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Abstract
BACKGROUND 
Ferroptosis is involved in developing inammatory diseases; yet, its role in acute 
hypertriglyceridemic pancreatitis (HTGP) remains unclear.

AIM 
To explore whether ferroptosis is involved in the process of HTGP and elucidate 
its potential mechanisms.

METHODS 
An HTGP mouse model was induced using intraperitoneal injection of P-407 and 
caerulein (CAE). Then, pancreatic tissues from the model animals were subjected 
to proteome sequencing analysis. The pathological changes and scores of the 
pancreas, lung, and kidney were determined using hematoxylin-eosin staining. 
The levels of serum amylase (AMY), triglyceride, and total cholesterol were 
measured with an automatic blood cell analyzer. Additionally, the serum levels of 
tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β were determined by 
enzyme linked immunosorbent assay. Malonaldehyde (MDA), glutathione (GSH), 
and Fe2+ were detected in the pancreas. Finally, immunohistochemistry was 
performed to assess the expression of ferroptosis-related proteins.

RESULTS 
Proteome sequencing revealed that ferroptosis was involved in the process of 
HTGP and that NADPH oxidase (NOX) 2 may participate in ferroptosis 

https://www.f6publishing.com
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regulation. Moreover, the levels of serum AMY, TNF-α, IL-6, and IL-1β were significantly 
increased, MDA and Fe2+ were upregulated, GSH and ferroptosis-related proteins were reduced, 
and the injury of the pancreas, lung, and kidney were aggravated in the P407 + CAE group 
compared to CAE and wild type groups (all P < 0.05). Notably, the inhibition of ferroptosis and 
NOX2 attenuated the pathological damage and the release of TNF-α, IL-6, and IL-1β in the serum 
of the mice.

CONCLUSION 
Ferroptosis was found to have an important role in HTGP and may be considered a potential 
target for clinical treatment.

Key Words: Ferroptosis; Acute hypertriglyceridemic pancreatitis; NADPH oxidase 2; Ferrostatin-1; Vas2870

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Ferroptosis is involved in the development of inflammatory diseases, but its relationship with 
acute hypertriglyceridemic pancreatitis (HTGP) remains unclear. This study discoverd ferroptosis is 
involved in the process of HTGP and therefore a potential target for clinical treatment.

Citation: Meng YT, Zhou Y, Han PY, Ren HB. Ferroptosis inhibition attenuates inflammatory response in mice 
with acute hypertriglyceridemic pancreatitis. World J Gastroenterol 2023; 29(15): 2294-2309
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INTRODUCTION
Hypertriglyceridemia is one of the leading causes of acute pancreatitis (AP). In China, the incidence rate 
of acute hypertriglyceridemic pancreatitis (HTGP) has increased from 13% in 2009 to 25.6% in 2013, and 
it is currently considered a second predominant type of AP[1-3]. Compared with AP caused by other 
causes, HTGP is associated with multiple organ dysfunction syndrome (MODS) and higher mortality[1,
4]. However, the underlying mechanisms of HTGP remain clear, and no effective treatments are 
available. Therefore, exploring the pathogenesis of HTGP and seeking more accurate therapeutic targets 
are of critical importance.

It is generally believed that excessive triglyceride (TG), which is hydrolyzed by pancreatic lipase, 
results in the release of damage-inducing free fatty acids (FFA), which then directly damage the 
pancreatic function and induce and amplify inflammatory responses through oxidative stress, 
aggravating multiple organ damage and leading to MODS[5-8]. In 2020, Rawla et al[9] found that when 
serum TG levels were higher than 1000 mg/dL, the incidence of AP was 5%, but when TG was over 
2000 mg/dL, the incidence of AP increased to 10%-20%[9].

Previous studies have also revealed that various forms of regulated cell death (RCD), such as 
apoptosis and autophagy, are involved in the pathogenesis of AP[10-12]. Yet, the role of ferroptosis in 
HGAP is still not fully understood. Ferroptosis, as an iron-dependent form of non-apoptotic cell death 
first reported in 2012, is induced by excessive accumulation of peroxidized lipids and strictly regulated 
by glutathione peroxidase 4 (GPX4) and acyl-CoA synthetase long-chain family member 4[13-16]. 
Existing evidence suggests that the development of many diseases, including cancer, neurological 
diseases, ischemia-reperfusion injury, kidney injury, and cardiovascular diseases, is driven by 
ferroptosis[17-21]. In addition to altered iron homeostasis, the excessive production of reactive oxygen 
species (ROS) has also been reported as a key factor in ferroptosis induction[22].

Abnormal lipid metabolism is also considered to have an important role in the process of HTGP[4]. 
Meanwhile, FFA has been found to induce the excessive release of ROS and accumulation in the body
[5]. Therefore, since abnormal lipid metabolism and ROS accumulation occur in both ferroptosis and 
HTGP, we hypothesized that ferroptosis might also participate in the process of HTGP. In the present 
study, we assessed the role of ferroptosis in HTGP through proteome sequencing. Then, we investigated 
the possible pathways and verified our results using animal experiments. This study provides new 
insides into the mechanism and treatment of HTGP.

https://www.wjgnet.com/1007-9327/full/v29/i15/2294.htm
https://dx.doi.org/10.3748/wjg.v29.i15.2294
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MATERIALS AND METHODS
Materials and reagents
P-407 and caerulein (CAE) were purchased from Sigma Chemical (St. Louis, MO, United States). 
Ferrostatin-1 (Fer-1) and Vas2870 (Vas) were obtained from MedChemExpress (MCE, Monmouth 
Junction, NJ, United States). P-407 was solubilized in phosphate buffer solution (PBS) and stored at 4 °C. 
CAE, Fer-1, and Vas were solubilized in dimethyl sulfoxide and stored at 20 °C. Enzyme linked 
immunosorbent assay (ELISA) kits were obtained from Solarbio (Beijing, China).

Animals and modeling
Adult male C57BL/6 mice (25-30 g, 8-wk) were housed in a ventilated environment with a temperature 
of 22 ± 1 ºC, relative humidity of 50% ± 1%, and a light/dark cycle of 12/12 hr and given water and food 
ad libitum. After acclimatization, mice were randomly categorized into 4 groups (n = 4 per group): 
Control, P-407, AP (CAE), and HTGP (P-407 + CAE). The P-407 exposure group was intraperitoneally 
injected with a dosage of 0.6 g/kg body weight (bw) P-407[1,23]. Eight hours later, the AP group was 
intraperitoneally injected with a dosage of 100 μg/kg bw CAE 8 times (once every hour)[1,24]. The 
control group was injected with the same volume of PBS. After the last injection, all mice were alive. The 
animals were sacrificed and pancreas, lung, and kidney tissues were excised.

Serum assays 
After the mice fasted for 16 h, Roche blood glucose meter was used to detect fasting blood glucose, and 
the collected blood from eyeballs was centrifuged at 4 °C, 3000 g for 10 min. The activities of the serum 
α-amylase (AMY), total cholesterol (TC), TG, aspartate transaminase (AST), and alanine aminotrans-
ferase (ALT) in blood samples were measured by an automatic blood cell analyzer (Mindray, Shenzhen, 
China). Malonaldehyde (MDA), tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β were 
detected by specific ELISA kits (Solarbio Science & Technology Co., Ltd, Beijing, China), following the 
manufacturer’s instructions. The concentrations were expressed as pg/mL. The serum fasting insulin 
(FINS) levels were detected by a specific ELISA kit (Proteintech, Wuhan, China). The homeostasis model 
assessment insulin resistance index (HOMA-IR) = fasting blood glucose (FBG, mmol/L) × Fasting 
insulin (FINS, mIU/L)/22.5.

Glutathione detection
The Micro Reduced glutathione (GSH) Assay Kit was from Solarbio (Solarbio Science & Technology Co., 
Ltd, Beijing, China). Continuously dilute the standard product according to the corresponding concen-
tration, and make the standard curve. Then, the supernatant of pancreas samples and total glutathione 
test solution were added into the 96-well plate successively, mixed, and incubated at 25 °C or room 
temperature for 5 min. 50 μL 0.5 mg/mL NADPH solution was added to per hole and mixed. The 
absorbance of each hole was measured immediately with an enzyme marker (λ = 412 nm). The total 
GSH content of each pore was obtained according to absorbance and standard curve. The sample is 
processed with GSH scavenger and GSH scavenger assistant in the kit to remove GSH, and the content 
of oxidized glutathione disulfide (GSSG) is measured, finally the content of reduced GSH is subtracted 
by total GSH and GSSG.

Fe2+ detection
Fe2+ in pancreas was detected according to the instructions in the Ferrous Ion Content Assay Kit 
(Solarbio Science & Technology Co., Ltd, Beijing, China). The absorbance was measured immediately 
with an enzyme marker (λ = 593 nm). The content of Fe2+ was obtained according to the concentration of 
standard substance and absorbance.

Malondialdehyde detection
MDA in pancreas was detected according to the instructions of MDA Content Assay Kit (Solarbio 
Science & Technology Co., Ltd, Beijing, China). After pretreatment, appropriate amount of supernatant 
was taken, and the absorbance of each group was measured at 532 nm. MDA content was obtained 
according to absorbance.

Histology and immunohistochemistry analyses
The tissue sections (pancreas, lung, and kidney) were cut into continuous slices. Hematoxylin–eosin 
(HE) staining was performed according to the Solarbio kit guidelines, and immunohistochemistry (IHC) 
analysis was conducted according to the Kangwei kit instructions. Images were acquired by Pannoramic 
MIDI (3DHISTECH). Brown-stained areas indicated immunoreactivity. Tissue sections were blindly 
evaluated by two pathologists based on previously reported criteria: The pathological injury of the 
pancreas was scored according to the edema, inflammation, hemorrhage, and necrosis of the pancreas
[25]; the pathological score of the lung was measured on the basis of edema, neutrophil infiltration, and 
hemorrhage[26]; the pathological renal score was evaluated by the degree of tubulointerstitial injury 
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based on previously reported criteria[27].
Ferroptosis-related proteins (the light chain subunit solute carrier family 7 member 11 (SLC7A11) and 

GPX4 were determined by IHC analysis. Image J was used to quantify the expression of SLC7A11 and 
GPX4.

Protein extraction
The sample was ground with liquid nitrogen into cell powder and then transferred to a 5-mL centrifuge 
tube. After that, four volumes of lysis buffer (8 M urea, 1% protease inhibitor cocktail) were added to the 
cell powder, followed by sonication three times on ice using a high-intensity ultrasonic processor 
(Scientz). Next, the remaining debris was removed by centrifugation at 12000 g at 4 °C for 10 min. 
Finally, the supernatant was collected, and the protein concentration was determined with a 
Bicinchoninic Acid Assay kit according to the manufacturer’s instructions.

Trypsin digestion
For digestion, the protein solution was reduced by 5 mmol/L dithiothreitol for 30 min at 56 °C and 
alkylated with 11 mmol/L iodoacetamide for 15 min at room temperature in darkness. The protein 
sample was then diluted by adding 100 mmol/L tetraethyl ammonium bromide to urea concentration < 
2 M. Finally, trypsin was added at 1:50 trypsin-to-protein mass ratio for the first digestion overnight and 
1:100 trypsin-to-protein mass ratio for a second 4 h digestion. Finally, the peptides were desalted using 
the C18 SPE column.

4D mass spectrometer
The tryptic peptides were dissolved in solvent A (0.1% formic acid, 2% acetonitrile/in water) and 
directly loaded onto a homemade reversed-phase analytical column (25 cm length, 75/100 μm inside 
diameter). Peptides were separated with a gradient from 6% to 24% solvent B (0.1% formic acid in 
acetonitrile) over 70 min, 24% to 35% in 14 min, and climbing to 80% in 3 min, then holding at 80% for 
the last 3 min, all at a constant flow rate of 450 nL/min on a nanoElute UHPLC system (Bruker 
Daltonics).

The peptides were subjected to a capillary source followed by the timsTOF Pro (Bruker Daltonics) 
mass spectrometry. The electrospray voltage applied was 1.60 kV. Precursors and fragments were 
analyzed at the TOF detector, with an MS/MS scan ranging from 100 to 1700 m/z. The timsTOF Pro 
was operated in parallel accumulation serial fragmentation (PASEF) mode. Precursors with charge 
states 0 to 5 were selected for fragmentation, and 10 PASEF-MS/MS scans were acquired per cycle. The 
dynamic exclusion was set to 30 s.

Database search
The resulting MS/MS data were processed using the MaxQuant search engine (v.1.6.15.0). Tandem 
mass spectra were searched against the mouse SwissProt database (17089 entries) concatenated with the 
reverse decoy database. Trypsin/P was specified as a cleavage enzyme allowing up to 2 missing 
cleavages. The mass tolerance for precursor ions was set as 20 ppm in the first search and 5 ppm in the 
main search, and the mass tolerance for fragment ions was set as 0.02 Da. Carbamidomethyl on Cys was 
specified as a fixed modification, and acetylation on protein N-terminal and oxidation on Met were 
specified as variable modifications. The false discovery rate was adjusted to < 1%. The data base is 
UniProt, the species-specific protein library is Mus_musculus_10090_SP_2021072. fasta. The proteomic 
analysis was performed by PTM Biolabs.

Principle component analysis
Principle component analysis (PCA) was conducted using R packages ‘gmodels’, ‘ggplot2’, and 
‘ggrepel’. The protein quantitative principal component (PC) analysis results of all samples were 
calculated. The degree of aggregation between samples in the figure represents the difference between 
samples.

Differentially expressed proteins analysis
The samples to be compared were selected, and the relative quantitative values of each protein in the 
repeated samples were taken as the difference multiple (fold change, FC). In order to judge the 
significance of the difference, the relative quantitative value of each protein in the samples of the 
comparison group was subjected to a t-test. The corresponding P value was calculated as the 
significance index. The default P value was < 0.05.

Gene Ontology enrichment analysis
Gene Ontology (GO) is used to express various properties of genes and gene products. GO annotations 
are divided into three categories: Biological Process, Cellular Component, and Molecular Function, 
which aim to explain the biological role of proteins from different perspectives. We performed differ-
ential protein enrichment analysis on a biological process in GO classification.
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Kyoto Encyclopedia of Genes and Genomes pathway analysis
Kyoto Encyclopedia of Genes and Genomes (KEGG)[28] analysis was conducted using the ‘cluster-
Profiler’ package[29] of R software. A previously described method was used[30].

Cluster analysis
According to Fisher's exact test obtained by the enrichment analysis, the related functions in different 
comparison groups were clustered using the hierarchical clustering method, and heatmaps were drawn. 
In the heatmaps, the horizontal direction of the heatmap represents different comparison groups, and 
the vertical direction indicates related functions enriched by differentially expressed proteins in 
different comparison groups. The color patches corresponding to the functional description of the 
enrichment of the differentially expressed proteins in different comparison groups indicate the degree 
of enrichment. Red color represents strong enrichment, and blue represents weak enrichment.

Statistical analysis 
All data are expressed as mean ± SD. The statistical analyses were conducted using SPSS version 18.0 
software, and the differences in data among the groups were analyzed using the unpaired Student t-test 
of variance test. P < 0.05 (2-tailed) was considered to indicate a statistically significant difference.

RESULTS
P-407 and CAE were successfully used to develop the mouse model of HTGP
The exposure of mice to P-407 and CAE for 48 h resulted in much higher TC and TG in the P-407 (model 
for hyperlipidemia) and P-407 + CAE (model for HTGP) groups than in the Ctrl and CAE (model for 
AP) groups (Figure 1A). A slight rise in the AMY level was seen in the CAE group, whereas in the P-407 
+ CAE group, a significant increase in the AMY level was detected compared to other groups (all P < 
0.05, Figure 1B). In addition, an increase in AST and ALT levels were seen in the CAE-treated groups, 
but there was no difference between CAE and P-407 + CAE-treated groups (P > 0.05, Figure 1C). There 
was no change in HOMA-IR among different groups (P > 0.05, Figure 1D). Furthermore, in the CAE 
group, a minor injury was seen in the pancreas and kidney, whereas in the P-407 + CAE group, serious 
injuries were observed in the pancreas, lung, and kidney, which were detected by HE staining 
(Figure 1E-G). Also, in the P-407 + CAE group, high levels of serum TNF-α, IL-1β, and IL-6 were 
detected (Figure 1H). These results proved that P-407 and CAE mice models were successful.

Proteome profiling predicts the role of ferroptosis in P-407 + CAE-induced HTGP rather than AP
Next, proteome sequencing was used to compare the mechanisms of HTGP and AP. Samples of the 
same group were clustered together from both PCA and clustering analyses (Figure 2A and B). The CAE 
treatment caused the rightward movement of samples along the PC1, explaining 56.0% of the total 
variance. The P-407 + CAE treatment upward along PC2 explained 17.5% of the total variance 
(Figure 2A). Additionally, 190 proteins were downregulated, whereas 272 proteins were upregulated in 
the pairwise comparisons (CAE vs WT). Furthermore, 43 proteins were downregulated and 125 were 
upregulated when comparing P-407 + CAE and CAE groups (Figure 2C and D). These results suggested 
that AP and HTGP exert different effects on the pancreas.

GO analyses further showed that the acute inflammatory response was highly enchased in the P-407 
+ CAE group vs CAE group; this difference, however, was not evident when comparing CAE vs WT 
groups, which also confirmed that P-407 + CAE induces more severe pancreas injury than CAE 
(Figure 2E). Furthermore, KEGG pathway analyses also showed that upregulated proteins were weakly 
enriched for ferroptosis in the CAE group vs WT group but also strongly enriched for ferroptosis in the 
P-407 + CAE group vs CAE group (Figure 2F). These results suggest that ferroptosis occurs specifically 
in P-407 + CAE-induced HTGP.

Verification of P-407 + CAE-induced ferroptosis in mice
To verify the results of proteome sequencing, we performed IHC staining of mouse pancreatic tissue. 
The SLC7A11 and GPX4 expression levels were significantly lower in the P-407 + CAE group than in the 
CAE group (all P < 0.05, Figure 3A and B). The MDA (Figure 3C) levels in the P-407 + CAE group were 
significantly higher than those in the CAE group (P < 0.05), while the GSH level in the P-407 + CAE 
group was significantly lower than that in CAE group (P < 0.05) (Figure 3D). The Fe2+ (Figure 3E) levels 
in the P-407 + CAE group were significantly higher than those in the CAE group (P < 0.05), too. This 
data indicates that P-407 + CAE induces ferroptosis in the pancreas of the mice.

HTGP can be attenuated through ferroptosis inhibition in mice
Since we had established that P-407 + CAE specifically induced ferroptosis in the pancreas of the mice, 
we further aimed to determine the role of ferroptosis in the regulation of HTGP. First, we used Fer-1 to 
inhibit ferroptosis[7,8]. The expression of GPX4 (Figure 4A) in the P-407 + CAE + Fer-1 group increased 
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Figure 1 P-407 and caerulein-induced hypertriglyceridemic pancreatitis in mice (n = 4). A: Serum total cholesterol and triglyceride levels; B: Serum 
amylase; C: Alanine aminotransferase and Alanine aminotransferase levels; D: Homeostasis model assessment insulin resistance index levels in mice exposed to P-
407 and caerulein (CAE); E: Hematoxylin–eosin (HE) staining and histological scores of the pancreas; F: HE staining and histological scores of the lung; G: HE 
staining and histological scores of the kidney; H: Serum Tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 levels after P-407 and CAE exposure. AST: Aspartate 
transaminase; ALT: Alanine aminotransferase; HOMA-IR: Homeostasis model assessment insulin resistance index; HE: Hematoxylin–eosin; CAE: Caerulein; AMY: 
Amylase; TNF: Tumor necrosis factor; IL: Interleukin; NS: Not significant.
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Figure 2 Effects of P-407 and caerulein on the pancreas revealed by proteome sequencing (n = 3). A: Principal component analysis; B: Heatmap 
showing relationships among different sample groups; C: Exhibition of changed protein numbers among the sample groups; D: Volcano plots showing proteins 
differentially expressed between sample groups; E: Biological process; F: Kyoto Encyclopedia of Genes and Genomes pathways enriched with proteins differentially 
expressed in pair-wise comparisons of ‘CAE group’ vs WT group’’ and ‘P-407 + CAE group’ vs CAE group’. CAE: Caerulein; WT: Wide type; PC: Principal 
component.

Figure 3 P-407 + Caerulein-induced pancreas ferroptosis in mice as established by immunohistochemistry (n = 4). A: Solute carrier family 7 
member 11 in the pancreas tissues of the P-407 + Caerulein (CAE) group; B: Glutathione peroxidase 4 in the pancreas tissues of the P-407 + CAE group. The scale 
bar represents 50 mm; C: Malonaldehyde levels; D: Glutathione levels; E: Fe2+ levels in the pancreases of the mice in the P-407 + CAE group. CAE: Caerulein; 
SLC7A11: Solute carrier family 7 member 11; MDA: Malonaldehyde; GSH: Glutathione; GPX4: Glutathione peroxidase 4.
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compared to P-407 + CAE group, while the MDA (Figure 4B) decreased to their normal range (all P < 
0.05). The GSH level (Figure 4C) in the P-407 + CAE + Fer-1 group increased compared to P-407 + CAE 
group, while the Fe2+ (Figure 4D) decreased to their normal range (all P < 0.05). The histological scores of 
the pancreas, lung, and kidney in the P-407 + CAE + Fer-1 group were lower than those in the P-407 + 
CAE group (Figure 4E-G). The serum TNF-α, IL-1β, and IL-6 Levels in the P-407 + CAE + Fer-1 group 
were also lower than those in the P-407 + CAE group (all P < 0.05, Figure 4H). These results indicate that 
the inhibition of ferroptosis can attenuate the inflammatory response in mice with HTGP.

Inhibition of NADPH oxidase 2 can attenuate the inflammatory response in mice with HTGP through 
ferroptosis suppression
KEGG pathway analyses revealed overexpression of NADPH oxidase (NOX)2 in the enriched 
ferroptosis pathway in the P-407 + CAE group compared to the CAE group (Figure 5A and B). Next, we 
determined the role of NOX2 in regulating ferroptosis using Vas, an inhibitor of NOX2[7]. The 
expression of NOX2 was higher in the P-407 + CAE group than in the Ctrl group, while Vas significantly 
decreased the NOX2 expression level (P < 0.05, Figure 5C). In addition, MDA (Figure 5D) level 
decreased, GSH level increased (Figure 5E), Fe2+ (Figure 5F) level decreased and expression of GPX4 
(Figure 5G) rebounded in the P-407 + CAE + Vas group compared to those in the P-407 + CAE group (P 
< 0.05). The histological scores of the pancreas, lung, and kidney in the P-407 + CAE + Vas group were 
lower than those in the P-407 + CAE group (all P < 0.05, Figure 5H-J). The serum TNF-α, IL-1β, and IL-6 
Levels in the P-407 + CAE + Vas group were also lower than those in the P-407 + CAE group (all P < 
0.05, Figure 5K). These results indicate that inhibition of NOX2 can attenuate the inflammatory response 
in mice with HTGP through attenuation of ferroptosis.

DISCUSSION
The early phase of HTGP is generally believed to be an unregulated inflammatory response or a 
cytokine storm that results in organ damage and death[31,32]. Pro-inflammatory cytokines, such as 
TNF-α, IL-6, and IL-1β, are considered pivotal mediators for initiating, amplifying, and perpetuating 
organ injury[33-35]. Therefore, timely blocking of the inflammatory response is considered critical for 
successful treatment.

As iron-dependent oxidative stress and lipid peroxidation are common features of ferroptosis and 
inflammatory diseases, ferroptosis, as a recognized form of RCD, has been reported to participate in the 
progression of inflammations[36]. Yet, its relationship with HTGP remains unclear. In the process of 
HTGP, abnormal lipid metabolism is also considered to have an important role, and FFA has been 
shown to induce the excessive release of ROS and accumulate in the body[4,5]. Previous studies have 
shown that the excessive production of ROS is a key factor for ferroptosis induction[22]. Therefore, we 
hypothesized that ferroptosis might also participate in the process of HTGP.

In this study, we found for the first time that ferroptosis has an important role in the process of 
HTGP, and its inhibition can attenuate the inflammatory response and improve prognosis in mice. To 
investigate these mechanisms, we induced a mouse model of HTGP by intraperitoneal injection of P-407 
and CAE. Then, proteome sequencing predicted that ferroptosis is involved in the process of HTGP. To 
verify the results of proteome sequencing, we performed IHC staining of mouse pancreatic tissue. GSH, 
SLC7A11, and GPX4 expression levels were much lower in the P-407 + CAE group than in the AP 
group. Additionally, the MDA and Fe2+ level in the P-407 + CAE group was significantly higher than in 
the AP group. To further verify whether ferroptosis has a key role in regulating HTGP, we used Fer-1 to 
inhibit ferroptosis. The histological scores of pancreas and serum TNF-α, IL-1β, and IL-6 Levels in the P-
407 + CAE + Fer-1 group were all significantly lower than those in the P-407 + CAE group.

Ma et al[21] found that the inhibition of ferroptosis attenuated acute kidney injury in rats with severe 
AP (SAP), suggesting that ferroptosis may participate in SAP, but there was no distinction between the 
types of SAP[21]. Furthermore, our KEGG pathway analyses revealed that the upregulated proteins 
were strongly enriched for ferroptosis in the P-407 + CAE group compared to the CAE group, implying 
that ferroptosis occurs specifically in the P-407 + CAE group. Based on this finding, we speculate that in 
the process of HTGP, abnormal lipid metabolism produces excessive ROS, which induces ferroptosis 
and aggravates damage to the pancreas and other organs.

NOX is a ROS-generating transmembrane flavoprotein enzyme that is widely distributed in pancreas 
and kidney tissues[37,38]. Studies have shown that excessive ROS produced by NOX can activate the 
NF-κB pathway, aggravate cell death, and regulate inflammation[39]. Yang et al[40] suggested that NOX 
could have an important role in HTGP-associated kidney injury through the Akt/GSK-3β pathway[40]. 
Moreover, Wang et al[41] found that NOX2 is activated in an AMPK-dependent manner to promote 
oxidative stress in a diabetic rat model, which in turn led to ferroptosis and aggravated myocardial 
ischemia-reperfusion injury[41]. Our KEGG pathway analyses also revealed overexpression of NOX2 in 
the enriched ferroptosis pathway in in the P-407 + CAE group compared to the CAE group. Next, we 
verified whether NOX2 has a key role in the regulation of ferroptosis using Vas, an inhibitor of NOX2. 
We found that the serum MDA level decreased, and the expression of GPX4 in the P-407 + CAE + Vas 
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Figure 4 The inhibition of ferroptosis attenuated P-407 + Caerulein-induced hypertriglyceridemic pancreatitis in mice (n = 4). A: 
Immunohistochemistry for Glutathione peroxidase 4 in the pancreas tissues of the P-407 + Caerulein (CAE) and P-407 + CAE + Ferrostatin-1 (Fer-1) groups; B: The 
malonaldehyde levels; C: The glutathione levels; D: Fe2+ levels in pancreases of P-407 + CAE and P-407 + CAE + Fer-1 groups; E: Hematoxylin–eosin (HE) staining 
and histological scores of the pancreas; F: HE staining and histological scores of the lung; G: HE staining and histological scores of the kidney; H: Serum tumor 
necrosis factor-α, interleukin (IL)-1β, and IL-6 levels of the P-407 + CAE and P-407 + CAE + Fer-1 groups. NOX: NADPH oxidase; ROS: Reactive oxygen species; 
CAE: Caerulein; MDA: Malonaldehyde; Fer-1: Ferrostatin-1; GSH: Glutathione; GPX4: Glutathione peroxidase 4; TNF: Tumor necrosis factor; IL: Interleukin.
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Figure 5 The inhibition of NADPH oxidase 2 attenuated hypertriglyceridemic pancreatitis through a ferroptosis reduction in mice (n = 4). 
A: Kyoto Encyclopedia of Genes and Genomes pathways enriched with protein NADPH oxidase (NOX) 2 in comparison of P-407 + caerulein (CAE) group vs CAE 
group; B: Volcano plot showing the location of NOX2 in comparison of P-407 + CAE group vs CAE group; C: Immunohistochemistry (IHC) for NOX2 in the pancreas 
tissues of the P-407 + CAE and P-407 + CAE + Vas2870 (Vas) groups; D: The malonaldehyde levels; E: The glutathione levels; F: Fe2+ levels in the pancreases of 
the mice in the P-407 + CAE and P-407 + CAE + Vas groups; G: IHC for GPX4 in the pancreas tissues of the P-407 + CAE and P-407 + CAE + Vas groups; H: 
Hematoxylin–eosin (HE) staining and histological scores of the pancreas; I: HE staining and histological scores of the lung; J: HE staining and histological scores of 
the kidney; K: Serum TNF-α, IL-1β, and IL-6 levels of the P-407 + CAE and P-407 + CAE + Vas groups. The scale bar represents 50 mm. NOX: NADPH oxidase; 
ROS: Reactive oxygen species; CAE: Caerulein; Vas: Vas2870; MDA: Malonaldehyde; GSH: Glutathione; GPX4: Glutathione peroxidase 4; TNF: Tumor necrosis 
factor; IL: Interleukin.

group rebounded compared to the P-407 + CAE group. Meanwhile, the histological scores of the 
pancreas and the serum TNF-α, IL-1β, and IL-6 Levels in the P-407 + CAE + Vas group were 
significantly lower than those in the P-407 + CAE group. These results indicate that the inhibition of 
NOX2 attenuated HTGP through suppression of ferroptosis.

CONCLUSION
In summary, these data provide strong evidence that ferroptosis is involved in the process of HTGP and 
that NOX2 is a key point in the regulation of ferroptosis. The inhibition of ferroptosis and NOX2 
attenuates the inflammatory response to improve patient outcomes. This discovery provides new 
insights into a better understanding of the pathogenesis of HTGP, which may be used as a novel 
therapeutic target in the future.

ARTICLE HIGHLIGHTS
Research background
Ferroptosis is involved in the development of inammatory diseases, but its relationship with acute 
hypertriglyceridemic pancreatitis (HTGP) remains unclear.

Research motivation
HTGP has serious morbidity and high mortality. At present, there is no more effective method except 
symptomatic treatment. Therefore, exploring the pathogenesis of HTGP and seeking more accurate 
therapeutic targets are of critical importance.

Research objectives
This study aimed to explore whether ferroptosis is involved in the process of HTGP and elucidate its 
potential mechanisms in a mouse model.
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Research methods
Pancreatic tissues from the model animals were subjected to proteome sequencing analysis. The 
pathological changes and scores of the pancreas, lung, and kidney were determined using 
hematoxylin–eosin staining. The levels of serum amylase, triglyceride, and total cholesterol were 
measured with an automatic blood cell analyzer. Additionally, the serum levels of tumor necrosis 
factor-α, interleukin (IL)-6, and IL-1β were determined by enzyme linked immunosorbent assay. 
Malonaldehyde, glutathione, and Fe2+ were detected in the pancreas. Finally, immunohistochemistry 
was performed to assess the expression of ferroptosis-related proteins.

Research results
Proteome sequencing revealed that ferroptosis was involved in the process of HTGP and that NADPH 
oxidase 2 may participate in ferroptosis regulation.

Research conclusions
Ferroptosis was found to have an important role in HTGP and may be considered a potential target for 
clinical treatment.

Research perspectives
This discovery provides new insights into a better understanding of the pathogenesis of HTGP, which 
may be used as a novel therapeutic target. However, the regulatory mechanism needs to be further 
explored in the future.
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