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Abstract
Atherosclerosis is a chronic inflammatory disorder of the 
vasculature and is the primary cause of cardiovascular 
disease (CVD). CVD is currently the world’s leading 
cause of death and the numbers are predicted to rise 
further because of a global increase in risk factors such 
as diabetes and obesity. Current therapies such as 
statins have had a major impact in reducing mortality 
from CVD. However, there is a marked residual CVD risk 
in patients on statin therapy. It is therefore important 

to understand the molecular basis of this disease in 
detail and to develop alternative novel therapeutics. 
Interferon-γ (IFN-γ) is a pro-inflammatory cytokine 
that is often regarded as a master regulator of atheros
clerosis development. IFN-γ is able to influence several 
key steps during atherosclerosis development, including 
pro-inflammatory gene expression, the recruitment 
of monocytes from the blood to the activated arterial 
endothelium and plaque stability. This central role of 
IFN-γ makes it a promising therapeutic target. The 
purpose of this editorial is to describe the key role IFN-γ 
plays during atherosclerosis development, as well as 
discuss potential strategies to target it therapeutically.
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Core tip: Atherosclerosis is an inflammatory disorder of 
the vasculature and studies in mouse model systems 
have highlighted the beneficial effects of counteracting 
inflammation in limiting the progression of this disease. 
Due to its key role in inflammation and atherosclerosis 
development, interferon-γ (IFN-γ) is seen as a promising 
therapeutic target. In this editorial we discuss the 
role of IFN-γ in atherosclerosis together with potential 
therapeutic approaches against this cytokine and its key 
downstream targets.
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INTRODUCTION
Atherosclerosis is the underlying cause of cardiovascular 
disease (CVD) such as myocardial infarction (MI) and 
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stroke. The World Health Organisation estimated that 
there were 17.5 million deaths from a CVD-related 
event in 2012, equating to approximately 1 in 3 global 
deaths[1]. The number of global deaths related to CVD 
has been predicted to increase due to rises in the 
incidences of obesity and diabetes and the acquisition 
of a westernised diet in developing countries. The 
disease is a major healthcare and economic burden and 
therefore there is a need to understand the disease in 
more detail and to develop new therapeutic approaches.

ATHEROSCLEROSIS DEVELOPMENT
Atherosclerosis is a chronic, inflammatory disease 
characterized by the formation of foam cells in initial 
atherosclerotic lesions which then progress into 
advanced plaques. Low-density lipoprotein (LDL) can 
become trapped in the intima of medium and large 
arteries and modified to oxidized LDL (OxLDL). The 
presence of OxLDL triggers an inflammatory response 
in the neighbouring endothelial cells (ECs), causing the 
release of a variety of pro-inflammatory cytokines and 
chemokines, and expression of adhesion molecules 
on the cell surface (activation of ECs). These factors 
include macrophage chemoattractant protein-1 (MCP-1), 
intercellular adhesion molecule-1 (ICAM-1), vascular 
cell adhesion molecule-1 (VCAM-1) as well as P- and 
E-selectins[2,3]. Such pro-inflammatory molecules guide 
circulating monocytes in the blood stream to the OxLDL 
accumulation in the intima of arterial walls and aid 
the progression of atherosclerosis development[4-6]. 
Once in the intima the monocytes become exposed to 
macrophage colony-stimulating factor, triggering their 
differentiation into macrophages as well as inducing 
scavenger receptor (SR) expression on their surface[2,7]. 
Macrophages are then able to uptake OxLDL by SR-
mediated endocytosis, macropinocytosis or phagocytosis 
and develop into foam cells, causing the appearance of 
the initial lesions and fatty streaks in arteries, which can 
then progress into mature plaques[8,9].

Mature atherosclerotic plaques are made up of 
vascular smooth muscle cells (VSMCs) and extracellular 
matrix (ECM), as well as accumulated OxLDL, chole
sterol and apoptotic cells, which form a lipid-rich necrotic 
core[10]. During plaque progression VSMCs proliferate 
and migrate towards the LDL accumulation and form a 
fibrous cap, which is tightly controlled and influenced 
by the nearby macrophages, ECs and T-cells[2,11]. As the 
fibrous cap continues to develop it forms a stable lesion 
by covering the large lipid-rich necrotic core, therefore 
the balance of ECM production and degradation can 
affect the stability of the lesion[2]. If the plaque ruptures 
it triggers a thrombotic reaction and in turn platelet 
aggregation, which can quickly impede or obstruct blood 
flow through the artery[7]. Depending on the location 
of the rupture it can potentially cause a MI or stroke. 
Therefore acute CVD events may be manageable by 
affecting plaque stability and preventing them from 

rupturing[7,12]. Amongst the cytokines involved in the 
development of atherosclerosis, interferon-γ (IFN-γ) 
is potentially a master regulator and will therefore be 
addressed in more detail.

IFN-γ
IFN-γ is a key pro-inflammatory cytokine in athe
rosclerosis development as it is capable of inducing 
the expression of approximately a quarter of genes 
expressed in macrophages[3]. Immune cells present in 
the atherosclerotic lesions, including T-lymphocytes, 
natural killer T-cells, macrophages and other antigen 
presenting cells, secrete IFN-γ at pronounced levels[13,14]. 
Stimulation of many signaling pathways that regulate 
the immune and inflammatory responses can be induced 
by IFN-γ. The major signaling pathway that IFN-γ signals 
through is the Janus kinase (JAK)-Signal Transducers 
and Activators of Transcription (STAT) pathway[3]. 

JAK-STAT pathway
The IFN-γ cell surface receptor complex (IFN-γR) is 
made up of two subunit pairs (IFN-γR1:IFN-γR) which 
dimerize upon binding of the cytokine[13]. Bound to each 
subunit are two JAKs 1 and 2, which become activated 
by phosphorylation of tyrosine residues in the N-terminus 
in a mainly JAK2-dependent process[15]. Once activated, 
the JAKs phosphorylate the tails of the IFN-γR which 
triggers the recruitment of STAT1 monomers from 
the cytoplasm that then interact with the receptor via 
their src-homology 2 domains[16]. The recruited STAT1 
monomers are then phosphorylated by the JAKs at 
tyrosine 701 and dissociate from the receptor complex 
to form STAT1:STAT1 homodimers[3]. The dimer is 
then able to translocate into the nucleus and stimulate 
the transcription of IFN-γ target genes, such as MCP-1 
and ICAM-1, by binding to γ-activated sequence 
(GAS) elements in their promoters[13,15]. Furthermore, 
extracellular signal-regulated kinase (ERK) and other 
kinases are capable of phosphorylating the homodimer 
at serine 727 for maximal activity[17].

ROLE OF IFN-γ IN ATHEROSCLEROSIS 
DEVELOPMENT
Therapeutically targeting IFN-γ in order to reduce the 
incidence of CVD represents a promising avenue due 
to its pro-inflammatory functions during atherosclerotic 
plaque formation, including the recruitment of immune 
cells to the site of OxLDL accumulation, foam cell 
formation, and plaque development and stability. A 2-fold 
increase in the size of atherosclerotic lesions has been 
reported in the Apolipoprotein E (ApoE) deficient mouse 
model that was injected with recombinant IFN-γ every 
day, even with a 15% reduction in plasma cholesterol 
levels[18]. Furthermore, ApoE deficient mice which also 
lacked IFN-γR showed a reduction in atherosclerosis 
development, as well as a 60% decrease in lipid 
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build up in the lesions when fed on a western diet[19]. 
Deficiency of STAT1 in mouse model systems is also 
associated with reduced atherosclerosis development 
and foam cell formation, highlighting the key role of the 
JAK-STAT1 pathway in IFN-γ signaling during plaque 
progression[20,21].

Recruitment of immune cells
IFN-γ is a key recruiter of immune cells in the develo
pment of atherosclerosis and therefore important in 
the growth of lesions[22]. IFN-γ has been shown to be 
localized in atherosclerotic lesions and mice models 
lacking either IFN-γ or its receptor have been reported 
to have a reduced cellular content in their lesions[19,23,24]. 
The expression of key pro-atherogenic chemokines and 
their receptors, such as MCP-1 that has been detected 
in atherosclerotic lesions by immunohistochemistry 
and in situ hybridization, can be induced by IFN-γ[25,26]. 
Mouse models which were deficient for either MCP-1 or 
its receptor showed a reduced cellular content in lesions, 
as well as a reduction in the size of the lesions without 
changes in circulating lipid or lipoprotein levels[25]. IFN-γ 
can also influence the recruitment of immune cells by 
inducing the expression of adhesion molecules, such as 
ICAM-1 and VCAM-1, in ECs during the early stages of 
atherosclerosis development[27,28]. 

Foam cell formation
Cholesterol uptake and efflux is carefully balanced 
during homeostasis of this sterol in healthy cells. The 
formation of foam cells can be regarded as a pathological 
imbalance in favour of reduced cholesterol efflux and 
increased uptake of OxLDL[7,29]. The expression levels 
of a number of key genes involved in cholesterol meta
bolism are regulated by IFN-γ, including ApoE, ATP-
binding cassette transporter A1 (ABCA1) and acetyl-
CoA acetyltransferase 1 (ACAT1)[22]. In vitro studies 
that have incubated macrophage-derived foam cells 
with IFN-γ have shown a reduction in cholesterol efflux 
via increasing the expression of ACAT1 and attenuating 
the expression of ABCA1, resulting in increased 
accumulation of intracellular cholesteryl esters which 
promote the formation of foam cells[30]. Furthermore, the 
expression of several key SRs in foam cell development, 
including SR-A and SR that binds phosphatidylserine 
and oxidized lipids (SR-SPOX; also known as CXCL16), 
have been shown to be increased in human THP-1 and 
primary macrophages stimulated with IFN-γ, resulting 
in an increased uptake of OxLDL[31-33]. Therefore IFN-γ 
is capable of altering cholesterol homeostasis towards 
lower cholesterol efflux and higher retention of OxLDL in 
macrophages and contributes to foam cell formation.

Plaque progression and stability
IFN-γ can influence a variety of processes involved in 
the development of the early atherosclerotic lesions 
into mature plaques as well as their stability. Part of 
plaque development involves the migration of VSMCs 

and the formation of the fibrous cap. IFN-γ induces the 
expression of integrins on the surface of VSMCs which 
are capable of binding to fibronectin in ECM, triggering 
the VSMCs to differentiate from their inactive to their 
proliferative phenotype allowing migration towards 
the lesion to form the fibrous cap[34]. The stability of 
atherosclerotic plaques relies on the balance of ECM 
production and degradation which can also be affected 
by IFN-γ[2,22]. Foam cell apoptosis is also promoted by 
IFN-γ and causes them to expel their contents into 
the intima, contributing to the lipid-rich necrotic core 
and ECM degradation[35,36]. The balance can be tipped 
further towards ECM degradation by IFN-γ-mediated 
inhibition of the expression of several collagen genes, 
thereby suppressing matrix synthesis by VSMCs and 
resulting in reduced plaque stability and increased risk 
of a rupture[7]. ECM degradation can also be triggered 
by matrix metalloproteinases (MMPs) which are found 
in atherosclerotic plaques and are often localized to 
the shoulder regions where a rupture is more likely 
to occur[37]. MMPs are released by macrophages and 
VSMCs and their expression can be induced by IFN-γ 
stimulation[38].

THERAPEUTICALLY TARGETING IFN-γ
Due to the high prevalence of CVD there are a variety 
of therapeutics designed to reduce various aspects 
of atherosclerosis development, including decreasing 
serum cholesterol levels and altering the expression of 
genes that are involved in cholesterol metabolism or the 
inflammatory response[3,39]. Statins, the most widely 
used and successful cholesterol lowering therapy class 
of drugs, are primarily designed to inhibit the enzyme 
3-hydroxy-3-methylglutaryl-CoA reductase (HMG CoA 
reductase)[3]. HMG CoA reductase catalyses the rate 
limiting step in cholesterol biosynthesis, thereby low
ering the levels of circulating LDL[40]. However there 
is a marked residual risk of CVD in patients on statin 
therapy, with a significant proportion unable to attain 
their target LDL levels even when receiving the highest 
recommended dosage, stressing the importance of 
developing new therapeutics[2,41].

One new potential therapeutic target is IFN-γ due 
to its key roles in atherosclerosis development. There 
are currently two strategies that have been developed 
that either target IFN-γ directly (IFN-γ neutralization) 
or inhibit its signaling pathways. Statins and agonists of 
nuclear receptors also attenuate IFN-γ actions in part 
by modulating its signal transduction pathways[42-44]. In 
human macrophages, IFN-γ-induced phosphorylation of 
STAT1 on serine 727 can be blocked using adenosine[45]. 
Work by Lee et al[46] has shown that stimulation of the 
adenosine A3 receptor with a novel agonist, thio-CL-
IB-MECA, resulted in attenuated IFN-γ-induced STAT1-
dependent gene expression. Furthermore a naturally 
occurring phenol in plant extract, resveratrol, is capable 
of preventing STAT1 phosphorylation at tyrosine 701 
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own expression regulated by miRNAs[55]. miRNAs are 
short non-coding single-stranded RNAs approximately 
19-25 nucleotides in length that are evolutionary 
conserved in eukaryotic organisms[56]. Evidence is 
continuously accumulating that indicates that miRNAs 
are capable of regulating gene expression by inhibiting 
translation or inducing targeted mRNA degradation[57]. 
miRNAs have also been found to regulate a number of 
key steps during atherosclerosis development, including 
the inflammatory response triggered by IFN-γ[58-60]. 
One miRNA that is thought to play a key role in athero
sclerosis development is miR-155. Evidence for the role 
of miR-155 in the inflammatory response was found 
by O’Connell et al[61]. miR-155 was the only miRNA out 
of 200 tested that was considerably up-regulated in 
primary murine macrophages after being treated with 
pro-inflammatory stimulants. Additional evidence for the 
involvement of miR-155 in the inflammatory response 
comes from studies which have shown its levels to be 
up-regulated in macrophages in atherosclerotic lesions 
as well as having an association with increased pro-
inflammatory cytokine expression, potentially due to 
its ability to repress the expression of the Suppressor 
of Cytokine signaling 1 (SOCS1) gene[62-64]. However 
the specific role miR-155 plays during atherosclerosis is 
still being debated, with a number of studies reporting 
miR-155 to exert pro-atherogenic effects in ApoE 
deficient mouse models[65,66]. Targeting miRNAs, which 
are either regulated by IFN-γ and are known to be 
involved in atherosclerosis development or regulate 
the expression of IFN-γ, may provide an excellent 
therapeutic avenue that allows specific arterial targeted 
treatment to reduce atherosclerosis development and 
improve plaque stability without potential consequences 
from systemic IFN-γ inhibition.

CONCLUSION
Due to the central role of IFN-γ during atherosclerosis 
development and plaque stability, along with the expe
cted rise in global rates of CVD-related events, this 
cytokine represents a promising therapeutic target. 
Targeting either IFN-γ directly or its signaling pathways 
in both in vitro and in vivo studies has shown that 
directed therapies have the potential of reducing 
atherosclerosis development. However the potential 
side effects of long term IFN-γ inhibition still needs to be 
assessed.
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