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Abstract
Pancreatic insulin-secreting β cells are essential in main
taining normal glucose homeostasis accomplished by 

highly specialized transcription of insulin gene, of which 
occupies up to 40% their transcriptome. Deficiency of 
these cells causes diabetes mellitus, a global public health 
problem. Although tremendous endeavors have been 
made to generate insulin-secreting cells from human 
pluripotent stem cells (i.e. , primitive cells capable of 
giving rise to all cell types in the body), a regenerative 
therapy to diabetes has not yet been established. 
Furthermore, the nomenclature of β cells has become 
inconsistent, confusing and controversial due to the lack 
of standardized positive controls of developmental stage-
matched in vivo cells. In order to minimize this negative 
impact and facilitate critical research in this field, a post-
genomic concept of pancreatic β cells might be helpful. 
In this review article, we will briefly describe how β cells 
were discovered and islet lineage is developed that may 
help understand the cause of nomenclatural controversy, 
suggest a post-genomic definition and finally provide a 
conclusive remark on future research of this pivotal cell.
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Core tip: Pancreatic β cells are highly effective and 
efficient in the production of insulin, and specialized 
in its regulated secretion. Deficiency of β cells causes 
diabetes mellitus, the prevalence of which keeps climbing, 
despite new drugs continuously becoming available to 
clinics. Thus regenerative therapies to this devastating 
disease show great promise. Nevertheless, the generation 
of β cells requires multiple forced fate changes from 
pluripotent stem cells and the latter derived insulin+ cells 
expressing selective key β-cell transcription factors may 
not be the genuine islet counterparts. Hence their post-
genomic concept may help the future development of 
diabetes regenerative therapies.
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INTRODUCTION
Pancreatic insulin-secreting β cells are of pivotal import
ance to our physiology because they play a central role 
in maintaining normal glucose homeostasis by their 
ability to produce and secrete insulin - a life hormone 
released in a fine-tuned manner as the body requires it. 
Deficiency of glucose-responsive β cells causes diabetes 
mellitus, a global public health issue with a progressively 
increasing prevalence. Absolute deficiency of these β 
cells due to autoimmune-mediated destruction results in 
type 1 diabetes mellitus (T1D). Relative deficiency leads 
to type 2 diabetes mellitus (T2D), caused by multiple 
issues, such as the failure of peripheral metabolic 
tissues to respond to insulin action, the liver’s inability 
to control the production of glucose and the demise 
of islet β cells[1]. Diabetes mellitus currently affects 
over 387 million people worldwide. Despite a variety 
of treatments being continuously brought to the clinic, 
the incidence of this disorder is progressively climbing 
and is projected to reach 592 million by 2035[2]. Thus, 
there is an urgent need for novel treatments, such as 
regenerative medicine, a field established by the creation 
of human embryonic stem cells (ESCs) in 1998[3]. A 
regenerative therapy would provide a cure of T1D (should 
autoimmunity to β cells be controlled) and also for a subset 
of T2D, either by transplantation of donated hormone-
secreting islets[4] or of in vitro generated genuine β cells 
from ESCs or induced pluripotent stem cells (iPSCs), or 
ultimately by regeneration in situ of endogenous β cells.

For diabetes regenerative medicine, tremendous focus 
has been applied to generate insulin-secreting β cells in 
vitro. However, over the years the nomenclature of β cells 
has unfortunately become inconsistent, confused and 
controversial, which in turn has apparently hampered the 
progress of the field. In order to minimize the negative 
impact of this confusion and to facilitate critical research, 
we suggest a post-genomic concept of pancreatic β cells. 
We will briefly describe how β cells were discovered and 
the islet lineage developed; how this controversy arose; 
suggest a post-genomic definition and finally provide 
concluding remarks on this vital research.

BRIEF HISTORICAL ACCOUNT
The “islet of Langerhans” was named after Paul Lang
erhans, a German medical student, who in 1869 observed 
small clusters of “clear cells” within the pancreas that 
were obviously different from the surrounding pancreatic 
tissue. Subsequently, Edouard Laguesse termed these 
clusters as islets of Langerhans (Figure 1). Approximately 
30 years later, in 1907, Falkmer et al[5] found the islet 
cells harbored distinct granules that were different from 
the zymogen granules in the acinar cells. For example, 
one type of islet cells was basophilic (type B) stained by 

certain histochemical methods and another was not (type 
A). A more detailed description of how different types of 
endocrine cells in the pancreas may be distinguished is 
documented elsewhere.

In the year 1922, the B cells were discovered to 
produce the hormone insulin (Figure 1) by Banting and 
Best[6] who were awarded the Nobel prize for Medicine in 
1923. The presence of insulin in the B cells (now known 
as β cells) was first confirmed immunohistochemically in 
1957[7]. Glucagon was identified in the A cells (now known 
as α cells) in 1962; this hormone raises blood sugar levels 
by releasing glucose stored in the liver as glycogen, which 
is formed in a process called gluconeogenesis. Insulin 
was the first protein to be fully sequenced (cf. Figure 1). 
This was accomplished by Frederick Sanger’s group in 
1955[8] and in 1958 Sanger received the Nobel Prize in 
Chemistry for this hallmark discovery. In 1977, Ullrich 
et al[9] successfully cloned the insulin gene and its cDNA 
using recombinant DNA technology.

Since then, knowledge of this important cell type 
has increased exponentially. In particular following the 
creation of human ESCs, numerous academic groups 
and biotechnological companies have attempted to 
generate β cells in vitro from pluripotent stem cells 
(PSCs, which include ESCs and iPSCs) with the aim of 
advancing pancreas developmental biology, providing a 
renewable cell source for drug screening and, ultimately, 
establishing a regenerative therapy for diabetes. How
ever, an associated negative effect of this period was 
the appearance of controversies and confusions on the 
definition of β cells. This confusion arose from simplistically 
treating PSC-derived insulin+ cells expressing several 
markers of key β-cell transcription factors as a genuine 
counterpart of in vivo glucose-responding cells. In order 
to help understand this complex and controversial issue, 
we will briefly introduce the embryology of pancreas 
development.

EMBRYOLOGY
The pancreas is an endocrine as well as exocrine organ. 
It is derived from the primitive germ cell layer known as 
endoderm (the other two layers are the ectoderm and 
mesoderm) that originates from the inner cell mass from 
which ESCs were also originally derived. After gastrulation, 
the thickened endodermal epithelium along the dorsal 
and ventral surfaces of the posterior foregut gives rise to 
the primitive pancreas. In mice, this thickening can be 
identified histologically at embryonic day (E) 9.0-9.5[10].

The columnar epithelial cells expand into adjacent 
mesoderm-derived mesenchymal tissue and form the 
dorsal and ventral buds of the pancreas primordia. These 
expanding and branching buds fuse together as the 
developing gut rotates. The fused developing pancreas 
continues to grow, differentiate and, ultimately, develop 
into the mature organ. The adult pancreas consists 
of digestive fluid-transporting ductal tissue, digestive 
enzyme-secreting acinar tissue and hormone-secreting 
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endocrine tissue located in the islets of Langerhans. The 
latter consist of five types of endocrine cells including 
in addition to the afore-mentioned β cells and α cells, 
somatostatin-secreting δ cells, pancreatic polypeptide-
secreting PP cells and ghrelin-secreting ε cells.

Naturally, human pancreas development displays 
some features not observed in rodents. For example, 
the dorsal bud can be detected as early as 26 d post 
conception (dpc), an equivalent stage to E9.5 embryos 
in mice, but embryonic β cells are not visible until 52 
dpc, approximately 2 wk later than the equivalent stage 
at which they could be detected in mice. The ontogeny 
of human embryonic β cells precedes that of embryonic 
α cells at 8-10 wk of development[11]. Genetic lineage 
tracing in mice demonstrates that embryonic β cells 
do not become postnatal functional insulin-secreting β 
cells[12]. All islet cells are detectable at the end of the first 
trimester in humans[11], but at very later stages (E17.5) 
in mice[13]. These data indicate that the sequence of key 
developmental events in human pancreatic development 
is distinct from that in mouse[14], and this is supported 
by differences in gene expression patterns during both 
developmental and disease processes in these species[15]. 
Further details of human pancreas development can 
be found in reviews elsewhere[16-20]. In the following 
sections, we will discuss several intermediate stages 
of islet development, in order to help understand how 
the confusing and controversial terminology concerning 

insulin-producing β cells appeared.

DEVELOPMENT OF INSULIN-SECRETING 

b CELLS
Definitive endoderm
One of three germ layers to appear during embryo
genesis, the definitive endoderm gives rise to numerous 
organs in a process that is summarized in Figure 2. 
ESCs can be made in vitro to recapitulate their in vivo 
developmental pathways, to give rise to definitive 
endodermal (DE)-like cells by being cultured in the 
presence of a high concentration of activin A, a member 
of the transforming growth factor β superfamily. ESC-
derived human expandable DE-like cells are termed 
endodermal progenitors[21]. Remarkably, they have been 
shown to self-renew in the presence of a group of growth 
factors comprised of bone morphogenetic protein 4, 
fibroblast growth factor 2, vascular endothelial growth 
factor and epidermal growth factor[21]. These progenitors 
can be passaged at least 24 times with a population 
expansion of five orders of magnitude. Furthermore, 
reprogrammed fibroblast-derived DE-like cells have 
been independently demonstrated to be capable of 
expanding approximately 65000-fold in the presence of 
activin A and LiCl[22]. These data suggest that these DE-
like cells are highly proliferative. To ensure their correct 
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Figure 1  Historical account of the discovery of insulin. 
Presented four landmarked discoveries of the islets of 
Langerhans, insulin, the sequencing of insulin and insulin 
gene recombinant technology.
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mouse foregut at E9.0-9.5 expresses the gene named 
Pdx1 (pancreas and duodenal homeobox 1, also known 
as IPF1, insulin promoter factor 1 in humans). Pdx1 is a 
transcription factor of the parahox homeobox family and 
is essential for both the expansion of pancreas primordial 
populations[26] and the function of adult β cells[27,28]. Gen
etic lineage tracing experiments demonstrated that 
pancreatic Pdx1-expressing (Pdx1+) progenitors give rise 
to acinar, duct and endocrine tissues in the pancreas[29]. 
These progenitors are located at the tip of the branching 
pancreatic tree marked by Pdx1+Ptf1a+ (pancreas trans
cription factor 1a) Cpa1+(carboxypeptidase 1)[30]. Replace
ment of most of the homeodomain of PDX-1 with the lacZ 
reporter, allows visualization of the PDX-1/β-galactosidase 
fusion allele, and it was found to be expressed in 
pancreatic, duodenal and antral stomach lineages[31]. The 
non-pancreas endoderm-derived expression of Pdx1 was 
established with the application of a different labeling 
strategy[32]. These studies suggest that PSC-derived 
Pdx1+ cells may commit to any of these lineages. Thus, 
caution should be taken because all PSC-derived Pdx1+ 
cells may not be the equivalent of the pancreatic Pdx1+ 
progenitors.

In humans, numerous PDX1+ progenitors can be 
detected easily in the developing pancreas between 8 and 
21 wk of age[33,34]. These PDX1+ progenitors frequently 
express SOX9 and are highly proliferative[35], supporting 
the notion that PDX1+ progenitors are committed from 
SOX9+ multipotent progenitors. The number of PDX1+ 
cells that also express insulin or somatostatin progressively 
increases during this period of development[33]. An un
answered fundamental question is the origin of the PDX1+ 

differentiation, the endodermal progenitors should be 
transcriptomically compared to isolated embryo derived 
DE cells, at least with mouse cells. Although further 
studies are required, these endodermal progenitors 
may provide expandable pre-pancreas progenitors for 
generation of insulin-secreting β cells.

Sox9-expressing progenitors
Sox genes transcribe members of the Sry (sex deter
mining region Y) box-related high-mobility group trans
cription factor family and are versatile regulators of the 
stem/progenitor cell fate[23] as well as of embryonic 
development of many organs including the pancreas. 
Sox9 is a critical transcription factor detectable at E10.5 in 
the dorsal and ventral pancreatic epithelia[24]. Importantly, 
Sox9-expressing embryonic pancreatic epithelia at E13.5 
have the capacity to give rise to acinar, ductal and islet 
lineages in the pancreas[25]. However, Sox9 expression is 
gradually confined to pancreatic duct cells by E16.5[25]. 
Lineage tracing studies demonstrate that Sox9 is also 
expressed in other posterior foregut-derived organs 
including the bile duct, the duodenum and the liver. For 
example, it is expressed in bile duct cells adjacent to the 
portal vein from E16.5. Sox9 is also broadly expressed 
in the intestinal epithelia at E13.5 but become restricted 
to the crypt from E18.5[25]. These data indicate that PSC-
derived Sox9-expressing cells may commit to multiple 
endoderm-derived lineages including the pancreas.

Pancreatic progenitors express Pdx1
A group of special cells in the thickened DE epithelium 
along the dorsal and ventral surfaces of the posterior 
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Figure 2  Multiple fate commitments of pluripotent stem cells lead to the development of insulin-secreting b cells. Whereas inner cell mass (ICM) gives rise 
to three germ layers (the ectoderm, mesoderm and endoderm) during gastrulation, embryonic stem cells (ESC) or induced pluripotent stem cells (iPSC) preferentially 
differentiate into definitive endodermal cells [DE, marked by the expression of Sox17 (the Sry-related HMG box transcription factor 17) and Foxa2 (foxhead homeobox 
2a)] in the presence of activin A. Along the anterior-posterior axis the DE is divided into foregut (giving rise to the lung, thyroid and oesophagus), posterior foregut 
[PF, marked by the expression of the transcription factor Sox9 and hindgut (committing the intestine and colon)]. In vitro, retinoid acid would direct the DE cells to PF 
cells. Rather than to the stomach, liver and gallbladder, the PF cells preferentially give rise to pancreatic progenitors (PP, marked by the expression of the transcription 
factor Pdx1) in the presence of retinoid acid (RA) and fibroblast growth factor 10 (FGF10) or indolactam (ILV). Principally towards the exocrine and ductal tissues, 
the PP also commits to progenitors of the endocrine islet lineages [IP, marked by the expression of a high level of Ngn3, as well as NeuroD1 (neural differentiation 
1), IA1 (insulinoma associated 1), Isl1 (Islet 1), Pax6 (paired box factor 6) and Rfx6]. The ES/iPSC-derived Pdx1+ cells gave rise to Ngn3+ cells in the presence of 
tetrabenzine (TBZ). The IP then differentiates into five types of islet cells [a, b, d (somatostatin), PP (pancreatic polypeptide) and e (ghrelin)]. The “?” indicates that 
the differentiation factors have not yet been completely validated.
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progenitors: Are they generated by self-renewal, or by 
commitment from their endodermal progenitors, or from 
both sources? 

Following in vivo developmental pathways, PSCs can 
be directed to give rise to Pdx1+ cells in the presence of 
the protein kinase C activator indolactam (ILV)[36]. These 
cells are able to proliferate 16-fold in the presence of 
pancreas-derived mesenchymal cells[37]. Independent 
confirmation of these results is essential to verify this 
capacity of the Pdx1+ cells. It is also important to address 
whether all or only a minor fraction of PSC-derived Pdx1+ 
cells commit along the endocrine pathway. To resolve 
these issues, identification of a specific marker that 
allows the purification of the Pdx1+ pancreatic progenitor-
like cells would be valuable.

Ngn3-expressing islet progenitors
At around E9.5 in mice, a small group of cells in the 
thickened posterior foregut DE epithelium begins to express 
the basic helix-loop-helix transcription factor neurogenin 3 
(Ngn3, also known as neurog3)[29,38,39]. These Ngn3+ cells 
are islet progenitors because they can give rise to all islet 
lineage cells. Whereas mouse Ngn3 mRNA expression in 
the developing pancreas peaks around E15.5[40] (equivalent 
to week 9 in humans), human NGN3 expression is low 
before 9 wk, from which time, its expression increases 
sharply and remains high until 17 wk[34]. 

A number of observations support the importance of 
Ngn3 in islet development: Islet cells are not observed 
in Ngn3 knockout mice[38]; gene lineage tracing demon
strates that Ngn3+ progenitors give rise to all pancreatic 
endocrine cells[29]; in adult pancreas, purified Ngn3+ cells 
activated by pancreatic duct ligation (PDL) can, after 
injection into a fetal pancreas in vitro, differentiate into 
all islet cell types[39]. In contrast, one group reported that 
although PDL allows activation of Ngn3 expression, the 
Ngn3+ cells were not able to complete the entire β-cell 
developmental program[41] and a more recent study 
found that β-cell mass and insulin content were totally 
unchanged by PDL-induced injury[42]. The reason for these 
inconsistencies is unknown so future studies are required 
to resolve this matter. 

Interestingly, insulin protein has been detected in 
islet progenitors in the developing human and mouse 
pancreas. In a dual fluorescence reporter mouse line, a 
few Ngn3+ cells in the developing pancreas coexpress 
insulin[43]. In humans, some NGN3+ cells were also 
detected to coexpress insulin in the fetal pancreas 
between 10 and 21 wk[33]. Recently, inhibitors of vesicular 
monoamine transporter-2 (reserpine and tetrabenzine, 
TBZ), were shown to mediate differentiation of PSC-
derived Pdx1+ cells into Ngn3-expressing cells[44]. Again, 
caution has to be taken regarding the use of genetic 
lineage tracing in PSC differentiation because successful 
in vivo lineage tracing studies rely on the temporospatial 
cues (see review[45]) and Ngn3-expressing cells are 
present in multiple tissues including the endoderm-
derived intestine[46]. Despite lineage tracing demonstrating 

that Ngn3+ cells will complete the differentiation process 
prenatally to all pancreatic endocrine cells including β 
cells[29], these only become glucose-responsive postnatally.

INSULIN-SECRETING β CELLS
In adults, there are approximately 1000 endocrine islets 
in mice and 1 × 106 in humans distributed throughout a 
healthy pancreas, representing up to 2% of the total mass 
of the organ[47]. Each islet varies in size from 100 to 500 
µm in diameter and is made up of 1000-3000 cells[48]. 
In rodents, β cells are the major component, accounting 
for up to 80% of the total number in the islets, with the 
remainder comprised of α cells (approximately 15%) and 
the remaining endocrine δ, PP and e cells (approximately 
5%). In the human islet, the proportions of d and PP cells 
are similar, but β cells are less abundant (48%-59%) 
and the a-cell population accounts a 33%-46%[49]. 
Interestingly, a substantial number of ε cells are found in 
adult islets in humans, but not in other known species[50]. 

Insulin orchestrates blood glucose utilization by 
peripheral metabolic tissues such as the liver, muscle 
and adipose tissue, while glucagon raises blood glucose 
concentrations by acting on the liver, brain, adipose 
tissue and heart[51]. Thus both hormones are critical 
in maintaining glucose homeostasis. A close paracrine 
regulatory loop is present between a and β cells. For 
example, β cells secrete urocortin 3 to stimulate the 
release of somatostatin which in turn suppresses secreting 
glucagon from a cells[52]; a cells also generate ghrelin, 
which is normally believed to be produced by ε cells, to 
inhibit insulin secretion but stimulate their own glucagon 
secretion[53].

Clearly, the β cell is a highly effective and efficient 
factory specialized for the production of insulin. For 
example, on average a rodent β cell contains approximately 
10000 insulin granules (Figure 3), corresponding to 
approximately 10%-20% of the total cell volume. Each 
granule stores approximately 2 × 105 insulin molecules, 
thus a β cell could package 2 × 109 insulin molecules[48]. 
At least 17 key transcription factors (including FOXA2, 
FOXO1, HNF1A, INSM1, ISL1, MAFA, MNX1, MYT1, 
NEUROD1, NKX2.2, NKX6.1, PAX6, PDX1, RFX6 TCF7L2 
and RFX3) are required to maintain β-cell function[54]; 
some of these are shown in Figure 3. The basic-leucine 
zipper transcription factor MAFA (musculoaponeurotic 
fibrosarcoma oncogene family protein A), for example, is 
an important INS transactivator[55]. PDX1 is well known to 
activate and maintain INS and GLUT2 (glucose transporter 
2) expression in β cells[56,57]. A gene network controlled 
by NKX6.1 is essential for maintaining the functional and 
molecular traits of mature β cells[58]. Pancreatic β cells 
require NEUROD1 (neuronal differentiation 1) to achieve 
and maintain a functional state[59] by DNA methylation-
mediated repression of the lineage determination gene 
aristaless-related homeobox[60]. In addition to key 
transcription factors, the fractalkine (also known as CXCL1 
or neurotoxin)/CXCL1R (also known as GPR13) system 
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also regulates β-cell function and insulin secretion[61]. 
Furthermore, β cells develop a highly sophisticated 
electrophysiology[62] and glucose sensing system for blood 
glucose concentrations for fine-tuned secretion of insulin 
granules to maintain normal glucose homeostasis, which 
is critical for normal physiology of many pivotal organs. 

Recently, the application of high throughput RNA 
and DNA sequencing technologies has given us a more 
integral view of insulin-secreting β cells. Deep RNA 
sequencing of purified human β cells demonstrated INS 
is the most abundantly transcribed gene, representing 
approximately 38% of the β-cell transcriptome[63], 
within which also contains transcripts from over 9900 
other genes[64]. Massively parallel signature sequencing 
demonstrated that there are over 200 β-cell specific 
transcription factor genes[65] that regulate this fine-tuned 
function. Uniquely, the human INS gene is marked by 
high levels of histone acetylation and H3K4 demethylation 
at around approximately 80 kb from the transcription 
start site. These modifications in many other human 
genes are concentrated around only 1 kb of the start 
site[66]. Consistently, high-throughput sequencing of 
formaldehyde-assisted isolation of regulatory elements 
(FAIRE-seq) identified approximately 3300 human islet-
selective open chromatin sites[67]. Polyadenylated mRNA 
sequencing reveals that over 1000 long intergenic 
noncoding RNA species are transcribed in mouse and 
human β cells[68,69]. A review of transcriptomes and other 
omics of β cells can be found elsewhere[70].

CONFUSION IN THE CONCEPT OF β 
CELLS
Reductionist approaches applied over the last two decades 
have uncovered a complex transcription regulatory net

work for islet lineage development[71,72]. Despite the fact 
that intense international efforts have concentrated on 
differentiation of PSCs for replacing/restoring the lost β 
cell function, application of this knowledge for translational 
research to produce functional β cells in vitro has not been 
straightforward. This is because knowledge generated 
from in vivo studies in rodent models is not necessarily 
applicable to in vitro studies, in particular for human cells. 
Over this period, at least 11 nomenclatures and definitions 
have been given to insulin-producing cells (Figure 4) that 
were generally believed to be the equivalent of in vivo β 
cells.

As the pancreatic islet population and neural cells 
share a large number of markers and perhaps mech
anisms of differentiation[73], mouse ESCs were early 
reported to give rise to insulin-positive cells in culture 
conditions that were used for neural cell differentiation[74]. 
Although the differentiated cells were stained positive for 
insulin, it was subsequently shown this was due to the 
uptake of insulin from the culture medium rather than the 
activation of robust insulin transcription[75]. Additionally, 
there were several reports of generating pancreatic 
endocrine cells or functional β cells from PSCs[76-78]. Later 
these cells were however demonstrated to be similar 
to fetal β cells[79] and to lack the transcriptomic and 
epigenetic profiles of adult islet cells[80]. 

Nevertheless in such a short timeframe, PSCs have 
been convincingly differentiated following their normal in 
vivo developmental mechanisms into cells of approximately 
at the pancreatic progenitor and/or islet progenitor 
stages[21,36,37,80-84]. In contrast, due to a lack of knowledge of 
the late stage pancreatic endocrine lineage[85,86], empirical 
protocols have been used for their further differentiation. 
Inevitably the PSC-derived endocrine populations may only 
contain a small fraction of genuine insulin-secreting cells 
or are immature, as reversal of diabetes in mice requires 
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Glut2 (Scl2a2)
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Other key regulators
  Non-encoding RNA
  Epigenetic regutators
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Figure 3  An integral view of insulin-secreting b cells. The highly specialized cells have a powerful function that is regulated by multiple layers of signaling.
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five million SC-β cells[87] or further maturation in vivo[88]. 
Readers are referred to recent fine reviews regarding the 
current state and problems on PSC differentiation towards 
pancreatic endocrine cells[20,86,89-91]. Perhaps the problems 
and confusions on the concept of insulin-secreting β cells 
seem to have produced negative impacts in the academic 
community while generating unhelpful excitement and 
expectations on the reality of future diabetes regenerative 
medicine to the general public. Furthermore, the confusion 
and controversy has hampered the progress of not 
only the field of islet developmental biology but also the 
establishment of a regenerative therapy to diabetes per se. 
The following section exemplifies several potential, but not 
exclusive, causes of the confusion and controversy.

The presence of extrapancreas insulin-producing cells
Making the issues more complicated, multiple sites in the 
body can produce insulin. The thymus, another foregut-
derived organ (Figure 2), for example, normally produces 
insulin, in order to induce self-tolerance and protection of 
the body from the autoimmune destruction of pancreatic 
insulin-secreting β cells[92] as thymus-specific deletion of 
insulin results in both autoimmune destruction of these 
cells and diabetes[93]. Certain areas of the brain also 
express the insulin gene and produce insulin protein[94] 
and these share several transcription factors of the 
islet lineage[73]. In different diabetic models, including 
streptozotocin-treated mice and rats, ob/ob mice, 
and mice fed high-fat diets, insulin mRNA and protein 
expression have been detected in the liver, adipose tissue, 
spleen, bone marrow as well as thymus[95]. An interesting 
question is whether these extrapancreatic insulin-
producing cells are able to give rise in vitro to functional 
insulin-secreting cells. Otherwise, such extrapancreatic 
insulin-producing cells are simply non-functional cells. 

Taken together, these data suggest that PSC-derived 
insulin-producing cells might consist of physiologically 
irrelevant insulin-producing cells.

Multiple fate commitments may accumulate non-
functional insulin-producing cells
PSCs theoretically have the capacity to give rise to all of 
the functionally-defined 210 cell types in the body, so 
to induce them to becoming desirable β cells requires 
forcing them to make multiple fate commitments under 
the guidance of exogenous differentiation factors (Figure 
2). Treatment with these factors of course is not always 
100% effective, resulting in some cells differentiating 
along unwanted pathways, even giving rise to non-
functional insulin-producing cells especially in suboptimal 
or abnormal differentiation conditions. Currently, there is 
no documentation on whether any PSC-derived insulin-
producing cells in the differentiated product are similar to 
those of extrapancreas-derived ones.

Empirical protocol may generate non-functional insulin-
producing cells
The lack of knowledge of differentiation of late stage islet 
lineages[85,86] led researchers to develop cocktail protocols 
containing factors that have not been well-characterized. 
Development of such protocols depends heavily on the 
experience of researchers and poorly characterized 
combinations of factors may promote generation of non-
functional insulin-producing cells. A better understanding 
of the β-cell differentiation pathway and its underlying 
mechanisms would therefore allow the establishment of 
a standardized directed differentiation protocol and stage-
specific differentiation strategies, so that generation of 
non-functional insulin-producing cells could be minimized 
or avoided. 
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Figure 4  Conceptual confusions in insulin-secreting 
b cells. Insulin-secreting cells have been given a variety 
of nomenclature depending on the developmental stages, 
in vitro differentiation, functional states or reprogram/
transdifferentiation. The number of used nomenclature in 
parenthesis was from a Pubmed search in May 2015.
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β CELLS REQUIRE A POST-GENOMIC 
CONCEPT
A major obstacle/challenge in defining PSC-derived in
sulin-secreting β cells is that the temporospatial cues that 
help identify these in vivo are absent in differentiation in 
vitro. As insulin is only a member of an insulin-related 
family[96,97], it is critical to absolutely exclude whether any 
of the insulin antibodies (especially polyclonals) that have 
been used to characterize “insulin-producing cells” do not 
cross-react with other members of this family or even 
with other polypeptides. This is because “antibodies often 
recognize extra proteins in addition to the ones they 
are told to detect” and their reproducibility needs to be 
dramatically improved[98,99]. 

We propose at least four essential criteria for insulin-
secreting β cells for further discussions and considerations. 
Compared to adult β cells, the in vitro PSC-derived cells 
must have: (1) An equivalent number of insulin granules 
under electron microscopy; (2) a similar dynamic 
glucose stimulated insulin secretion; (3) a highly similar 
transcriptomic profile (not a similarity in a selected gene 
profile of transcriptomic datasets), and (4) the capability 
to normalize hyperglycemia within a few weeks after 
transplantation as an equivalent number of functional β 
cells do (Figure 5). 

Definition of functional insulin-secreting β cells at 
the transcriptomic level is an essential requirement. Alter
natively, single-cell transcriptomic and epigenomic 
analyses of PSC-derived insulin-producing cells could help 
establish this concept.

CONCLUSION
Currently the sophisticated insulin pump also known as 
the “Closed Loop Therapy” or “Artificial Pancreas” can 
deliver insulin in a precise manner, resulting in a significant 

improvement in the blood glucose control and the quality 
of life for people with diabetes[100,101]. Perhaps we should 
exercise extra caution for stem cell therapies to diabetes, 
due to the concern of tumorogenesis[102], off-target 
differentiation[89], biosafety and reliability having not yet 
been convincingly addressed. The application of genomic, 
epigenomic, transcriptomic, and/or proteomic approaches 
to characterize differentiated products will not only verify 
their safety profile and differentiated state but also shed 
light on their transcription regulation and molecular 
mechanisms. The pharmaceutical and biotechnological 
sectors should work together with the academic 
community to strengthen fundamental research, identify 
ways to purify/enrich PSC-derived progenitors at specific 
stages and develop directed differentiation protocols 
for the development of the stage-specific progenitors 
towards genuine insulin-secreting β cells. The progenitors 
at different stages and differentiated insulin-secreting 
cells would also be useful for fundamental research and 
drug screening. Thus, the ability to generate the highly 
specialized functional β cells in vitro will not only generate 
new knowledge of pancreatic endocrine lineages, but also 
provide a critical cell source for a diabetes regenerative 
therapy, a potentially robust and better medicine. In doing 
so, safe, stable, reliable and functional cellular products will 
ultimately be available to people with T1D and those with 
some forms of T2D. 
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