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Abstract
AIM: To clarify the protective effect of exogenous adenosine
triphosphate (ATP) on hypothermically preserved rat livers.

METHODS: Establishment of continuous hypothermic
machine perfusion model, detection of nucleotides in
hepatocytes with HPLC, measurement of activities of LDH
and AST in the perfusate, observation of histopathological
changes in different experiment groups, and autoradiography
were carried out to reveal the underlying mechanism of the
protective effect of ATP.

RESULTS: The intracellular levels of ATP and EC decreased
rapidly after hypothermic preservation in control group, while
a higher ATP and EC level, and a slower decreasing rate
were observed when ATP-MgCl2 was added to the perfusate
(P<0.01). As compared with the control group, the activities
of LDH and AST in the ATP-MgCl2 group were lower (P<0.05).
Furthermore, more severe hepatocyte damage and neutrophil
infiltration were observed in the control group. Radioactive
[α-32P] ATP entered the hypothermically preserved rat
hepatocytes.

CONCLUSION: Exogenous ATP has a protective effect on
rat livers during hypothermical preservation. However, Mg2+

is indispensable, addition of ATP alone produces no protective
effect. The underlying mechanism may be that exogenous
ATP enters the hypothermically preserved rat liver cells.
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INTRODUCTION
Improving the quality of cold stored organs and prolonging
the effective preservation time are the pivotal contents in the
investigation of hypothermic preservation of transplant grafts.
Several investigators have reported that the intracellular level
of adenosine triphosphate (ATP) in cold stored organs was
closely correlated with the viability of transplant grafts[1-3].
Bowers reported that ATP level in cold stored pretransplant
organs was a sensitive parameter for examining the activities
of cold stored organs[4]. Therefore, providing direct energy
substrate ATP to cold stored organs[5], should be a simple and
effective method to sustain the high level of intracellular ATP.

However, thus far, whether exogenous ATP could enter cells
or not is controversial[6-9]. Furthermore, there were few reports
which elucidated the protective effect of ATP on cold stored
transplant grafts. In this study, a continuously hypothermic
machine perfusion model of rat liver was applied to reveal the
protective effect of ATP on cold stored rat livers and its
mechanism.

MATERIALS AND METHODS

Experimental animals
Wistar rats weighing 180-220 g, both male and female, were
randomly used..

Experiment groups and protocol
Cold storage study on rat livers  The rats mentioned above
were divided into 3 groups at random, group A (containing
neither ATP nor MgCl2 in the perfusate), group B (containing
5 mmol/L ATP but no MgCl2 in the perfusate), group C (containing
either ATP or MgCl2 in the perfusate), respectively. There were
6 rats in each group. The rat liver was weighed immediately
after resection by the method described previously[10-12], then
these grafts were put into the modified Hoffmann perfusate[13]

(0-4 ) for 30 min (Table 1). Finally, the livers were preserved
in a hypothermic preservation incubator by continuously
hypothermic preservation perfusion model (Figure 1). The
perfusate temperature was 6-8 [14], perfusion speed was 0.1
mL/(min.g)[14], the total volume of perfusate was 120 mL.
Autoradiography study  Six rats were chosen randomly, the
livers were resected with the same method. One mCi [α-32P]
ATP, 5 mmoL MgCl2, 200 µL and 40 U phenol kinase were
added into 1 L perfusate, and the same liver preservation
method was applied.

Table 1  Components of perfusate

Composition Concentration

Hydroxyethyl starch 50 g/L

Calcium gluconate 80 mmol/L

Raffinose 10 mmol/L

KH2PO4 25 mmol/L

Hydroxyethyl piperazine 10 mmol/L

Dexamethasone 12 mg/L

Penicillin 2×105 units/L

Insulin 100 units/L
1MgCl2 5 mmol/L
1ATP 5 mmol/L

The pH value was modulated to 7.35 with NaOH, and the os-
motic pressure was 300-320 mOsm/L; 1Addition of MgCl2 and
ATP was dependent on the different groups.

Biochemical detection
Detection of energy status in cold stored rat livers  The rat
liver samples were used to detect the intracellular ATP, ADP,
AMP, TAN and EC at 0, 1, 2, 6, 12, 24 and 36 h after
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preservation by HPLC method[15] (TAN=ATP+ADP+AMP,
EC=[ATP+0.5ADP]/TAN)[16]. One milliliter of perfusate was
taken to detect the LDH and AST activities[17,18] at 6, 12, 24
and 36 h respectively after preservation.
Histological and morphological findings  Paraffin sections
of HE staining were made after 24 h preservation of the rat
livers[19], and observed by a light microscope.
Autoradiography of [α-32P] ATP  The rat liver samples
were made into paraffin sections of HE staining after 4-h
preservation. Moreover, whether ATP entered the cells of cold
stored rat livers or not was examined by autoradiography of
[α-32P] ATP[20].

Figure 1  Preservation of continuously hypothermic machine
perfusion. A: Organ hypothermic preservation box, B: Tem-
perature displayer, C: Perfusion pump, D: Perfusion pump,
(Displaying the perfusion pressure). E: Perfusate container, F:
Organ preservation container, G: pH displayer, H: Entry of
wire, (Being sealed while preservation).

Statistical analysis
The average values were presented as mean±SD, t-test was
applied and P<0.05 was considered to be statistically significant.

RESULTS

Energy status in cold stored rat livers (µmol/g wet liver)
In group A, following the prolongation of preservation time,
the ATP and EC levels in rat liver cells were significantly
decreased. The ATP and EC levels were also rapidly decreased
in group B, there was no statistical difference between these
two groups (P>0.05). However, the ATP and EC levels were
slowly decreased in group C (P<0.01, Table 2).

LDH and AST activities in hypothermic preservation perfusate
LDH and AST activities in the perfusate were increased in
groups A and B, there was no significant difference between
two groups (P>0.05). On the other hand, compared with those
in groups A and B, the relevant activities were slowly increased
in group C (P<0.05, Table 3).

Histological and morphological findings after 24-h hypothermic
perfusion preservation
In group A (Figure 2), the hepatocytes were obviously swollen,
cytosol and part of nucleus were faintly stained. Part of the
endothelial cells entered the hepatosinus.
       In group B (Figure 3), the hepatocytes were also expanded,
cytosol was faintly stained. Some nuclei were strongly
stained. Some endothelial cells entering the hypatosinus were
also found.
    In group C (Figure 4), the hepatocytes were lightly
expanded. There was no apparent bubble in cytosol, and the
morphology of nucleus was normal. The endothelial cells of
hepatosinus were continuous.

Figure 2  Histological and morphological findings in
hypothermically preserved hepatocytes. Group A: 24-h
preservation, HE staining 100×.

Figure 3  Histological and morphological findings in
hypothermically preserved hepatocytes. Group B: 24-h
preservation, HE staining 100×.

Figure 4  Histological and morphological findings in
hypothermically preserved hepatocytes. Group C: 24-h
preservation, HE staining 100×.

Figure 5  Autoradiography of [α-32P] ATP in hypothermically
preserved hepatocytes. Black spots in hepatocytes are the
autoradiographies of [α-32P] ATP, 4-h preservation, H E
staining 100×.
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Autoradiography of [α-32P] ATP
Numerous silver spots of [α-32P] ATP were found to be limited
within the rat hepatocytes, while no silver spots were found in
the hepatosinus and central vein (Figure 5). This observation
demonstrated that [α-32P] ATP entered the cold stored rat
hepatocytes.

DISCUSSION

Protective effects of exogenous ATP on hypothermically
preserved rat livers
Up to now, some reports have revealed that ATP-MgCl2 had a
protective effect on the therapy of hemorrhagic shock[7,21], but
reports revealing the protective effect of ATP-MgCl2 on
hypothermically preserved transplant organs were few[22]. The
results of this study demonstrated that the intracellular level
of ATP in the group containing no ATP-MgCl2 or the group
containing ATP alone decreased rapidly after hypothermic
preservation. Simultaneously, the release of intracellular
enzymes was increased, indicating severe damages of the
membrane functions. Moreover, significant swelling of the
hypatocytes and obvious infiltration of neutrophils were found
histologically. On the contrary, the intracellular ATP level in
the group containing ATP-MgCl2 was almost maintained at
the normal level for quite a long time, and decreased much
slower after hypothermic preservation. Furthermore, because
of the protective effect of ATP on cell membranes[23,24], the
metabolic function of hepatocytes was restored, and the release
of intracellular enzymes (LDH and AST) was significantly
inhibited. The histological observations also showed that the
swelling of hepatocytes was milder than that in groups B and
C. These results suggested that ATP-MgCl2 could directly
provide the energy or energy substrates for intracellular Na+-
K+ ATPase as well as Ca2+-ATPase to remain the extracellular
and intracellular ion balance[25-29], and lighten the intracellular
acidosis and cell swelling[21,23]. In addition, ATP-MgCl2 also
had effects on the amelioration of microcirculation, restoration
of membrane voltage, restoration of normal membrane
permeability and improvement of cellular functions[30,31].
      Together, ATP showed protective effects on cold stored
rat livers, and it might be a synthetical effect of multiple actions.

Mechanism of protective effect of ATP on hypothermically
preserved rat livers
ATP had a very strong effect on vascular expansion[7], but our
current study demonstrated that exogenous ATP protected cold
stored rat livers not through vascular expansion.
      If ATP-MgCl2 protected the cold stored rat livers through
vascular expansion, then addition of ATP alone to the perfusate
should also exhibit a protective effect. But no protective effect
was observed by the addition of ATP alone in our study (Data
not shown). Moreover, addition of MgCl2 alone to the perfusate
also showed no protective effect[21]. Addition of ADP-MgCl2

complex, which has a more effective action of vascular
expansion, showed no protective effect as ATP-MgCl2 (Data
not shown). An even more important finding was that, ATP-
MgCl2 could enter cold stored rat liver cells in our study. This
also directly confirmed that exogenous ATP-MgCl2 could
protect cold stored rat livers through the intracellular
mechanism. By our knowledge, no report has revealed that
exogenous ATP could enter hepatocytes through the
membrane, and the mechanism is still unclear. We suspect that
the possible pathway might be considered as followings. First,
as ATP is a large biomolecule, the membrane is impermeable
to it under normal status. But the permeability is increased to
ATP due to the activation of some membrane carrier proteins
by hypothermia and anoxia. Second, ATP enters hepatocytes
through the disrupted hepatocyte membrane. In addition, how
does ATP play the protective effect after entering the cells is
still poorly understood.
       Taken together, these results indicate that exogenous ATP-
MgCl2 could protect cold stored livers through an intracellular
rather than an extracellular mechanism.

Participation of Mg2+ in protection of cold stored rat livers by
exogenous ATP
As we know, ATP could form chelate with other extracellular
bivalent cations (Ca2+, Sr2+, Mg2+, etc.). However, addition of
ATP-MgCl2 complex could inhibit the dephosphorylation and
deamino action of ATP, suppress the extracellular hydrolysis
of ATP, and prevent the different dynamic effects by interaction
of ATP and other extracellular cations[32]. The other possible
reason may be that participation of Mg2+ may be required while
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Table 2  Energy status in hypothermically preserved rat livers (n=6, mean±SD)

  ATP (µmol/g wet liver)                      EC

  Group A   Group B   Group C   Group A   Group B         Group C

  0 h 2.760±0.302 2.760±0.302  2.760±0.302 0.871±0.093 0.871±0.093       0.871±0.093
  1 h 2.337±0.202 2.263±0.282  2.514±0.298 0.803±0.090 0.789±0.083       0.791±0.083
  2 h 1.914±0.209 1.971±0.205  2.391±0.276a 0.741±0.082 0.736±0.082       0.743±0.079
  6 h 1.509±0.211 1.506±0.180  2.523±0.269b 0.653±0.071 0.645±0.068       0.695±0.071a

12 h 1.145±0.177 1.136±0.150  2.715±0.298b 0.543±0.063 0.537±0.060       0.660±0.070b

24 h 0.755±0.082 0.842±0.088  2.547±0.279b 0.380±0.045 0.406±0.045       0.601±0.068b

36 h 0.603±0.065 0.706±0.080  1.782±0.200b 0.316±0.040 0.348±0.042       0.471±0.051b

aP<0.05, bP<0.01 vs group A.

Table 3  Activities of AST and LDH in perfusate (IU/L-.g liver) (n=6, mean±SD)

     6 h   12 h      24 h     36 h

                               LDH                  AST                     LDH                 AST                       LDH                   AST                    LDH                  AST

Group A 80.2±3.8 4.6±0.6 112.7±4.1 8.9±0.9 188.4±5.1 15.6±1.4 452.2±7.4 20.1±1.7
Group B 76.4±4.2 4.8±0.5 123.8±3.6 8.2±0.8 170.1±6.2 14.1±1.7 423.7±6.5 18.7±2.2
Group C   9.3±1.8a 1.2±0.4a   26.7±2.3a 2.4±0.5a   42.6±3.5a   4.4±0.6a   90.1±6.2a   6.3±0.8a

aP<0.05 vs group A.



ATP goes through the cell membrane. The carrier protein has
been found on the intima of mitochondria. The functional
mechanism was found to be: ATP-Mg2+

out+HPO4
2-

in<=>ATP-
Mg2+

in+HPO4
2-

out
[33]. Further investigation is needed to confirm

whether there is such a carrier protein on the outside membrane
of hepatocytes or not, and whether ATP enters hepatocytes by
interaction with Mg2+ or not. In addition, there is also the
possibility that, as a co-factor of many intracellular functions,
Mg2+ could participate in a diverse of ATP dependent
intracellular actions, such as Na+-K+ ATPase, Ca2+-ATPase,
and glycolysis[34].
      In summary, the results of the current study suggest that
exogenous ATP could protect cold stored rat livers by entering
hepatocytes. ATP-MgCl2 should be a pivotal component in
the hypothermic preservation solution. Further study is required
to clarify the protective mechanism of ATP on cold stored
organs, which may contribute to the development of
hypothermic preservation solution.
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