously highlighted by EUS-E; C: Post-EUS-E and contrast-enhanced EUS 
guided FNB sampling in the same patient, allowing targeted sampling of the hard area.

Other pitfalls include: (1) A lack of standardization for cut-off values for strain ratios, although some 
experts propose using parenchyma-to-lesion SR of > 9.10 (PPV 89.7%; NPV 76.9%) or the gastric wall-to-
lesion SR of > 16.2 (PPV 86.5%; NPV 80%)[21]; (2) Border delineation once the lesion becomes larger
[22]; (3) Inability to measure strain if the lesion is too far away from the probe, and lastly; and (4) Image 
acquisition when fluid is present, i.e. with cysts[22].

Carrara et al[21] demonstrated the use of fractal geometry analysis (Figure 3) to quantify the surface 
roughness of 2 tissues that share the same mechanical properties on elastography, and in doing so, 
overcome a significant limitation of EUS-E, but further trials are required[21]. Studies are also underway 
to evaluate the use of EUS-E in differentiating actual vessel wall infiltration by tumor tissue from that 
caused by an inflammatory reaction. The European Elastography Group, amongst others, is also 
designing and training deep learning platforms for future use in reducing inter-operator variability.

CE-EUS IMAGING
CE-EUS imaging is a non-invasive technique that utilizes a contrast agent during a EUS examination to 
improve diagnostic imaging. Contrast use in ultrasound imaging was first pioneered in 1986 by 
Matsuda and Yabuuchi with the infusion of CO2 as a medium. Kato heralded its subsequent application 
into EUS in 1991, confined only to angiographic examinations[23]. In the mid-1990s, the use of Doppler 
function and sonicated serum albumin expanded the application of CE-EUS beyond the premise of 
angiographic studies[24].

In CE-EUS, the mechanical index (MI) alludes to the reaction of microbubbles in response to a 
stimulus in the form of an acoustic wave[25]. From this response, CE-EUS is typed into two: (1) 
Contrast-enhanced high-MI EUS (CEHMI-EUS), not requiring specific interpretive software; and (2) 
Contrast-enhanced low-MI EUS (CELMI-EUS), requiring a contrast-specific software mode.

A significant advantage of CELMI-EUS over CEHMI-EUS is its higher resolution and visibility of the 
contrast enhancer bubbles. In contrast, CEHMI-EUS's ability to display pancreatic macro-vessels (vessels 
with a diameter of approximately 0.2 mm and higher) comes at the expense of microbubble destruction 
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Figure 3 Three-dimensional surface fractal dimension estimate. A and B: Endoscopic ultrasound-elastography images (A) are used to highlight 
representative parenchymal regions (B) of solid pancreatic lesions; C: A computer-aided image analysis system generates an irregularly-shaped three-dimensional 
surface as a “shape matrix” of points with the column and row numbers proportional to the x and y coordinates and with the depth information z (x, y) stored as a 
matrix element. The three-dimensional fractal dimension, which is an index of the “surface roughness”, is automatically determined using the box-counting algorithm. 
The fractal dimension of a surface is expressed by a real number greater than 2 (the Euclidean dimension of a two-dimensional surface) and less than 3 (the 
Euclidean dimension of a solid). A surface with a higher surface fractal dimension is wrinkled than one with a lower dimension.

and, as a result, CEHMI-EUS's use for Doppler enhancement is preferred[26].
In collaboration with European experts in a recently issued guideline, the Asian Federation of 

Societies for Ultrasound in Medicine and Biology (AFSUMB) concluded that the MI should be between 
0.2 and 0.4. They added that the 0.1 to 0.4 range used in published reports was influenced by several 
factors, including EUS probe type (radial or linear), image processing hardware, and software, phase-
inversion harmonics, amplitude modulations, and focal points[27].

Contrast-enhanced harmonic EUS imaging 
Tissue harmonic imaging (THI) is an ultrasonographic technique, first introduced in 1997, that utilizes 
nonlinear propagation of ultrasound (US) waves to generate images that are superior in quality to the 
fundamental B-mode imaging mode[28]. This tool was incorporated into the EUS imaging arsenal 
approximately a decade later[29].

The two image processing techniques developed to generate harmonic images were the band ltering 
method and phase inversion method. The ability of harmonic imaging to improve signal-to-noise ratio 
and reduce artifacts produced by side lobes, grating lobes, and reverberation allowed it to outperform 
earlier imaging applications, such as Color Doppler and power Doppler, which were susceptible to 
motion artifacts[30]. Furthermore, this modality allowed for visualization of parenchymal perfusion and 
microvasculature of the pancreas[31].

AFSUMB, in their summary recommendations, alluded to the benefit of contrast-enhanced harmonic 
EUS (CH-EUS) for characterization of solid pancreatic masses, pancreatic cancer staging in patients with 
suspected major vessel involvement, identication of mural nodules in cystic pancreatic lesions, and 
detection of subtle pancreatic lesions[27].

Nevertheless, THI is saddled with certain intrinsic technical limitations. The narrow bandwidth 
decreases axial resolution when applying the band filtering method. This limitation gave rise to the 
conception of the phase inversion method. However, the latter method necessitates the transmission of 
two US pulses, thus decreasing the frame rate and raising the possibility of motion artifacts[30].

Contrast agents
The first reported use of intravenous ultrasound contrast agents (UCAs) in ultrasonography was for 
image enhancement during echocardiography. Its adoption followed this in transabdominal ultrasono-
graphy before it was eventually introduced in EUS[32]. EFSUMB’s recommendation on contrast for CE-
EUS in non-liver applications highlighted its similarity to its use in transabdominal CEUS[33]. Worth 
noting is that the modalities, as mentioned earlier, represent the only imaging techniques that allow a 
dynamic observation of the CE phases[34]. UCAs are used to augment their ability in lesion character-
ization and intervention guidance.

During the evolutionary phase of CE-EUS, various agents were explored to advance the diagnostic 
performance of this modality. To render stability and durability, all commercially available agents are 
composed of gas-filled microbubbles encapsulated by a phospholipid or albumin shell. Each agent is 
aptly categorized based on its half-life and ability for transpulmonary passage[32].

The AFSUMB working group strongly recommends the following for use as UCAs: SonoVue 
(Lumason, sulfur hexafluoride micro-bubbles; Bracco, Milan, Italy; available in Europe, China, India, 
Korea, Hong Kong, New Zealand, Singapore, and Brazil); Definity (octafluoropropane microbubbles; 
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Bristol- Myers Squibb Medical Imaging, New York, NY, United States; available in the United States, 
Canada, and Australia), and Sonazoid (perfluorobutane microbubbles; GE Healthcare, Chicago, IL, 
United States; Daiichi Sankyo, Tokyo, Japan; available in Japan, South Korea, Taiwan and Norway). 
They further stated that neither of the agents had a superior diagnostic ability over the other[27].

Outcomes 
A significant emphasis has been placed on researching the adjunctive role of CE-EUS in evaluating solid 
pancreatic masses. The result is a wealth of data that supports its use in assessing the pancreas and 
related pathologies[33]. Mei et al[35] affirmed this in a recent meta-analysis (n = 1497) to evaluate the 
accuracy of CE-EUS in discriminating between benign and malignant pancreatic masses with a reported 
pooled sensitivity, specificity, and diagnostic odds ratio of 0.91, 0.86, and 69.50, respectively[35].

Another meta-analysis that included 1139 patients across 12 studies highlighted that both high and 
low MI techniques had a 94% sensitivity and 89% specificity in differentiating pancreatic adenocar-
cinoma from other pathologies, with an area under the receiver operating characteristic curve of 0.9732. 
Subgroup analysis by excluding the outliers provided a sensitivity and specificity of 93%[36].

Săftoiu et al[37] analyzed the diagnostic accuracy of combining CE-EUS and elastography to differ-
entiate focal pancreatic masses and highlighted its influence in decision making when confronted with a 
negative EUS-FNB result with a strong clinical suspicion of malignancy. A similar study by the same 
authors assessed the "synergistic" performance of CE-EUS with EUS-EG in 50 patients with a negative 
FNA of pancreatic masses. The results determined 19 to be pancreatic adenocarcinoma and 31 to be 
pseudo-tumoral chronic pancreatitis. CE-EUS reported a specicity of 100% and an accuracy of 93% in 
the cohort of 25 patients where EUS-EG demonstrated high lesion stiffness, diagnosing malignancy[38].

Buxbaum et al[39], in a prospective tandem-controlled trial involving 101 cases of focal pancreatic 
lesions, concluded that CE-EUS increased the diagnostic yield compared to conventional B-mode EUS 
with an odds ratio of 7.8 (95%CI: 2.7-30.2). Ninety-one percent of lesions were correctly characterized in 
the validation cohort, with an improved yield compared to unenhanced EUS[39]. In a real-life clinical 
setting, we demonstrate its use in a case of a degenerated IPMN showing how its use allows differen-
tiation of tumor vegetation from mucus within a cyst (Figure 4).

AI
AI can level the playing field for endoscopists globally by making this highly sensitive and specific, but 
technically challenging, diagnostic tool we know as EUS more user-friendly and quicker to master.

The existing image enhancing techniques, CH-EUS and EUS-E, are available to the endoscopist 
currently as stand-alone software plug-ins. They require prior training before use with a low to 
moderate learning curve to master given that the user is already proficient with an echoendoscope.

The potential of AI is seen here in its ability to harness the diagnostic power of EUS while unifying all 
existing and future image-enhancing techniques “under one roof.” This unifying software can aid the 
endoscopist by highlighting areas of concern while prompting suitable image-enhancing methods.

This added edge of diagnostic confidence can help overcome lesion ambiguity and improve lesion 
specificity, regardless of the years of prior endosonographic training.

Principle of AI
AI is a divaricate under the broader umbrella of computing methodology and information sciences. It 
utilizes autonomous properties from rapidly advancing technological developments in deep learning as 
a segue to mimic human behavior ultimately. Over the last decade, AI applications have quickly 
matured. Their iterations in the daily practice of various fields within medicine are expanding with 
success.

The development and training of computer-aided diagnosis (CAD) systems revolve around the aim 
of autonomously distinguishing features that the human eye and mind may unintentionally miss. 
Identifying and interpreting changes of varying subtleties, particularly in medical images, has been the 
high point of AI. The objectivity of a trained CAD system could potentially seek to overcome one of the 
most significant limitations of any physician or endoscopist: The lack of an intra- and inter-observer 
agreement. Suppose an AI system can distinguish between neoplastic and non-neoplastic lesions with 
near perfection after training, it would seem reasonable to imagine that the burden from pathological 
examinations may be considerably relieved very soon. Thus far, colonic adenoma detection and differ-
entiation have gained tremendous attention from several CAD systems utilizing deep learning and 
Artificial Neural networks. Due to their promising results, these systems have gained popularity in day-
to-day endoscopy usage[40-43].

AI and EUS
The most common application of AI in EUS is creating machine learning architectures that extract EUS 
images and analyze them for their textures (boasting accuracy of up to 93%-94%) to create an artificial 
neural network that can ultimately serve as a clinical decision support tool. It can do one of 2 things: (1) 
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Figure 4 Use of contrast-enhanced endoscopic ultrasound to study the evolution of a degenerated intraductal papillary mucinous 
neoplasm and the vegetations within, allowing differentiate between mucus and vegetations as only tumor vegetations will show 
inhomogeneous enhancement. 

Using the station approach to familiarize the endoscopist with normal anatomy, as demonstrated by 
Kanno et al[44]; and (2) Non-invasively differentiating pancreatic parenchymal pathologies when EUS-
FNB may not be clinically feasible or have a poor diagnostic yield in the case of cysts or AIP[40].

In 2008, two studies emerged providing the diagnostic ability of AI integrated EUS in reporting 
pancreatic diseases. Săftoiu et al[45] reported 68 cases in a prospective study using a neural network 
EUS to compare PDAC and chronic pancreatitis. The authors reported 95% accuracy in the system’s 
diagnostic ability. In the second study, Das et al[46] reviewed 319 images with a neural network system 
and performed a principal component analysis to compare acute and chronic pancreatitis, from 
pancreatic carcinoma. The study reported the area under the curve indicating the systems’ diagnostic 
ability to be 93%. In 2013, Zhu et al[47] studied 288 cases retrospectively with a support vector machine 
and reached an accuracy of 94%.

Additionally, Săftoiu et al[48], in a prospective multicenter study, reported 167 cases using a neural 
network system, reaching a diagnostic accuracy of 94%. Ozkan et al[49] reported an accuracy of 93% in 
reviewing 332 images in retrospect using a neural network. A deep learning architecture specific to EUS 
noteworthy of mentioning is one used to differentiate high-grade dysplasia vs malignancy for IPMN 
with an accuracy of 94%[42]. In a single-center retrospective study that trained a deep learning 
algorithm using 3970 still images, deep learning was superior to human ability in its diagnostic accuracy 
(95% vs 56%), proving an objective method such as is this is more accurate in diagnosing malignancies 
of IPMN origin in comparison to conventional EUS features[42].

AI demonstrates its usefulness again in increasing diagnostic specificity using occlusion heatmap 
analysis to differentiate AIP from PDAC. The result is overcoming a delay in diagnosis, initiating 
immunosuppressive or chemoradiotherapy early, and preventing unwarranted resections (90% 
sensitive, 85% specific)[50]. It is worth mentioning that these studies use a cross-validation method with 
an internal control check, thus inflating the actuality of the diagnostic accuracy. In its applications to 
actual EUS fine-needle biopsy histopathological samples, AI was able to bring diagnostic clarity to 
difficult-to-analyze samples with an accuracy of 94.1% despite cellular paucity and contamination.

In centers with a lack of dedicated GI pathologists, AI software can quickly close this gap of 
diagnostic delay and eliminate repeat sampling at second or third centers[11]. One setback of AI is the 
black-box phenomenon, which can cause judgment errors without an explanatory basis. That said, a 
trained convolutional neural network model with extracted visual features from various pancreatic 
diseases, namely chronic pseudo-tumoral pancreatitis, NET, and PDAC, can accurately produce a real-
time diagnosis[51].

SUMMARY RECOMMENDATIONS
For a suspected pancreatic mass, we propose utilizing both EUS-E and CE-EUS to augment conven-
tional B-mode imaging (Figure 5).

Their advantages in defining nodules and ambiguous ROIs allow FNA/FNB sampling precision, 
making them crucial adjuncts in day-to-day practice, whether for first encounters or follow-up visits.

Validation studies are still underway to evaluate promising non-contrast-based high-definition 
imaging modalities. The modalities are in-built into the echo processor for ease of microvasculature 
study. They carry great potential in supplementing and possibly surrogating UCAs in conditions, such 
as pregnancy or compromised cardiopulmonary status[52]. However, until then, EUS-E and CE-EUS 
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Figure 5 Graphical representation of existing diagnostic applications to endoscopic ultrasound imaging in the form of a fractal tree, 
fractal analysis with artificial intelligence being the possible future of enhanced endoscopic ultrasound imaging. AI: Artificial intelligence; CH-
EUS: Contrast-enhanced harmonic endoscopic ultrasound; FNB: Fine needle biopsy.

coupled with B-mode imaging will remain the choice stratagem in improving the early detection of 
pancreatic cancer.

CONCLUSION
In the EUS world of greys, colors emerged from elastography and patterns from contrast use, improving 
the overall accuracy of pancreatic mass differentiation. AI could be the rainbow that bridges us to a 
more precise diagnosis.
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