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Abstract
Pancreatic islet transplantation is a minimally invasive procedure aiming to reverse the effects of 
insulin deficiency in patients with type 1 diabetes (T1D) by transplanting pancreatic beta cells. 
Overall, pancreatic islet transplantation has improved to a great extent, and cellular replacement 
will likely become the mainstay treatment. We review pancreatic islet transplantation as a 
treatment for T1D and the immunological challenges faced. Published data demonstrated that the 
time for islet cell transfusion varied between 2 and 10 h. Approximately 54% of the patients gained 
insulin independence at the end of the first year, while only 20% remained insulin-free at the end 
of the second year. Eventually, most transplanted patients return to using some form of exogenous 
insulin within a few years after the transplantation, which imposed the need to improve immuno-
logical factors before transplantation. We also discuss the immunosuppressive regimens, apoptotic 
donor lymphocytes, anti-TIM-1 antibodies, mixed chimerism-based tolerance induction, induction 
of antigen-specific tolerance utilizing ethylene carbodiimide-fixed splenocytes, pretransplant 
infusions of donor apoptotic cells, B cell depletion, preconditioning of isolated islets, inducing 
local immunotolerance, cell encapsulation and immunoisolation, using of biomaterials, 
immunomodulatory cells, etc.

Key Words: Islet transplantation; Type 1 diabetes; Diabetes mellitus; Immune tolerance; Graft rejection; T 
regulatory cells; B regulatory cells

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Type 1 diabetes (T1D) is associated with loss of beta-cell mass and insulin secretion. Regardless 
of its nature, autoimmune or idiopathic, the loss of own insulin secretion is a hallmark dysfunction in T1D 
mellitus; thus, therapeutic options are aimed at either replacing the missing insulin or restoring 
physiological insulin secretion to achieve normoglycemia and postponing micro- and macrovascular 
complications. Nevertheless, the need to completely replace the depleted pancreatic secretion also leads to 
the emergence of new therapeutic horizons, including pancreas and islet cell transplantation. However, this 
approach also meets several immunological challenges-cellular and antibody-mediated rejection and loss 
of function. To improve the outcomes, several approaches are performed: Immunosuppression, apoptotic 
donor lymphocytes, anti-TIM-1 antibodies, mixed chimerism-based tolerance induction, induction of 
antigen-specific tolerance utilizing ethylene carbodiimide-fixed splenocytes, infusion of donor apoptotic 
cells before transplantation, combined with anti-CD40L antibodies and rapamycin, preconditioning of 
isolated islets, inducing local immunotolerance, cell encapsulation and immunoisolation, using of 
biomaterials, immunomodulatory cells, etc. mesenchymal stem cells, as an adjunct therapy to islet 
transplantation, can promote long-term graft survival, possibly by reducing inflammation and enhancing 
immune tolerance.

Citation: Kabakchieva P, Assyov Y, Gerasoudis S, Vasilev G, Peshevska-Sekulovska M, Sekulovski M, Lazova S, 
Miteva DG, Gulinac M, Tomov L, Velikova T. Islet transplantation-immunological challenges and current 
perspectives. World J Transplant 2023; 13(4): 107-121
URL: https://www.wjgnet.com/2220-3230/full/v13/i4/107.htm
DOI: https://dx.doi.org/10.5500/wjt.v13.i4.107

INTRODUCTION
Pancreatic islet transplantation is a minimally invasive procedure aiming to reverse the effects of insulin 
deficiency by transplanting pancreatic beta cells[1]. Pancreatic islet transplantation can be done with 
autologous and allogeneic islets. While autologous islet transplantation has the advantage of being 
derived from the same patient, eliminating the risk of immune rejection, its widespread utilization is 
limited due to several drawbacks, including the need for pancreatectomy, which may have associated 
surgical risks, and the limited availability of functional islets from a single organ in patients with 
advanced disease. On the other hand, allogeneic islets are taken from different individuals of the same 
species, usually for treating type 1 diabetes (T1D), with followed immunological response complications
[2].

Typical for T1D is the continuing pancreatic beta cell destruction, which could be autoimmune (Type 
1A) or non-autoimmune (Type 1B), resulting in decreased or absent insulin production. As a result, it 
increases in incidence yearly and is associated with severe hypoglycemia, ketoacidosis, and vascular 

https://www.wjgnet.com/2220-3230/full/v13/i4/107.htm
https://dx.doi.org/10.5500/wjt.v13.i4.107
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complications[3]. Although exogenous insulin analogs are considered the primary treatment option for 
managing T1D in response to hyperglycemia, they cannot accurately resemble the timing and dosing of 
physiological insulin secretion. Moreover, exogenous insulin therapy is associated with an increased 
risk of severe side effects such as hypoglycemia, weight gain, lipodystrophy, etc.[4]. Therefore, there is 
an ongoing effort to improve the treatment options[5]. Among them, pancreatic islet transplantation is 
promising to become the mainstay in the treatment process[6].

As a minimally invasive procedure, islet transplantation is ideal for high-risk surgical patients 
burdened with cardiovascular disease[7]. It does not follow the significant complications of vascularized 
pancreas transplantation, and with minimal intra-operational complications, such as bleeding and 
portal vein thrombosis, the mortality is negligible. On the negative side, multiple donors for a single 
patient are needed, while the alternative whole pancreatic transplantation treatment needs 1 and rarely 
2 pancreases. This makes it a rather wasteful procedure[8]. An adequate islet number must be 
transplanted for patients to become insulin-independent. A single transplantation is often insufficient; 
several sequential transplantations are needed for satisfactory glycaemic and insulin results[9]. Early 
attempts had been made as early as 1893. Still, the milestone that grabbed the scientific community's 
attention was the ground-breaking Edmonton protocol, with its non-corticosteroid immunosuppressive 
treatment[9] and the other studies regarding the benefits of islet transplantation on glucose metabolism 
improvement[10,11]. Studies have shown that 5-year insulin independence has increased manifold[12-
14].

Overall, pancreatic islet transplantation has improved to a great extent, and cellular replacement will 
likely become the mainstay treatment. Our goal was to review pancreatic islet transplantation as a 
treatment for T1D and the immunological challenges faced. To prepare this narrative review, we search 
the main databases, Medline, PubMed, and Scopus, in conformity with the principles of writing a 
narrative review[15].

ISLET TRANSPLANTATION PROCEDURE
The main procedural steps are pre-transplant assessment, pancreas procurement, islet isolation, tissue 
culture, transplantation, and post-transplant evaluation[8].

In pre-transplant assessment, eligible patients are chosen. Strong indications include recurrent severe 
hypoglycemic shocks, impaired awareness of hypoglycemia, undetectable C-peptide, age between 18-
65, and a diagnosis of more than five years[16]. Additionally, previous kidney transplantation has been 
shown to impact the outcomes of islet transplantation positively. Studies have reported that patients 
who have undergone a kidney transplant before islet transplantation have higher graft survival rates, 
improved glycemic control, and reduced insulin requirements compared to those without a prior 
kidney transplant. This may be attributed to the immunosuppressive regimen used for kidney 
transplantation, which may enhance the success of islet transplantation by preventing the rejection of 
the transplanted islets[17]. Exclusion criteria include poorly controlled hypertension, heart disease, 
macroalbuminuria, glomerular filtration rate < 80 mL/min/1.73 m2 and potential contraindications for 
immunosuppression. Current indications do not include the pediatric population[18]. In the 
transplantation of allogeneic pancreatic beta cells, ABO and human leucocyte antigen histocompatibility 
have to be assessed. The number of islet donors is generally limited, but new xenografts with islets from 
other species, typically porcine islets, and stem cell technologies could tackle this critical problem[19].

In the stage of pancreas procurement, the pancreas is removed from donors and preserved in the 
University of Wisconsin solution for up to 24 h. Important in this stage is the capsule to be kept intact. 
The pancreas is delivered to the islet isolation center when procurement is ready[20]. The islet isolation 
process involves the preparation of the pancreas, which is carefully cleaned of surrounding tissues and 
dissected to expose the islets of Langerhans. The pancreas is then cannulated and perfused with a 
collagenase enzyme solution for 10 min, which distends the pancreas to facilitate the separation of the 
islets from the surrounding stroma. Next, the distended pancreas is cut and set into the Ricordi 
Chamber, an automated device designed to facilitate the islet isolation process. The chamber employs a 
series of automatic steps to separate the islets from the exocrine tissue, including filtration and density 
gradient centrifugation. Finally, the isolated islets are processed using a COBE 2991 cell processor, 
which further separates the islets from any residual exocrine tissue, and the purified islets are then 
cultured for transplantation[21,22].

In the hands of the proper expert, the tissue culture stage of islet isolation represents a critical step in 
preparing isolated islets for transplantation. This stage allows the islets to recover from the stress 
induced by the previous steps of the isolation procedure, during which they may have been subjected to 
mechanical and enzymatic stress. The tissue culture stage typically involves the placement of the 
purified islets into a nutrient-rich media in a controlled environment, where they are allowed to recover 
for several hours to several days. During this time, the islets are carefully monitored for signs of 
viability and function, including assessment of insulin secretion and glucose-stimulated insulin release. 
This stage also allows for flexibility in scheduling the subsequent transplant procedure, as the islets can 
be stored under optimal conditions until the transplant recipient is ready to receive them. The success of 
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the tissue culture stage is highly dependent on the expertise of the individual performing the procedure, 
as optimal conditions must be maintained to ensure the viability and function of the isolated islets[23].

Before transplantation begins, the final transplantation islet site has to be decided. The liver is 
considered preferable for transplantation, although different places are being tested for better islet 
survival and function[24]. Upon islet infusion, an "instant blood-mediated inflammatory reaction" is 
described with platelet consumption, activation of coagulation, and the complement system[25].

The post-transplant period following islet transplantation is characterized by a prolonged period of 
recovery during which insulin independence may not be immediately achieved. The transplanted islets 
may take months to years to fully integrate into the recipient's body[6] and establish a functional 
vascular supply. During this period, the transplanted islets are subject to immunological attacks from 
the recipient's immune system, which can compromise their function and survival. A combination of 
induction, maintenance, and antirejection immunosuppressive drugs are typically used to prevent 
rejection of the transplanted islets. However, a notable irony is that many of these immunosuppressive 
drugs have diabetogenic properties, which can exacerbate preexisting metabolic abnormalities in 
transplant recipients. As such, these drugs must be carefully balanced against the need to maintain 
optimal islet function and prevent rejection[26].

Recent advances in islet transplantation have focused on immunoisolation, which involves the 
encapsulation of transplanted islets in a protective membrane to prevent their recognition and subs-
equent destruction by the recipient's immune system. Encapsulation of islets for immunoisolation 
involves using biocompatible materials that allow for efficient nutrient and oxygen exchange while 
preventing immune cells from accessing the transplanted islets. Several biomaterials have been studied 
for this purpose, including alginate, agarose, and polyethylene glycol hydrogels[27,28]. The techniques 
for improving islet cell survival by encapsulation are presented in Figure 1A.

For example, alginate hydrogels are commonly used due to their biocompatibility, ease of fabrication, 
and ability to protect transplanted islets from the immune system. While early studies in small animal 
models have shown promising results, with sustained islet function and reduced immunosuppressive 
drug requirements, translation to larger animals and humans has been less successful, with limited 
long-term success and significant technical challenges in maintaining membrane integrity and 
permeability. Using traditional immunosuppressive regimens remains a crucial component of current 
islet transplantation protocols, albeit with the recognized risks of diabetogenicity and other adverse 
effects[11].

T1D AND THE NEED FOR ISLET TRANSPLANTATION
Type 1 diabetes mellitus (T1DM) is a metabolic disease distinct by hyperglycemia, insulin deficiency, 
and a lifelong need for exogenous insulin replacement treatment[3,29]. T1DM is an autoimmune disease 
that develops in genetically predisposed individuals under the influence of environmental factors, 
which triggers autoimmunity to pancreatic beta cells. Although it is defined as "diabetes of young age", 
T1DM can also affect adults[30]. In general, T1DM is divided into two subtypes, 1A and 1B[31]. While 
T1ADM is associated with autoantibodies against islet cells [glutamic acid decarboxylase (anti-GAD65), 
tyrosine phosphatases islet antigen 2 (IA-2), IA-2β insulin, or zinc transporter 8[32], also observed in 
patients with T2D[33], T1BDM, in turn, is a relatively small subtype that is not mediated by the immune 
system and has an unclear genesis.

T1DM is related to other autoimmune conditions such as celiac disease[34,35], Hashimoto thyroiditis, 
Addison's disease, pernicious anemia, etc.[36]. Moreover, patients with diabetes may have a comp-
romised immune system, leading to a more complicated course of infections, including coronavirus 
disease 2019[37]. Some of the immune defects described in patients with diabetes are decreased cellular 
response in vitro, low complement factor 4, diminished cytokine response after stimulation, reduced 
chemotaxis, phagocytosis, and killing of polymorphonuclear cells and macrophages[38].

Regardless of the subtype, the loss of insulin secretion is a hallmark dysfunction in T1DM, and 
therapeutic options aim to replace the missing insulin or restore physiological insulin secretion to 
achieve normoglycemia and prevent micro- and macrovascular complications. Within the last few years, 
we have seen a rapid evolution in the therapy of T1DM[39]. First, tangible progress marked the 
discovery of insulin in 1921-22 by Banding and Macleod, saving from certain death children with 
diabetes. The subsequent development of new analog insulins with a better therapeutic and safety 
profile results in better control of hyperglycemia and a reduced risk of hypoglycemia, respectively. The 
introduction of insulin pumps with continuous subcutaneous insulin administration[40] and the 
implementation of modern technologies in diabetes control with continuous glucose monitoring 
systems combined with glucose prediction algorithms enabling the development of artificial pancreas 
delivery systems[41] marks extraordinary progress in managing T1DM.

Nevertheless, the need to completely replace the depleted pancreatic secretion also leads to the 
emergence of new therapeutic horizons, including pancreas and islet cell transplantation. They allow 
not only to achieve independence from exogenous insulin administration and the need to monitor blood 
sugar but also successfully to afford counterregulatory hormone secretion and pancreatic exocrine 
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Figure 1 Techniques for improving graft survival. A: Islet cell encapsulation (after isolation of islets by density gradient centrifugation), islets are capsuled 
with different hydrogel types to obtain various sizes of capsules. Then the capsules are transplanted into the body; B: Mesenchymal stem cells modulate graft and 
immune responses and support the islet cell survival after transplantation. Parts of the figure were drawn using pictures from Servier Medical Art. Servier Medical Art 
by Servier is licensed under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/Licenses/by/3.0/).

function[42].

IMMUNOLOGICAL ALTERATIONS IN T1D
T1DM was thought to be a T cell-mediated autoimmune illness for many decades. This belief persists, 
but multiple recent discoveries hint at a role for beta cells beyond being a non-provoking victim of an 
autoimmune onslaught[38].

The interaction between genetic vulnerability and probable triggers is likely to begin at a young age, 
gradually leading to the loss of tolerance to self and, eventually, the development of clinical symptoms. 
The result is determined by genetic predisposition, decreased removal of the apoptotic cell remains, 
altered immune regulation, and environmental triggers (i.e., viral infections). In addition, autoreactivity 
may exist under physiological settings, and illness may arise if the integrity of the complicated 
regulatory process is compromised[43].

The beta cells are destroyed by islet-infiltrating cells (i.e., CD8+ cytotoxic lymphocytes and 
macrophages), resulting in insulitis. In addition, macrophages release cytokines that are harmful to beta 
cells. Secondary considerations are autoantibodies, which serve as the foundation for clinical diagnosis
[43].

Initially, B lymphocytes are known to play a secondary role in T1DM that even occurs in severe 
congenital B-lymphocyte immunodeficiency[44]. Xiu et al[45] considerably delayed disease development 
in NOD mice by depleting B-lymphocytes using an anti-CD20 antibody. They concluded that this was 
not due to T effector cell reduction or T regulatory (Tregs) induction but rather to a decrease in the 
development of autoreactive T cells[45].

https://creativecommons.org/Licenses/by/3.0/
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However, autoreactive T cells are part of the typical T cell repertoire. In T1D, beta cells live in an 
inflammatory environment and participate in their destruction. Additionally, metabolic activity is what 
causes beta cell malfunction and destruction. Insulitis is characterized by inflammation, associated with 
substantial metabolic, epigenetic, and autoantigenic alterations that expose beta cells to the immune 
system[46]. In line with this, immunotherapy may be insufficient to treat T1D, although beta cell 
therapy may help reduce beta cell immunogenicity and islet autoimmunity[47].

It was demonstrated recently that innate immunity components might play a role in T1D 
pathogenesis, such as pattern recognition receptors and proinflammatory cytokines[47]. Nevertheless, 
the accompanying inflammation of the islets leads to damaged beta cells and loss of insulin production.

Animal studies (i.e., non-obese diabetic mice) and human studies in T1D revealed defects in thymic 
selection, expansion of effector T cells, impaired homeostasis and FoxP3+ Tregs[48]. However, even if 
we accept the immune system's role in the development of T1D, science cannot assume that the disease 
is entirely a result of dysfunctional immunity, i.e., autoreactive T cells. Recent research focuses on the 
participation of the peripheral immune system in the targeted tissue and the role of beta cells in the 
autoimmune process[49,50].

Indeed, when we accept this conception, it was demonstrated that T1D is usually characterized by 
less beta-cell mass, functional capacity and inability to control glycemia. Usually, beta cells undergo 
metabolic stress, inflammatory environment and other factors that increase the expression of specific 
adhesion molecules and other receptors, making them prone to immune attacks[46].

Islet transplantation has been considered a potential cure for T1D by replacing the damaged beta 
cells. However, its effectiveness is dependent on the underlying cause of the disease. For example, if 
T1D results from a pancreatic dysfunction leading to the loss of beta cells, then islet transplantation may 
be a viable option. However, if T1D is viewed as an autoimmune disorder, the presence of autoreactive 
T and B cells can lead to the disease's recurrence and limit the transplantation's efficacy[47]. In such 
cases, alternative approaches such as immunomodulatory therapies, co-transplantation with immune 
cells, or encapsulation of islets can be explored to improve the success rate of islet transplantation.

RESULTS ON DIABETES CONTROL AND AVOIDING DIABETES COMPLICATIONS AFTER 
ISLET TRANSPLANTATION
Patients with T1D or pancreatogenic (type 3c) diabetes (also known as insulin-deficient) may benefit 
from islet isolation from a deceased donor followed by transplantation of allogeneic islets in the liver. 
This can help alleviate hypoglycemia while stabilizing glycemic lability, and maintaining glycemic 
control, ultimately improving quality of life and frequently eliminating the need for insulin therapy. 
Replacement of islet function by transplantation addresses the underlying pathophysiology of long-
standing T1D with sub-total annihilation of islet alpha-cells and the associated loss of the alpha-cell 
response to hypoglycemia[19]. This allows for the avoidance of hypoglycemia and stabilization of 
glycemic lability, which would otherwise contribute to impaired awareness of hypoglycemic states. 
Patients with T1D uncontrolled hyperglycemia, demonstrated by the recurring episodes of diabetes-
associated ketoacidosis or quickly progressing severe complications related to the disease, might also 
benefit from islet transplantation[51,52].

Patients with T1D complicated by an allergy or resistance to insulin that is administered 
subcutaneously are a rare but essential indication for this treatment[53]. Finally, alloislets (from a viable 
allograft pancreatectomy) re-transplantation has been successfully executed in a patient with T1D who 
was initially given the pancreas transplant for hypoglycemia unawareness. Similarly, a T1D patient 
received simultaneous pancreas/kidney transplantation complicated by pancreas graft arterial 
anastomosis bleeding[54]. Notably, the degree of glycemic control achieved within the first five days 
after surgery determines the chances of accomplishing long-term insulin independence[55].

We analyzed the literature data published on islet transplantation focusing on the clinical outcomes
[55-60]. Our results have been summarized in Table 1. The total number of included patients was 372. 
We established that the time for islet cell transfusion varied between 2 and 10 h. Approximately 54% of 
the patients gained insulin independence at the end of the first year, while only 20% remained insulin-
free at the end of the second year. Most patients have received islet cells in the liver, and only 38 
patients have IC harvested in the spleen. Another interesting fact we discovered was the high 
percentage of opioid-free patients after this intervention.

Unfortunately, the Collaborative Islet Transplant Registry reported 71% insulin independence in the 
first year and 24% in the third from the islet transplant centers[61]. Eventually, most transplanted 
patients need exogenous insulin within a few years after the transplantation[62].

Some additional factors can also improve the outcomes after islet transplantation. For example, 
experiments in mice and rats with Vitamin D show promising results on glycemia and tumor necrosis 
factor-α (TNF-α) production in islet transplantation[63]. In addition, analogs of vitamin D3 are shown to 
prevent the autoimmune destruction of transplanted islets in non-obese mice[64]. This is a promising 
direction for research on humans due to the well-known anti-inflammatory effects of vitamin D3 in vivo
[65,66].
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Table 1 Islet transplantation protocols

Ref. Patients 
(n)

Time of 
infusion 
of islets 
(h)

HbA1c, 1-yr, 
median (%)

HbA1c, 2-yr, 
median (%)

Insulin 
independence 
1-yr, median 
(%)

Insulin 
independence 
2-yr, median 
(%)

IEQ 
harvested/g 
pancreas, 
median 
(range) 

IEQ 
transplanted/g 
pancreas, 
median 
(range) 

Opioid 
and 
pain-
relieving

Organ 
placement

Sutherland 
et al[56]

173 2-7 NR NR 32 24 < 1000 IE/kg (> 5000, 2500-
5000 and < 2500 
IE/kg)

NR 173 liver

Ahmad et 
al[57]

45 7-10 NR NR 40 NR NR 297889 ± 49480 72% 45 liver

Rodriguez 
Rilo et al
[58]

22 9 NR NR 41 NR 245457 (range 
20850 to 
607466-175234)

350428 (range 
31500 to 
1164000-299321

82% 22 liver

Webb et al
[59]

46 NR 7 6.7 12 5 1876 (249-
12271) 

I130029 (24332-
958078)

NR 42 liver; 2 
spleen; 2 
both

Garcea et 
al[60]

50 NR Approximately 
6

Approximately 
6

24 10 NR NR 60% 85 liver

Johnston et 
al[55]

36 8-9 NR 6.8 50 33 358959 
(45000–672000) 

4308 (769–9942) 30% 36 spleen

HbA1c: Hemoglobin A1c; IEQ: Indoor environmental quality. NR: Not reported.

IMMUNOLOGICAL CHALLENGES OF ISLET TRANSPLANTATION-CELLULAR IMMUNE 
RESPONSE, INDUCTION OF TOLERANCE, REJECTION
At this point, the main complication after allogeneic islet transplantation is the chronic rejection 
conducted by activated T cells. This is also the main barrier to accomplishing long-term engraftment. 
One of the ways to maintain immune tolerance to the allograft is to administer immunosuppression[67].

However, this could be toxic for the islet grafts, leading to worsening long-term function of the islets, 
increased risk of infections, development of cardiovascular and renal diseases, de novo diabetes, 
neurotoxicity and malignancies[68].

The ultimate goal of islet transplantation is to achieve donor-specific immune tolerance. A recently 
proposed method for tolerance induction using apoptotic donor lymphocytes (ADLs) in animal models 
(i.e., non-human primates)[69]. ADLs employ clonal depletion, anergy, expansion of Treg cells, 
regulatory B cells (Bregs), etc. Usually, these mechanisms act together to induce and maintain tolerance. 
However, this approach also meets several challenges.

Initially, the immune rejection after transplantation starts with innate immune cells infiltration into 
the islet grafts (i.e., macrophages), followed by donor-specific lymphocyte response, consisting of T cells 
(CD4+ and CD8+) and B cells. In line with this, the protocol comprised of T cell depletion and anti-TNF 
agents may enhance short-term graft survival[67]. However, this protocol has a significant drawback-it 
cannot modulate antibody-mediated rejection[70,71].

Targeting Bregs (i.e., low-affinity antibodies against TIM-1, essential for Breg development) results in 
considerably longer islet cell survival (about 30% of mice attained engraftment over 3 mo)[72]. 
Surprisingly, anti-TIM-1 treatment of B cell-depleted recipients significantly increased interferon-γ and 
prevented the typically seen rise in Th2 cytokines[72].

Furthermore, in a mouse islet transplant model, a combination of anti-CD45RB and anti-TIM-1 
antibodies synergized in establishing tolerance in all recipients. Depending on the presence of 
interleukin (IL)-10-producing B cells in the recipient, the combined antibody therapy significantly 
increased the regulatory lymphocytes[73]. Furthermore, the study implied that B cells expressing CD19 
and TIM-1 are part of tolerance development and maintenance. These results might clarify why B cell 
reduction decreased the effectiveness of dual antibody therapy.

Cross-reactive memory T and B cells could substantially impede immunological tolerance in animals 
and humans after transplantation. However, tolerance development in non-human models or humans 
would be more complex than in rat models, owing to cross-reactive memory immune cells. Yet, a few 
hopeful treatments exist, such as mixed chimerism through hematopoietic cell transplantation[74,75] or 
ADL exposure[76], which have led us to anticipate that immune tolerance can eventually be attained in 
people.

Oura et al[77] published the results of a non-human islet transplantation model where a nonmyeloab-
lative condition regimen induced the mixed chimerism-based tolerance. The latter consisted of total 
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body irradiation, and administration of horse anti-thymocyte globulin, monoclonal antibodies (i.e., anti-
CD154, anti-CD8, etc.), or cyclosporine (the so-called calcineurin inhibitor-free regimen)[77]. As a result, 
temporary chimerism did not prompt tolerance to increase the islet graft survival. Eventually, the islet 
stopped functioning shortly after chimerism disappeared[77]. Oura et al[77] also found that islet 
recipients had greater levels of inflammatory cytokines (i.e., TNF-α and IL-17) in blood circulation than 
kidney recipients[77]. This study implies that excessive levels of inflammatory mediators following islet 
transplantation may impede islet graft tolerance induction. Since isolated islet grafts could induce a 
significant systemic inflammatory response, this should be the focus of future research to improve 
tolerance development and graft survival.

Induction of immune tolerance utilizing ethylene carbodiimide (ECDI)-fixed splenocytes in 
combination with particular antigens or peptides is a method used in transplantation models, including 
islet transplantation. Kheradmand et al[78] demonstrated various mechanisms (i.e., anergy, clonal 
depletion, employment of Tregs, etc.) via donor ECDI-fixed splenocytes administration. These 
splenocytes possess direct and indirect allospecificities that target allogeneic host responses. These 
mechanisms act synergistically to cause tolerance after transplantation[78]. In addition, Tregs and 
myeloid-derived cells that exert immunosuppression are activated and increased in number in the case 
of ECDI-fixed splenocytes infusion[79].

Allotransplantation in sensitized patients with pre-formed donor-specific memory lymphocytes and 
antibodies increases the risk of allograft rejection. Dangi et al[80] showed that administration of donor 
apoptotic cells, anti-CD40L antibodies, and rapamycin before transplantation resulted in a considerable 
extension of islet graft in allosensitized patients (median survival time, 35 d)[80]. Sato and Marubashi
[69] confirmed that invading B lymphocytes play an essential part in the chronic rejection of the islet 
graft by stimulating local T cells. Therefore, ECDI-fixed splenocytes from the donor infused into 
sensitized recipients efficiently reduced alloreactive B cells. However, the latter could be switched by 
contemporary B cell invasion into the graft. As a result, in B cell-depleted patients, a method to regulate 
concurrent B cell invasion is required[69].

Moreover, islet grafts might be more resistant to immunological tolerance induction. Compared to 
kidney grafts, the considerably increased immunogenicity of islet grafts may impede tolerance 
induction in islet transplantation[77]. Islet grafts have relatively strong cytokine secretion activity 
because pancreatic islets are endocrine cells. Furthermore, cell stressors during the isolation process 
cause islet inflammation, increasing the immunogenicity of the islet graft before transplantation.

These conclusions imply that the stress during the separation method activates the proinflammatory 
gene program. Islet isolation entails many steps, including pancreatic distention, digesting with 
collagenase, and purification. Therefore, the islets should be injured throughout each phase by hypoxia 
and heated ischemia, production of activated proteolytic enzymes by acinar cells, and oxidative and 
mechanical stress[69].

According to estimates, around half of the transplanted islets are irreparably destroyed around the 
transplantation period (from hours to days). In addition, more than a quarter of islet grafts are known to 
be lost shortly after the portal vein infusion[81]. Therefore, the initial inflammatory response is crucial in 
instant transplanted islet loss due to immediate blood-mediated inflammatory reaction (IBMIR). During 
IBMIR, coagulation pathways are activated, proinflammatory cytokines are produced, and innate 
immune cells infiltrate the graft[82], all contributing to the islet's acute cell-mediated damage. 
Additionally, IBMIR is distinguished by coagulation and complement systems activation, fast activation 
and binding of platelets and leukocyte recruitment and infiltration[83].

Preconditioning isolated islets with sublethal genotoxic stress may be a potential technique for 
lowering islet immunogenicity and extending islet transplant life. It is reasonable to believe that precon-
ditioning therapy for reducing graft immunogenicity will synergistically impact tolerance induction 
therapy, including the ADL regimen[69].

Applying the cellular treatment is a novel approach to induce local immunotolerance and avoid islet 
rejection. In addition, the administration of stem cell-derived beta cells during islet transplantation 
improves graft performance while reducing the negative consequences of systemic immunosuppression. 
Recent advances in T1D cell replacement treatments (i.e., non-encapsulation and local immunomodu-
latory techniques) are addressed in this concise review[84]. They include alteration of islet/cell, use of 
biomaterials that provide immunomodulation, and immunomodulatory cell co-transplantation.

Co-transplantation of pancreatic islets with mesenchymal stem cells (MSCs) is one such approach that 
has attracted attention. Studies have shown that using MSCs as an adjunct therapy to islet 
transplantation can promote long-term graft survival, possibly by reducing inflammation and 
enhancing immune tolerance[85]. For instance, co-transplantation of adipose tissue-derived MSCs and 
pancreatic islets improved glycemic control and regulation of the Th17/Treg function streptozotocin-
induced diabetic mice model[86]. Encapsulation, on the other hand, is another technique that has been 
extensively studied for its potential to protect transplanted islets from immune rejection while allowing 
for efficient nutrient and oxygen exchange. In addition, Vegas et al[87] demonstrated that beta cells 
derived from human stem cells, when implanted into mice with preserved immune competence, 
resulted in long-term glycemic control[87]. Thus, further investigation into these novel strategies for 
T1D cell replacement therapies may provide new insights and solutions to the ongoing challenges in 
this field.
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Therefore, methods for immunoisolation or beta cell encapsulation are one approach to improving 
graft performance. Still, it has its own set of obstacles, which causes a loss in cell viability over time 
(Figure 1B). Although altering human islets in clinical applications is implausible, creating universal 
cells from pluripotent stem cells that can elude immune identification offers enormous promise in 
diabetic cell treatments. However, despite these breakthroughs, critical problems like the persistence of 
genomic and epigenetic modifications and cell phenotypes stability remain unanswered. Additionally, 
although these cells are hypoimmunogenic, their safety should be carefully maintained because cells 
that elude the immune system are intrinsically dangerous.

Similarly, undifferentiated stem cells can potentially develop into teratomas in vivo because it is well-
known that both embryonic and induced pluripotent stem cells can differentiate into all three germ 
layers. Therefore, they can form teratomas if not fully differentiated[88]. Theoretically, the presence of a 
few remaining undifferentiated pluripotent stem cells can cause undesirable teratomas after 
transplantation. Although "suicide genes" could be incorporated into stem cells for increased safety[89], 
it is still uncertain how these cells would behave in people over time, necessitating additional research.

Biomaterials combined with immunomodulation give multiple instruments for locally modulating 
immune responses and are an intriguing way to assist cell transplantation. This technique has apparent 
advantages, including safety as "nonliving" materials. Furthermore, biomaterials are generally simple to 
mass-produce. In contrast, cell modification or immunomodulatory cell preparation is sometimes 
difficult, in addition to the necessity of good manufacturing processes that must fulfill clinical 
requirements. Yet, given the restricted ligands and the eventual exhaustion of coated reagents, the long-
term durability of biomaterials and delivery techniques remains challenging. Hence, there is a need for 
new approaches for the retention or restocking of the supplied reagents in the future[84].

Interestingly, immunomodulatory cells operate as "living" medicine repositories and, if engrafted, 
may boost functional stability by producing cytokines continuously or expressing surface markers to 
affect the immune system. Improvements in these immunoregulatory cells' acquisition, retention, 
stability, potency and localization are required to increase their effectiveness and safety. As we create 
T1D therapies and cures, a functioning resolution will likely need a multi-modal methodology involving 
several immuno-modalities and tissue engineering methods. The strategy for the 3D-engineered 
biomaterial tissue construct coupled with both invisible to the immune response cells and accessory 
cells that exert could be employed to provide long-term effective and safe cell treatments for T1D. 
Examining the disease's heterogeneity and customizing therapy procedures is critical to reaching the 
best possible outcomes[84].

Additionally, because transplanted islets are isolated from deceased donors who are not human 
leukocyte antigen (HLA)-matched to recipients, the use of multiple donors and the potential need to 
discontinue immunosuppression in the case of a clinically failed islet-alone graft increases the risk of 
HLA sensitization in islet transplant recipients. Most transplant patients currently have an unexplained 
slow loss of islet graft function may be partly caused by allograft rejection. However, discovering anti-
HLA antibodies during graft deterioration remains uncommon[90].

FUTURE PERSPECTIVES ON ISLET TRANSPLANTATION
Future pathways for improving the outcomes of islet transplantation include obtaining alternative 
sources of insulin-secreting cells, attempts to improve the immune protection and revascularization of 
the transplanted tissue, and methods for enhancing viability[91].

Islets obtained from human embryonic stem cells (hESC) are in early-phase clinical trials[92]. hESC 
islets should theoretically not require immunosuppression or HLA silencing, which would allow the 
treatment of children. However, alternative strategies, such as xenogeneic sources of islets and human-
induced pluripotent stem cells[93], are also being researched.

Several therapeutical approaches to improve islet survivability are currently in the preclinical phase 
of research. These include cellular therapies such as MSCs[94], regulatory T-cells[95], as well as 
modulators of the liver niche with anti-inflammatory agents[96] and growth factors[97]. MSCs appear 
promising as their anti-inflammatory and immunomodulatory properties have been used in humans for 
other conditions and could, in theory, enable them to reduce the immunosuppression dose[98]. In 
addition, improving vascularity through gene therapy[99] of the transplant has also been a sought-after 
strategy for future development.

Last but not least, various scaffolding methods, as well as alternative implant sites, are undergoing 
research to enhance the viability of the grafts. For example, dexamethasone-loaded microplate-enriched 
collagen-coated polydimethylsiloxane scaffolds have improved transplant outcomes and survival[100]. 
While the liver currently remains the localization of choice for islet transplantation, several other sites 
are being investigated, such as intramuscular[101], gastric submucosa[102], thymus, testes and the eyes
[103].
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CONCLUSION
T1DM is an immune-associated metabolic disease characterized by hyperglycemia, absolute insulin 
deficiency, and a lifelong need for exogenous insulin replacement treatment. The implementation of 
modern technologies in diabetes control with continuous glucose monitoring systems combined with 
glucose prediction algorithms enables the development of artificial pancreas delivery systems. 
Nevertheless, the need to completely replace the depleted pancreatic secretion also leads to the 
emergence of new therapeutic horizons, including pancreas and islet cell transplantation. They allow 
not only to achieve independence from exogenous insulin administration and the need to monitor blood 
sugar but also successfully to afford counterregulatory hormone secretion and pancreatic exocrine 
function. At this point, the main complication after allogeneic islet transplantation is the chronic 
rejection conducted by activated T cells and autobodies-mediated rejection, the main barrier to 
accomplishing long-term engraftment. To improve the outcomes, several approaches are performed: 
Immunosuppression, ADLs, anti-TIM-1 antibodies, mixed chimerism-based tolerance induction, 
induction of antigen-specific tolerance utilizing ECDI-fixed splenocytes, infusion of donor apoptotic 
cells before transplantation, therapy with anti-CD40L antibodies and rapamycin, preconditioning of 
isolated islets, inducing local immunotolerance, cell encapsulation and immunoisolation, using of 
biomaterials, immunomodulatory cells, etc.
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