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Abstract
Despite a vast amount of different methods, protocols and cryoprotective agents 
(CPA), stem cells are often frozen using standard protocols that have been 
optimized for use with cell lines, rather than with stem cells. Relatively few 
comparative studies have been performed to assess the effects of cryopreservation 
methods on these stem cells. Dimethyl sulfoxide (DMSO) has been a key agent for 
the development of cryobiology and has been used universally for cryopreser-
vation. However, the use of DMSO has been associated with in vitro and in vivo 
toxicity and has been shown to affect many cellular processes due to changes in 
DNA methylation and dysregulation of gene expression. Despite studies showing 
that DMSO may affect cell characteristics, DMSO remains the CPA of choice, both 
in a research setting and in the clinics. However, numerous alternatives to DMSO 
have been shown to hold promise for use as a CPA and include albumin, 
trehalose, sucrose, ethylene glycol, polyethylene glycol and many more. Here, we 
will discuss the use, advantages and disadvantages of these CPAs for cryopreser-
vation of different types of stem cells, including hematopoietic stem cells, 
mesenchymal stromal/stem cells and induced pluripotent stem cells.

Key Words: Cryoprotective agents; Dimethyl sulfoxide; Hematopoietic stem cells; 
Mesenchymal stromal/stem cells; Induced pluripotent stem cells
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cold storage of hematopoietic stem cells, mesenchymal stem cells and induced 
pluripotent stem cells. Although dimethyl sulfoxide (DMSO) is commonly used in 
cryopreservation of cell lines, primary cells and stem cells, the use of DMSO has been 
associated with certain toxicity, both directly on the cells, as well as upon infusion with 
the stem cell product. As a result of this many groups have undertaken efforts to find 
suitable replacements for DMSO that are equally potent but less toxic. In this review, 
we summarize the current status quo of stem cell freezing protocols and we describe 
the most commonly used cryoprotective agents and their effects on stem cells and stem 
cell function.

Citation: Erol OD, Pervin B, Seker ME, Aerts-Kaya F. Effects of storage media, supplements 
and cryopreservation methods on quality of stem cells. World J Stem Cells 2021; 13(9): 1197-
1214
URL: https://www.wjgnet.com/1948-0210/full/v13/i9/1197.htm
DOI: https://dx.doi.org/10.4252/wjsc.v13.i9.1197

INTRODUCTION
Although optimization of stem cell culture, expansion and differentiation methods has 
been the main focus of stem cell research, an equally important and largely ignored 
topic in stem cell research is long term storage and cryopreservation. No matter the 
quality of the stem cell cultures, without optimization and careful control of 
cryopreservation, reproducibility and clinical (side) effects may be difficult to 
interpret. Furthermore, effects may be unexpected and suboptimal if cells are not 
stored, frozen and thawed under the most favorable conditions. Cryopreservation of 
cells, tissues and embryos has been common practice since the 1950s and took flight 
with the development of in vitro fertilization practices and hematopoietic stem cell 
(HSC) transplantation.

Storage under low temperature conditions reduces the rates of intracellular 
enzymatic and chemical reactions that may be harmful and allows the cells to be 
stored long-term without damage. The basic principle underlying successful cell 
cryopreservation is prevention of the formation of intra- and extracellular ice crystals 
during freezing, since this is the primary cause of cell damage[1]. Cryopreservation 
methods can be classified into slow freezing and fast freezing (vitrification) 
procedures. Both methods are based on the freezing or solidification of the cells or 
tissues and may cause cell injury in the process. However, the mechanisms that cause 
cell damage are quite distinct. Whereas rapid cooling results in the formation of 
intracellular ice crystals causing physical stress to the cells and mechanical breakdown, 
slow cooling causes osmotic changes in the cells and mechanical stress due to the 
formation of extracellular ice[2]. During vitrification a liquid is transformed into a 
glass-like non-crystalline solid state due to overcooling without freezing. Its most 
important feature is the prevention of ice formation[3,4]. During vitrification, cells kept 
in cryoprotectant solutions are briefly exposed to nitrogen vapor and subsequently 
immersed in liquid nitrogen[5] and usually a permeable cryoprotectant [dimethyl 
sulfoxide (DMSO) or glycerol] and an impermeable cryoprotectant [hydroxyethyl 
starch (HES), polyvinyl alcohol, trehalose] are used together[6,7]. During slow 
freezing, extracellular ice crystals may cause an increase in cellular osmolality and 
dehydration, and therefore the cooling rate during freezing should be sufficiently slow 
to allow a suitable amount of water to leave the cell[8,9]. The optimal cooling rate 
depends on cell size, sample size, water permeability and the presence of nucleating 
agents, which initiate and catalyze the freezing process. In addition, the cryoprotectant 
used, the temperature and surface/volume ratio should also be taken into consid-
eration to determine the optimal cooling rate[10]. A cooling rate of 1-3 ℃/min during 
the initial freezing phase (+4 ℃ to -40 ℃) is optimal for most mammalian cells when 
frozen in the presence of cryoprotective agents, such as glycerol or DMSO[11]. 
Automated freezing devices, such as KRYO 10 series III (Planer Products, Sunbury-on-
Thames, United Kingdom)[12], CryoMed 1010 (Forma Scientific, Marjetta, OH, United 
States)[13] and Cryomed (New Baltimore, MD, United States)[14] provide a 
temperature decrease at a controlled rate. Differences between vitrification and 
cryopreservation are depicted schematically in Figure 1.

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
https://www.wjgnet.com/1948-0210/full/v13/i9/1197.htm
https://dx.doi.org/10.4252/wjsc.v13.i9.1197
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Figure 1 Comparison of vitrification and cryopreservation procedures. CPAs: Cryoprotective agents; HSCs: Hematopoietic stem cells; MSCs: 
Mesenchymal stem cells; iPSCs: İnduced pluripotent stem cells.

Despite a vast amount of different methods, protocols and cryoprotectants, stem 
cells are often frozen using protocols optimized for cell lines and relatively few 
comparative studies have been performed to assess the effects of cryopreservation 
methods and supplements on stem cell quality and viability. A list of commercially 
available cryopreservation media is provided as Supplement 1. Here, we summarize 
the use, advantages and disadvantages of cryopreservation methods used for different 
types of stem cells, including HSCs, mesenchymal stem cells (MSC) and induced 
pluripotent stem cells (iPSC).

CRYOPROTECTIVE AGENTS, ADDITIVES AND SOLUTIONS
In order to serve as an effective cellular cryoprotective agent (CPA), the compound 
should have certain properties, including (1) High water solubility, even at low 
temperatures; (2) Free penetration of cell membranes; and (3) Low toxicity. Although 
many compounds may have these properties, including the most commonly used 
agents DMSO and glycerol, the choice of the compound may differ depending on the 
type of cell. CPAs are often used in combination with a carrier solution, which may 
provide different concentrations of (nutritional) salts, a variety of buffers, osmogens 
and/or apoptosis inhibitors. The contents of this carrier solution further help the cells 
maintain an isotonic concentration (300 milliosmoles) to prevent swelling or shrinking 
during the freezing process[15].

DMSO [Me2SO, (CH3)2SO]
DMSO has been a key agent for the development of cryobiology. For cryopreservation 
of HSCs, use of DMSO, in combination with a temperature-controlled freezing 
technique followed by a rapid thawing procedure of 1-2 °C/min, is considered the 
clinical standard[16]. The use of DMSO as a CPA to prevent freezing-related cell 
damage was first proposed by Lovelock and Bishop[17], who used it during slow 
cooling of bull sperm. Due to its low hydrophilicity and molecular weight, DMSO 
freely penetrates cell membranes. It can disrupt ice crystal nucleation by forming 
hydrogen bonds with intracellular water molecules and prevents dehydration by 
reducing the amount of water absorbed into ice crystals[18]. However, prolonged 
exposure to DMSO negatively affects cellular function and growth by interfering with 
metabolism, enzymatic activity, cell cycle and apoptosis[19]. DMSO is also thought to 
modulate intracellular calcium concentrations[19,20] and may induce or inhibit cell 
apoptosis and differentiation, depending on the cell type, the stage of cell growth and 
differentiation, the concentration of DMSO (typically 5%-10%), duration of exposure 
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and temperature[21,22]. Whereas high concentrations of DMSO may cause instant 
hemolysis, white cell stacking and fibrinogen precipitation, intravenous adminis-
tration of DMSO has been associated with local irritation and necrosis[23]. Infusion of 
cell products that contain DMSO is associated with a wide range of gastrointestinal 
side effects (nausea, vomiting, abdominal pain, diarrhea)[24-26]; cardiovascular effects 
(hypertension, bradycardia, tachycardia)[25-27]; respiratory (dyspnea) and dermato-
logical effects (urticaria, itching, and redness)[28,29]. Furthermore, even very low 
concentrations of DMSO can affect cellular processes by causing differential 
expression of thousands of genes, changing DNA methylation profiles and tissue-
specific deregulation of miRNAs[30,31], and may affect stem cell fate by inducing 
unwanted differentiation[32].

Glycerol (C3H8O3)
Glycerol is a simple polyol compound. Its cryoprotective effects have been known 
since the early 1950s, when glycerol was first tested on fowl spermatozoa, rabbit red 
blood cells and water amoeba[33,34]. Glycerol is a colligative CPA that prevents 
dehydration damage by increasing the total solute concentration, including sodium 
ions, thus preventing ice formation and reducing the amount of water absorbed by ice 
crystals[7,35]. Although glycerol at low concentrations (< 20%) is not sufficient to 
prevent crystallization completely, it does protect different cells from cell death. High 
concentrations (70%) of glycerol were used without significant toxicity and were 
shown to provide substantial protection[36].

Hydroxyethyl starch
Hydroxyethyl starch was synthesized by Ziese W in 1934. The hydroxyethyl starch 
molecule is a high molecular weight synthetic polymer and can be purified from corn 
or potatoes[37]. Since high molecular weight CPAs are generally unable to enter cells, 
HES accumulates in the extracellular space. Here, it regulates water flow during 
cooling and heating and provides cryoprotection by absorbing the water molecules 
and keeping them thermally inert. Although HES remains extracellulary, it can 
minimize intracellular ice crystal formation and provides membrane stabilization[38]. 
By increasing the extracellular viscosity it further prevents osmotic stress and damage, 
reducing the rate at which water is withdrawn from the cells during cooling[39,40].

Trehalose
Trehalose is a non-toxic disaccharide and helps maintaining the structural integrity of 
cells during freezing and thawing[41,42]. Trehalose has high water retaining 
properties and is found in a large number of organisms, such as nematodes and yeasts 
that can survive freezing and drying[43] and can be isolated from yeasts, plants and 
fungi[42,44]. However, trehalose does not display any significant cryoprotective 
potential by itself and should therefore be used in combination with other CPAs[45].

Albumin
The albumin protein consists of three homologous domains, each with specific 
structural and functional properties[46]. Human serum albumin (HSA) is present in 
serum at high quantities and serves as a buffer or depot for hormones, growth factors, 
fatty acids and metals. Due to its stabilizing function, albumin is an important 
component of common preservation and cell culture media. During freezing, albumin 
is used for its ability to coat surfaces, buffer function and binding capacity[47], but, 
similar to trehalose, albumin is only used as a supplementary cryoprotective agent 
during freezing of cells and tissues[48].

Dextran
Dextran is a branched polysaccharide with α-1.6 glycosidic links between glucose 
molecules[49]. Dextran can interact with lipoproteins, enzymes and cells, and has the 
ability to stabilize proteins[50]. Dextran is non-toxic, only weakly antigenic and 
usually used at a concentration of 10%[51,52]. Dextran has been used as a cryoprotect 
during freezing of HSCs and sperm[53,54]. Similar to albumin and trehalose, dextran 
is only used in combination with other CPAs, such as DMSO or glycerol.

CRYOPRESERVATION OF HEMATOPOIETIC STEM CELLS
Hematopoietic stem cell transplantation (HSCT) is used for the treatment of various 
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malignant and non-malignant diseases affecting the hematopoietic and immune 
system as well as for the treatment of a variety of inborn errors of metabolism[55]. 
HSC products derived from bone marrow (BM), peripheral blood or umbilical cord 
blood (UCB) are usually stored for a brief period that may range from a few days to 
months but may increase up to several years, depending on the disease state of the 
patient and treatment schedule[56]. Banking of HSC transplants is becoming 
increasingly important because of the possibility to use previously stored material 
even years after collection. In addition, storage of UCB for personal (private banking) 
or transplantation purposes (biobanks) is becoming increasingly popular and may 
require banking for up to several decades. For this reason, it is critically important that 
HSCs retain their potential during the freezing, banking and thawing[57]. HSCs can be 
stored unprocessed at +4 °C or room temperature for approximately 72 h after 
collection without massive apoptosis, cell death or loss of stem cell function. Within 
this time period, they can be transported and engrafted without any problems, but 
additional protocols may be required for longer storage[22,58,59]. Freezing the cells 
extends their shelf life greatly and increases the safety of HSC therapy by providing 
time to perform quality controls (microbiologically) and product testing (HSC content, 
colony assay, CD34+ enumeration). Despite these benefits, cryopreservation of HSCs 
poses several challenges, most notably a decrease in cell viability after thawing and 
side effects in patients due to the CPAs used[60]. An overview of current protocols 
used for cryopreservation of HSCs has been provided in Table 1.

Throughout the years, DMSO has been the CPA of choice in most studies. It has 
been tested at different concentrations, ranging from 2.5% to 10% with variable results. 
Since DMSO is highly hyperosmotic, rapid infusion of the cryopreserved cells into the 
isosmotic blood system may cause osmotic damage, excessive cell expansion and 
decreased cell viability. This in turn may cause immediate side effects but can also 
affect engraftment in the long term[14,22]. Generally, lower doses of DMSO provided 
less toxicity, but in some cases, this was accompanied by a decrease in cell viability. 
Nevertheless, observed effects and side-effects of DMSO may differ widely between 
the protocols used due to the addition of other supplements (HES, HSA, Trehalose), 
cell dose (ranging from 15 x 106 cells/mL-4000 x 106 cells/mL), cell source (peripheral 
blood/BM/UCB), use of controlled rate or uncontrolled rate freezing, duration of 
storage (< 1 wk to > 1 decade) and the temperature used for long-term storage (-80 °C 
to -196 °C). To reduce the toxic effects of DMSO-cryopreserved HSCs during 
transplantation, it has been opted to divide the infusions into multiple portions, given 
at intervals of several hours or days, or alternatively to concentrate further HSC grafts 
to reduce cryopreservation volume and DMSO content[61]. In addition, alternatives 
such as different CPAs to reduce or replace DMSO for cryopreservation[14,62] or 
complete removal of DMSO prior to infusion[63,64] are being investigated. Even 
though a concentration of 10% DMSO in HSC cryopreservation is widely accepted as 
the cryopreservation medium of choice[65,66], similar or even more successful results 
have been obtained using percentages of DMSO as low as 2.5%-5%, with or without 
the addition of HES. Using these protocols similar engraftment was observed but with 
less toxicity[14,67,68]. Use of trehalose in combination with DMSO in UCB-derived 
HSC freezing has been shown to increase survival and cell differentiation capacity of 
HSCs in comparison to HSCs frozen without trehalose[53]. Direct comparison of 
trehalose and DMSO for cryopreservation of BM-HSCs showed no differences on 
viability between both groups[45]. Similarly, in NOD-SCID mice, the use of low 
amounts of DMSO (5%) and trehalose (5%) to reduce the toxic effects of DMSO 
showed a positive effect on HSC survival and engraftment after transplantation[69]. 
When BM-derived HSCs were frozen using a combination of 7.5% DMSO and 4% 
HSA, cells displayed high viability and sustained engraftment[70]. Studies using 
combinations of DMSO with dextran-40 showed increased HSC viability and 
functionality in comparison to the DMSO only group[71]. In conclusion, a lower 
concentration of DMSO and addition of a non-toxic second CPA or supplement, such 
as HSA and trehalose, decreases toxicity related to DMSO, while maintaining high 
HSC viability and sustaining engraftment.

CRYOPRESERVATION OF MESENCHYMAL STEM/STROMAL CELLS
Multipotent mesenchymal stem/stromal cells (MSCs) can be isolated from many 
tissues, including the bone marrow (BM-MSC), adipose tissue (adipose tissue derived 
stem cell), umbilical cord Wharton Jelly (Wharton Jelly-MSC), placenta (placenta-
MSC), tooth germ (tooth germ MSC) or dental pulp (dental pulp stem cell) and many 
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Table 1 Comparison of different protocols used during cryopreservation of hematopoietic stem cells

HSC source
Storage period 
and 
temperature

Cryopreservation Viability post 
freezing

Engraftment 
in days Results Ref. 

< 600 x 106 cells/mL 
autologous PBSC

5-15 yr, -150 °C 10% DMSO and 23.3% 
Plasma Lyte A 

66.4% 12 Viable CD34+ cells or CFU-GM is a reliable 
predictor of rapid engraftment 

[13]

< 300 x 106 cells/mL 
autologous PBSC

< 6 mo, -80 °C 3.5% DMSO, 1% HSA 
and 2.5% HES

72% 14 Low DMSO conc allows successful 
engraftment and reduces toxicity (8%); 
Similar engraftment after combination of 
DMSO with or without HES and HSA 

[115]

< 100 x 106 cells/ mL 
autologous PBSC

< 6 mo, -80 °C 5% or 10% DMSO, 
autologous plasma, 5% 
ACD

85% 14 19.1% infusion-related toxicity in the 10% 
DMSO group vs 6.8% in the 5% DMSO 
group, lowering DMSO results in 
reduction in infusion toxicity and lower 
costs with a similar hematopoietic 
reconstitution

[116]

Autologous PBSC < 11 yr, -80 °C 3.5% DMSO + 1% HSA 
and 2.5% HES vs 6% 
DMSO + 6% HES

no significant 
change

11-12 Uncontrolled-rate freezing and 
cryopreservation with 5% DMSO/HES at 
−80 °C supports hematopoietic 
reconstitution comparable to that of 
controlled-rate freezing and liquid nitrogen 
storage

[117]

< 4000 x 106 cells/mL 
autologous PBSC

1-98 wk, -80 °C 3.5% DMSO, 2.5% HES 
and 1% HSA

60.8% 11-20 Reduction in DMSO concentration 
decreases transfusion-related adverse 
events. PBPCs cryopreserved in low 
DMSO/HES/HSA at -80°C allow 
successful engraftment

[24]

50 x 106 cells/mL 
autologous PBSC and 
BM

PB: 35 mo (26-
78); BM 16 mo 
(27-71), -90 C

5% DMSO, 6% HES 
and 4% HSA in 
RPMI1640

93% DMSO-associated toxicity during infusion, 
storage of HSCs at -90°C in 
DMSO/HES/HSA did not cause loss of 
cell numbers, viability, and clonogenic 
activity

[118]

Autologous PBSC Controlled rate 
freezing at -186 
°C

5% or 10% DMSO and 
6% HES

10-20 Two patients who received components 
cryopreserved with DMSO alone 
experienced serious neurological toxicity, 
none of the recipients who received 
components frozen in DMSO/HES 
experienced serious infusion-related 
toxicity, better hematopoietic recovery in 
presence of HES independent of DMSO 
concentration

[14]

100 x 106 cells/mL – 
200 x 106 cells/mL 
autologous PBSC

5-6 yr, controlled 
rate freezing at -
160 °C

2%-10% DMSO, 10% 
ACD

73% with 5% 
DMSO

10-14 Cryopreservation using 5% instead of 10% 
DMSO improves CD34 + cell and 
leukocyte viability, but has only minor 
effects on supernatant levels of leukocyte- 
and platelet-derived soluble mediators

[61]

75 x 106 cells/mL - 250 
x 106 
cells/mLautologous 
PBSC

32-180 d, 
controlled rate 
freezing, -196 °C

5% or 10% DMSO 84%-95% 10-14 The use of 5% instead of 10% DMSO was 
associated with a decrease in side effects, 
cryopreservation with 5% DMSO followed 
by storage in nitrogen is a simple, highly 
standardized, and safe procedure for 
cryopreservation of autologous stem cell 
graft

[119]

UCB 1-2 mo, 
uncontrolled vs 
controlled rate 
freezing at -90 °C

5% or 10% DMSO Uncontrolled 
84.2%; 
controlled 
92.5%

Best recovery of UCB cells when 
controlled-rate freezing and 5% DMSO 
were combined

[120]

15 x 106 cells/mL UCB > 2 wk, 
controlled rate 
freezing at -170 
C

5%, 10% or 20% DMSO 
and 2% HSA or 
autologous plasma

89% Optimal conditions for cryopreservation 
were 10% DMSO and 2% HSA with fast 
addition and removal of DMSO 

[121]

800 x 106 cells/mL 
UCB

10 yr, controlled 
rate freezing at -
196 °C

10% DMSO and 5% 
Dextran

83.7% Long term storage of UCB units does not 
affect the quality of the HSCs

[122]

BM cells can be rapidly and inexpensively 
cryopreserved in DMSO/ HES, without 
need for rate-controlled freezing or storage 

Autologous BM 4 mo, -80 °C 5% DMSO and 6% HES 82.2% 21 [123]
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in liquid nitrogen 

20 x 106 cells/mL BM 
or 17 x 106 cells/mL 
PBSC

Controlled rate 
freezing at -196 
°C

10% DMSO or 0.25-1 
mol/L TH with or 
without 0.25 IU/mL 
insulin (I)

DMSO: 
33%TH: 32%; 
TH/I: 30%

DMSO-cryopreserved cells exhibited the 
best median viability-rate after thawing. 
Comparable results could be achieved with 
trehalose 0.5 mol/L with/without insulin 

[45]

200 x 106 cells/mL 
autologous BM or 
PBSC

BM: 11.8 yr vs 
PB: 33 d 
controlled rate 
freezing at -196 
°C

10% Medium 199 , 80% 
autologous plasma and 
10% DMSO

BM: 81.5%; 
PBSC: 68.0%

BM can be cryopreserved for more than a 
decade without apparent loss of progenitor 
activity in comparison to short-term 
cryopreserved PBSC

[124]

HSC: Hematopoietic stem cell; DMSO: Dimethyl sulfoxide; CFU-GM: Colony Forming Unit-Granulocyte/Macrophage; ACD: Acid citrate dextrose; RPMI: 
Roswell Park Memorial Institute Medium; HES: Hydroxyethyl starch; HSA: Human serum albumin; BM: Bone marrow; UCB: Umbilical cord blood; TH: 
Trehalose.

other connective tissues[72,73]. MSCs can differentiate into cells from several 
mesenchymal lineages, including but not limited to osteoblasts, adipocytes and 
chondrocytes[74,75]. MSCs are highly positive for cell surface molecules like CD29, 
CD44, CD73, CD90 and CD105[76]. They hold great potential for clinical application 
due to their capacity for regeneration of damaged or injured tissues, migration to sites 
of injury and regulation (usually suppression) of local and generalized immune 
responses. In order to obtain a sufficient amount of MSCs for clinical application, cells 
are often profoundly expanded in culture. Since MSCs themselves do not express 
HLA-DR, the cells are considered immunologically inert and expanded MSCs from 
unrelated, third-party donors can be used for treatment of a variety of diseases, 
ranging from graft vs host disease to severe acute respiratory distress syndromes[77,
78]. These characteristics make MSCs ideal for ready, off-the-shelf treatments but 
require significant expansion and long-term cryopreservation[79-81]. Similar to the 
protocols developed for freezing of HSCs, a variety of freezing solutions and protocols 
has been tested for cryopreservation of MSCs (Table 2). Similar to freezing protocols 
used for HSCs, MSC freezing media generally consists of a basic medium [alpha-
modified minimal essential medium, Dulbecco's Modified Eagle's Medium (DMEM) or 
advanced DMEM], supplemented with 3%-10% DMSO. In most studies expression of 
MSC surface markers (CD29, CD44, CD73, CD90, CD105 and/or CD166) was assessed 
before and after cryopreservation, and in almost all cases, MSC phenotype was not 
affected by cryopreservation, with overall expression levels > 90%. Cell viability 
ranged from 60% to 95% when fetal bovine serum (FBS) was used in addition to 
DMSO. In the presence of 10% DMSO, viability was typically very high (80% to 100%) 
after thawing, regardless of the duration of the freezing period[81-84].

While there was no significant difference between 2% and 10% DMSO in terms of 
viability after a 1 mo freezing period, a significant portion of the cells frozen in 
presence of 2% DMSO died after long-term cryopreservation[81]. Therefore, in order to 
reduce the toxicity related to DMSO, either the percentage of DMSO was reduced or 
secondary CPAs (trehalose, sucrose, boron) were added to the freezing media[83-85]. 
Alternatively, high molecular weight macromolecules, such as FBS, polyethylene 
glycol (PEG) or polyvinylpyrrolidone were added as secondary CPAs to the freezing 
media[83,84,86]. However, since FBS contains animal components, cell products may 
contain remnants of FBS despite post-thaw washing that may trigger adverse 
(immune) reactions when used in a clinical setting[87]. Therefore, animal component 
free media, such as Cryostor, have been developed as an alternative to standard 
freezing medium formulations[81]. Studies using adipose tissue-derived MSCs frozen 
with 10% DMSO, 0.9% NaCl and human serum, HSA or knockout serum replacement 
(KSR)[88] revealed that all FBS replacements supported a similar multilineage differ-
entiation potential, expression of cell surface markers and gene expression of stem cell 
markers, indicating that these may be good alternatives for clinical use. Carnevale et al
[89] used 5% DMSO and human serum instead of FBS for cryopreservation of BM-
MSCs and found no differences in terms of differentiation or phenotype. Cryopreser-
vation of BM-MSCs using 7.5% DMSO, supplemented with 2.5% PEG and 2% BSA or 
even 5% DMSO, supplemented with 5% PEG and 2% BSA were shown to be almost as 
good as 10% DMSO in terms of viability and similar in terms of differentiation[84]. 
Comparison of mixed osmolyte solutions, consisting of sucrose/glycerol/creatine and 
sucrose/glycerol/isoleucine with standard DMSO containing freezing media further 
showed the potential of these type of cryopreservation solutions by improving post-
thawing function of MSCs[31].
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Table 2 Comparison of different protocols used during cryopreservation of mesenchymal stem/stromal cells

MSC 
source, 
passage

Culture 
medium

Storage 
period and 
temperature

Cryopreservation Viability Phenotype Results Ref.

BM-
MSC/P3

MEM, 15% 
FBS, 1% 
P/S, 1% L-
glutamin

7 wk at -196 °C 90% FBS and 10% DMSO Osteogenic and 
adipogenic 
differentiation, high 
expression of CD44, 
CD73, CD90 and CD105 

No effects of freezing on 
function, differentiation 
and phenotype of the 
cells

[125
]

1 x 106BM-
MSC/P3, 
P4, P8, 
P13, P18

MEM, 10% 
FBS, 1% 
P/S, 1% L-
glutamin

12 mo, 
controlled rate 
freezing at -80 
°C

30% FBS, 60% MEM and 
10% DMSO

85%-100% Chondrogenic, 
adipogenic, neurogenic 
differentiation, no 
difference in expression 
of cell surface markers 
between passages

No differences in 
phenotype or 
differentiation between 
different cryopreserved 
MSCs from different 
passages

[82]

0.5 x 106

/mL; BM-
MSC

MSC 
growth 
medium, 
10% FBS

1-5 mo, 
controlled rate 
freezing at -196 
°C vs 4 d at 4 
°C

Freezing medium (FM): 
10% DMSO, 10% FBS, 
MSC growth medium, 
30% BSA vs CryoStor (CS) 
animal component free 
freezing medium with 2%, 
5% or 10% DMSO vs 
storage in 
HypoThermosol-FRS 
medium (HTS-FRS) at 4°C 

FM 10% DMSO: 
102.8%; CS 2% 
DMSO: 91.7%; CS 
5% DMSO: 95.6%; 
CS 10% DMSO: 
95.4%; HTS-FRS: 
85.0% (rapid loss of 
viability after > 6 d)

Osteogenic 
differentiation, high 
expression of CD44, 
CD90, CD105, CD166, 
loss of expression of 
CD9 after hypothermic 
storage

No difference in 
differentiation or 
phenotype before and 
after freezing; HTS-FRS 
preserved MSC marker 
expression, proliferation 
and osteogenic 
differentiation after 
storage for at least 4 d

[81]

1 x 106

/mL; BM-
MSC

MEM, 10% 
FBS, 1% P/S

7 wk at -196 °C 10% DMSO ± 10% or 90% 
FBS, 7.5% DMSO, 2.5% 
PEG ± 2% BSA, 5% DMSO, 
5% PEG, 5% DMSO, 2% 
PEG, 3% Trehalose ± 2% 
BSA, 2.5% DMSO, 7.5% 
PEG ± 2% BSA, 10% 
Propanediol, 2%BSA, 7.5% 
Propanediol 2%BSA, 2.5% 
PEG

Highest viability 
with 7.5% DMSO, 
2.5% PEG and 2% 
BSA: 82.9% ± 4.3% 
vs 10% DMSO: 
82.7% ± 3.7%

Adipogenic, osteogenic 
and chondrogenic 
differentiation

In comparison to 10% 
DMSO, best results with 
7.5% DMSO, 2.5% PEG 
and 2% BSA. In 
presence of and 2% BSA 
also good results with 
5% DMSO, 5% PEG or 
7.5% propanediol with 
2.5% PEG 

[84]

BM-
MSC/P1-6

MEM, 10% 
Human 
Serum, 1% 
L-
glutamine, 
1% P/S

1 yr at -196 °C MEM, 40% Human Serum, 
5% DMSO

Osteogenic, adipogenic 
and myogenic 
differentiation, before 
and after thawing high 
expression of CD73, 
CD90 and CD105, no 
expression of CD16, 
CD34, CD45 and HLA-
DR

Cryopreserved MSCs 
show slightly lower 
proliferation rate, no 
differences in 
differentiation, 
senescence markers, 
CFU-F or karyotype 
between frozen and 
fresh cells

[89]

5 x 105

/mL; BM-
MSC/P1

MEM, 15% 
FBS, 1% P/S

< 6 mo vs 33-37 
mo

CELLBANKER 
cryopreservation medium 
(contains serum and 
DMSO)

90% Osteogenic 
differentiation, both 
fresh and cryopreserved 
MSCs were negative for 
CD14, CD34, CD45 and 
HLA-DR and positive 
for CD29 and CD105

No difference in 
osteogenic potential 
between fresh and 
cryopreserved cells. 
Long-term 
cryopreserved MSCs 
retained high osteogenic 
potential, no difference 
in phenotype

[86]

1 x 106

/mL; WJ-
MSC

ADMEM, 
10% FBS, 
1% P/S, 1% 
L-glutamine

3 mo, 
controlled rate 
freezing at -196 
°C

A: ADMEM, 10% PVP ± 
10% FBS, B: ADMEM, 10% 
FBS, 0.05 mol/L glucose, 
0.05 mol/L sucrose, 1.5 
mol/L ethylene glycol ± 
10% FBS, C: ADMEM, 10% 
DMSO ± 10% FBS

A: 62.9% ± 0.4%; A 
without FBS: 6.8% ± 
0.2%; B: 72.2% ± 
0.23%; C: 81.2% ± 
0.6%

Adipogenic and 
osteogenic 
differentiation, both 
fresh and cryopreserved 
MSCs were negative for 
CD34 and CD45 and 
positive for CD73, CD90 
and CD105

Complete elimination of 
FBS in cryoprotectants 
resulted in drastic 
reduction in cell 
viability. 
Cryopreservation did 
not alter basic stem cell 
characteristics, plasticity 
and multipotency, 
except for proliferation 
rate

[83]

Osteogenic, 
chondrogenic, and 
adipogenic 
differentiation, high 
expression of CD29 and 
CD73, medium 
expression of CD90, 
CD105 and CD166, no 

< 5% DMSO in freezing 
medium resulted in 
increased cell death, 
NaB improved cellular 
viability after freeze-
thaw cycles, addition of 
NaB to the freezing 
medium did not affect 

1 x 106

/mL; 
tgMSC

DMEM, 
10% FBS, 
1% P/S/A 

1 d or 6 mo, 
freezing at -196 
°C

20 μg/mL NaB, 20% FBS, 
1% P/S/A , 10%, 7%, 5%, 
3% or 0% DMSO

First cycle: > 90%; 
Second cycle: > 
70%; Third cycle: > 
80%; Fourth cycle: > 
80%

[85]
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expression of CD14, 
CD45, CD34

differentiation capacity 
of MSCs

5 x 105/mL 
ADSC/P2

DMEM-LG, 
10% FBS 

2 wk, freezing 
at -196 °C

0.9% NaCl containing 10% 
DMSO  HSA, HS, KSR or 
90% FBS

DMSO + 9%; HSA: 
78.0%; DMSO + 
90%; HS: 72.4%; 
DMSO + 90%; KSR: 
77.0%; DMSO + 
90%; FBS: 78.5%; 
DMSO alone: 19.6%

No differences in 
adipogenic, osteogenic, 
and chondrogenic 
differentiation, gene 
expression of CD73, 
CD90, CD105, CD106, 
CD166, SCF, REX1 and 
NANOG. All ADSCs 
were positive for surface 
expression of CD44, 
CD73, CD90, CD105, 
CD166 and HLA-ABC 
and negative for CD31, 
CD34 and HLA-DR

ADSCs frozen with 
HSA, HS, or KSR 
showed similar growth 
kinetics as cells frozen 
with FBS. Multilineage 
differentiation of 
ADSCs did not differ 
between groups

[88]

1 x 106/mL 
DPSC/P5-
7

MEM, 15% 
FBS, 1% 
P/S/A, 100 
uM L- 
ascorbic 
acid 2-
phosphate

1 wk, freezing 
with Mr. 
Frosty (NMF) 
vs magnetic 
freezing (MF)

Serum-free 
cryopreservation medium 
(SFM) containing 3% 
DMSO, SFM + 10% 
DMSO, FBS + 3% DMSO, 
FBS + 10% DMSO

SFM + 3%; DMSO: 
75%; SFM + 10%; 
DMSO: 78%; FBS + 
3%; DMSO: 70%; 
FBS + 10%; DMSO: 
73%

CD29, CD44 and STRO-
1 expression did not 
differ between the NMF 
and the MF groups, 
whereas levels of CD73, 
CD90, CD146 and 
CD166 in the MF group 
increased compared to 
the NMF group.

DPSC viability using 
MF was significantly 
superior to that of the 
NMF using 2%–10% 
DMSO; Post-thaw MF-
DPSCs expressed MSC 
markers and showed 
osteogenic and 
adipogenic 
differentiation similar to 
fresh DPSCs

[90]

ESC-
derived 
MSC

MEM, 10% 
FBS, 1% 
NEAA

Controlled rate 
freezing at 196 
C

Sucrose, glycerol, creatine 
(SGC) and sucrose/ 
glycerol/isoleucine (SGI) 
solutions were incubated 
for 1h before freezing, 
Sucrose, mannitol, creatine 
(SMC) solutions were 
incubated for 2 h before 
freezing

SGI>SGC>SMC Osteogenic and 
chondrogenic 
differentiation, all 
groups were positive for 
CD73, CD90 and CD105, 
and negative for CD45

Osmolyte-based 
cryopreservation 
formulations retain 
MSC post-thaw 
viability, cell surface 
markers expression, 
proliferation, and 
osteochondral 
differentiation potential

[31]

MSC: Mesenchymal stem/stromal cell; FBS: Fetal bovine serum; DMSO: Dimethyl sulfoxide; ESC: Embryonic stem cell; NEAA: Non essential aminoacids; 
MEM: minimal essential medium; KSR: Knockout serum replacement; BSA: Bovine serum albumin; P/S: Penicillin/Streptomycin; DPSC: Dental pulpa 
stem cells; ADSCs: Adipose derived stem cells.

For research purposes often non-controlled, simple isopropanol-jacketed freezing 
containers (such as the Mr. Frosty from NALGENE) are used. Using this system, 
temperature in cryovials decreases approximately 1 C/min[89,90]. In contrast, for 
clinical use, temperature controlled freezing devices are often preferred. Lee et al[90] 
used a programmed freezer with a magnetic field to freeze human dental pulp MSCs. 
Using the magnetic freezing procedure, the researchers were able to decrease the level 
of DMSO to 3% without a significant difference in cell viability. Using the magnetic 
field freezer “Cells Alive System” (CAS) rat BM-MSCs were frozen in serum-free 
freezing medium (10% DMSO, 5% Albumin, 0.2% D-Glucose, 0.6% NaCl, 0.03% 
glutamine, 0.2%NaHCO3)[91]. After 3 years, viability and in vivo bone formation in the 
CAS group was significantly higher than that in cells stored in a non-programmed or 
non-magnetic freezer (87.7% and 48.5%, respectively). These data show the potential 
for use of alternative freezing systems for cryopreservation of MSCs as well as the use 
of secondary CPAs that decrease the need for DMSO. Most clinical trials use MSCs 
from related donors rather than off-the-shelf products. These MSCs are often directly 
after expansion infused into the patients. However, considering the increasing 
requirement for readily available MSC products, MSC culture and cryopreservation 
protocols under good manufacturing practice conditions will need to be revisited and 
low DMSO protocols that are optimized for clinical use and support MSC function in 
the absence of animal components remain to be developed.

CRYOPRESERVATION OF INDUCED PLURIPOTENT STEM CELLS
Whereas studies on HSCs have been the focus of stem cell research since the 1960s-70s, 
studies assessing the role and function of MSCs have intensified since the 1990s. Since 
2006, a substantial portion of the focus within the stem cell field has moved steadily 
towards the use of the new kid on the block, i.e. induced pluripotent stem cells (iPSC). 
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iPSCs are stem cells with embryonic stem cell (ESC)-like properties, but lack the ethical 
issues involved with the use of ESCs. This is related to the fact that iPSCs are artifi-
cially generated from somatic cells by forced overexpression of the pluripotency 
transcription factors OCT4, SOX2, KLF4 and c-Myc[92,93]. New protocols using 
different combinations of transcription factors, including NANOG and LIN28[94] and 
others, devoid of oncogenic potential, as well as different methods for transfer (e.g., 
integrating lentiviral vectors, non-integrating sendai based vectors, episomal vectors, 
direct mRNA transfer, etc.)[95] have not affected the characteristics of the derived 
iPSCs: iPSCs have unlimited self-renewal capacity and the ability to differentiate into 
cells from all three germ layers (endoderm, mesoderm, ectoderm). iPSCs thus provide 
the tools to study early developmental biology in vitro and can be used for disease 
modeling and drug discovery. In addition, patient-derived iPSCs offer the opportunity 
to study the pathophysiology of diseases that could not be studied previously and can 
be used for the development of personalized medicine. All these features further 
stimulated iPSCs to become an important source of stem cells, and biobanks for 
storage of healthy and patient-derived iPSCs have now been established in many 
countries. However, efficient banking requires cell production facilities where cells can 
be expanded, maintained and cryopreserved under optimal conditions to ensure 
protection of iPSC characteristics and properties for weeks to years. In contrast to the 
cryopreservation protocols developed for HSCs and MSCs, current protocols for 
cryopreservation of iPSCs have focused on different issues, including freezing of cells 
in small aggregates vs single cell freezing in the presence of absence of DMSO[96-99], 
cell freezing using vitrification or different combinations of CPAs[100-102], cell 
recovery after cryopreservation using small molecules, such as the Rho kinase (ROCK) 
inhibitor Y-27632[103-105] and development of animal-component free formulations of 
culture and cryopreservation media using KSR instead of serum[106-108] (Table 3).

Using Raman spectroscopy to assess intracellular ice formation in iPSCs during 
cooling, Li et al[96] showed that iPSC aggregates are more sensitive to supercooling 
than single iPSCs in suspension due to the decreased water permeability of iPSCs in 
aggregates vs single cells. They also showed a greater variation in DMSO concen-
tration across the aggregates than in single cells, suggesting that the size of the 
aggregates may hinder equal diffusion of the cryoprotectant to the cells. They also 
found that iPSC aggregates frozen in an optimized solution consisting of non-essential 
amino acids, sucrose, glycerol, isoleucine and albumin dissolved in a buffer made of 
poloxamer 188 (P188) in Hank’s Balanced Saline Solution, did not exhibit the same 
sensitivity to undercooling as those frozen in non-optimized solutions or those 
containing 7.5% DMSO[97]. In addition, cryopreservation of iPSCs in aggregates 
requires a significantly modified freezing technique, where iPSC aggregates are first 
incubated at room temperature for 30 min to 1 h before freezing to allow sufficient 
internalization of the CPAs[97], in contrast to freezing with DMSO, which usually 
requires working at low temperatures (4 °C) and rapid mixing of cells.

Miyamoto et al[100] compared the efficacy of a variety of different cryopreservation 
media on an established murine iPSC line. These media consisted of control 10% 
DMSO formulations to reduced DMSO solutions, glycerol-containing solutions, 
combinations of DMSO and glycerol and commercially available cryopreservation 
media (CELLBANKER 1, 1+, 2 and STEM-CELLBANKER) and were used to freeze 
mouse iPSCs in suspension. Comparison of viability, proliferation and multipotency 
after long-term freezing of iPSCs in these media showed optimal results with the 
serum-free formulations of CELLBANKER (CELLBANKER 2 and STEM-
CELLBANKER)[100]. However, the precise formulations of these freezing media is 
proprietary, Hank’s Balanced Saline Solution and the researchers did not mention 
whether the STEM-CELLBANKER formulation used contained DMSO. Katkov et al
[98] compared freezing of iPSCs in aggregates and as single cells using different CPAs 
including DMSO, ethylene glycol (EG), propylene glycol and glycerol. After extensive 
comparison, they found that freezing in aggregates resulted in favorable iPSC recovery 
after thawing. In addition, toxicity tests revealed that EG was not only less toxic than 
DMSO, it also supported better maintenance of pluripotency than propylene glycol or 
glycerol[98].

The use of KSR as a serum replacement has shown promising results and is another 
step in the development of animal component-free cryopreservation solutions. In 
combination with 10% DMSO, KSR has been used at concentrations of 25%-90% to 
freeze effectively iPSCs, ESCs and iPSC-derived cells with high post-thaw viability
[105,106,108,109]. Inhibition of Rho kinase activity with ROCK inhibitors has shown 
favorable outcomes after freezing of both ESCs and iPSCs, and although not added 
during cryopreservation itself, it promotes both plating and cloning efficiency[104,105,
108,110,111] by preventing apoptosis of detached cells[112]. Since addition of ROCK 
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Table 3 Comparison of different protocols used during cryopreservation of induced pluripotent stem cells

Source of 
cell

Storage 
periode and 
temperature 

Cryopreservation Viability Parameters Results Ref.

1.5 x 106-2 x 
106 hiPSC 
line UMN 
PCBC16iPS

Controlled 
rate; -196 °C

NEAA, sucrose, glycerol, 
isoleucine and albumin in a 
P188 in HBSS vs 7.5% DMSO; 
Aggregates vs single cells

Viability, adherence and 
intracellular ice 
formation

P188 was found here to not only 
inhibit ice formation significantly 
but also soften the solid-liquid 
interface of ice and increase the 
distance between adjacent ice 
crystals; The cryoprotective effects 
of the DMSO- free CPA cocktail 
could be capitalized only with the 
optimized composition. Deviation 
from the optimum may result in 
less desirable outcomes 

[96,
97]

H9 hESC 
and hiPSC

3-6 
d,controlled 
rate; -80 °C

10% DMSO, 10% EG, 10% 
PG, 10% glycerol, clumps vs 
single cells; ROCK inhibitor 
after thawing

EG-DMSO> 
PG|||<***glycerol 

Toxicity of CPAs, 
expression of NANOG 
by hiPSCs

Freezing single cell iPSCs in the 
presence of a ROCK inhibitor and 
EG and programmable freezing 
drastically improved the yield of 
iPSCs in comparison to standard 
freezing in clumps without ROCK 
inhibitor

[98]

1-2x106 
hiPSC

-196 °C A: 10% DMSO/90% FBS; B: 
10% DMSO/90% KSR; C: 
10% DMSO/ESC medium + 
20%KSR + ROCK inhibitor; 
Single cells

A: 90%; B: 70%; C: 
70%

Viability, karyotype, 
expression of 
pluripotency markers 
TRA-1-60, TRA-1-81, 
Oct4, SSEA-3, and 
SSEA-4, embryoid body 
formation, neuronal 
differentiation, colony 
formation

Addition of ROCK inhibitor to pre- 
and post-thaw culture media 
increased survival rate, hiPSCs 
retained typical morphology, 
stable karyotype, expression of 
pluripotency markers and the 
potential to differentiate into 
derivatives of all three germ layers 
after long-term culture

[103,
105,
108]

hiPSC -196 °C 10% DMSO in KO DMEM, 
20% KSR, 1% NEAA, 1% L-
glutamine, 0.2% b-
mercaptoethanol, 1% 
antibiotic/ antimycotic and 8 
ng/mL bFGF; ROCK 
inhibitor after thawing; 
Single cells

Colony number and size ROCK inhibitor Y-27632 
significantly improves the 
recovery of cryopreserved human 
iPS cells and their growth upon 
subculture 

[104]

hiPSC line 
253G4 and 
201B2

7 d, 
Vitrification in; 
-196 °C

VS2E vitrification solution 
(40% EG, 10% PEG in Euro-
Collins medium), DAP213 
vitrification solution (1.2% 
DMSO, 22% PG, 5.9% 
acetamide); Single cells

VS2E>DAP213 Proliferation, expression 
of pluripotency markers 
Oct3/4, SSEA4, ALP, 
pluripotency in 
teratoma assay

Higher recovery rate of hiPSCs 
with DMSO and serum-free VS2E 
vitrification medium, cells after 
vitrification expressed Oct-3/4 and 
SSEA-4 and alkaline phosphatase 
and retained their pluripotency 

[114]

iPSC: Induced pluripotent stem cells; NEAA: Non-essential amino acids; DMSO: Dimethyl sulfoxide; CPA: Cryoprotective agents; ESC: Embryonic stem 
cell; bFGF: basic Fibroblast Growth Factor; ROCK: Rho Kinase; ALP: Alkaline phosphatase; KSR: Knockout Replacement; FBS: Fetal Bovine Serum; HBSS: 
Hank’s Balanced Salt Solution.

inhibitors up to 5 d after thawing still promotes colony formation, and since the effects 
of ROCK inhibition appear to be reversible, it has been also been suggested that ROCK 
inhibitors may relieve cellular stress[104].

Similar to studies in MSCs, the effects of magnetic fields on iPSC recovery after 
freezing have been assessed. Using the CAS researchers showed improved survival 
after thawing of iPSCs, but no effect on proliferation, gene expression and multilineage 
differentiation[113]. Reubinoff et al[101] previously showed that vitrification of both 
ESCs and iPSCs is feasible, using precooled freezing medium consisting of 90% FBS 
and 10% DMSO and a cooling rate of 1 C/min. ESC aggregates were preincubated in 
80% DMEM, 10% DMSO and 10% EG and then placed into small 1-2 mL droplets 
containing 60% DMEM, 20% DMSO, 20% EG and 0.5 mol/L sucrose. All vitrified ESC 
aggregates recovered upon thawing and gave rise to colonies after plating. However, 
vitrified colonies were significantly smaller and showed increased differentiation 
compared with control colonies. Nevertheless, colonies generally recovered within 1-2 
d of cell culture. Using a similar method for iPSCs, but using a DMSO and serum-free 
medium based on 40% EG and 10% PEG, Nishigaki et al[114] obtained a higher 
recovery rate of iPSCs than with a vitrification solution containing DMSO and serum.
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Figure 2 Preferred cryopreservation protocols for different types of stem cells. PB: Peripheral blood; BM: Bone marrow; UCB: Umbilical cord blood; 
HSCs: Hematopoietic stem cells; DMSO: Dimethyl sulfoxide; HES: Hydroxyethyl starch; HSA: Human serum albumin; TG: Tooth germ; DP: Dental pulp; A: Adipose 
tissue; WJ: Wharton Jelly; P: Placenta; MSCs: Mesenchymal stem/stromal cells; FBS: Fetal bovine serum; KSR: Knockout serum replacement; iPSCs: Induced 
pluripotent stem cells; ESCs: Embryonic stem cells; ROCK: Rho-associated protein kinase.

CONCLUSION
The universally used cryoprotectant DMSO has been associated with in vitro and in 
vivo toxicity and has been shown to affect many cellular processes through dysregu-
lation of gene expression and changes in DNA methylation. Despite studies showing 
that DMSO affects cell characteristics including differentiation potential, DMSO 
remains to be the CPA of choice both in a research setting and in the clinics. Many 
different protocols have been developed for different types of stem cells and a broad 
range of alternatives to DMSO have been shown to hold promise for use as a CPA 
(Figure 2). These alternatives include such molecules as trehalose, sucrose, EG, PEG 
and many more. It is obvious that a single protocol that can be used for all types of 
stem cells is not feasible, but the enormous amount of available alternatives should 
make it possible to adapt and optimize DMSO-free and animal component and serum-
free cryopreservation solutions adapted for different types of stem cells in the 
foreseeable future.
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