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Abstract
Worldwide, gastric cancer (GC) is the fifth most commonly diagnosed mali-
gnancy. It has a reduced prevalence but has maintained its poor prognosis being 
the fourth leading cause of deaths related to cancer. The highest mortality rates 
occur in Asian and Latin American countries, where cases are usually diagnosed 
at advanced stages. Overall, GC is viewed as the consequence of a multifactorial 
process, involving the virulence of the Helicobacter pylori (H. pylori) strains, as well 
as some environmental factors, dietary habits, and host intrinsic factors. The 
tumor microenvironment in GC appears to be chronically inflamed which 
promotes tumor progression and reduces the therapeutic opportunities. It has 
been suggested that inflammation assessment needs to be measured qualitatively 
and quantitatively, considering cell-infiltration types, availability of receptors to 
detect damage and pathogens, and presence or absence of aggressive H. pylori 
strains. Gastrointestinal epithelial cells express several Toll-like receptors and 
determine the first defensive line against pathogens, and have been also described 
as mediators of tumorigenesis. However, other molecules, such as cytokines rela-
ted to inflammation and innate immunity, including immune checkpoint 
molecules, interferon-gamma pathway and NETosis have been associated with an 
increased risk of GC. Therefore, this review will explore innate immune activation 
in the context of premalignant lesions of the gastric epithelium and established 
gastric tumors.

Key Words: Gastric cancer; Toll-like receptor; Helicobacter pylori; Nuclear factor kappa 
B; Neutrophils
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Core Tip: Premalignant cascade of gastric cancer starts with a chronic gastritis, and evolves to atrophic 
gastritis, intestinal metaplasia, dysplasia and finally the carcinoma. During the process, different immune 
responses contribute to inflammation of the gastric epithelium. Our work compiles studies related to the 
innate immune response with a focus on molecular and cellular features such as, Toll-like receptors, 
neutrophils, cytokines and socioeconomic factors, as crucial players during the precancerous cascade and 
the cancer onset.

Citation: Villarroel-Espindola F, Ejsmentewicz T, Gonzalez-Stegmaier R, Jorquera RA, Salinas E. Intersections 
between innate immune response and gastric cancer development. World J Gastroenterol 2023; 29(15): 2222-2240
URL: https://www.wjgnet.com/1007-9327/full/v29/i15/2222.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i15.2222

INTRODUCTION
Globally, gastric cancer (GC) is the fifth most commonly diagnosed malignancy. Although there has 
been a reduction in its incidence, its poor prognosis makes it the fourth leading cause of cancer related 
deaths per year[1], and around 86% of all GC cases in 2018 occurred in countries with a high or very 
high Human Development Index, where 60% of the total cases occurred in Eastern and South-Eastern 
Asia[2]. GC development is a multistep process initiated by the transition of normal mucosa to non-
atrophic gastritis. This superficial gastritis may progress to atrophic gastritis, then intestinal metaplasia 
and finally to dysplasia and adenocarcinoma[3]. Overall, GC is viewed as the consequence of a 
multifactorial process involving environmental factors (socioeconomic status, smoking and alcohol 
consumption), dietary habits (diets rich in salt and poor in antioxidants) and intrinsic factors (ethnicity, 
genetic background, age and sex)[4,5]. Recently, a meta-analysis and prospective cohort study 
demonstrated in the Chinese population, that healthy lifestyle factors such as abstention from smoking, 
non-consumption of alcohol, low consumption of preserved foods, and frequent intake of fresh fruits 
and vegetables and all of these factors in combination can significantly reduce the relative and absolute 
risk of incidence of GC. Although, the individual carries a high polygenic risk of GC based on the 
presence of 112 single-nucleotide polymorphisms[6]. This observation suggests that some intrinsic host 
factors, like the genetic background, may be secondary to external or environmental aspects during GC 
onset.

Most of the malignant gastric tumors correspond to the histological type of adenocarcinoma (approx-
imately 90%), with a lower percentage of lymphomas of the mucosa-associated lymphoid tissue, leiomy-
osarcomas and other rarer tumors[7,8]. The adenocarcinomas have been divided classically into two 
histological subtypes: Diffuse and intestinal, each of which have differences in their presentations 
depending on the anatomic subsite, age when diagnosed, sex, race, demographical distribution and 
socio-economic situation[7-9]. More recent molecular and genomic classifications have defined four 
major genomic subtypes of GC: The Epstein-Barr virus (EBV) infected tumors; genomically stable 
tumors; chromosomally unstable tumors; and tumors with microsatellite instability (MSI)[5], all of 
which offer a poor prognosis and different molecular profiles.

It is very well documented that GC is strongly associated with infectious agents such as the bacterium 
Helicobacter pylori (H. pylori) and, recently, the EBV[5]. Approximately 15%–20% of human cancers are 
provoked by cancer-causing viruses[10]; however, the specific role of EBV in GC development is not 
clear as of yet. Although the World Health Organization has categorized H. pylori as a group 1 
carcinogen[11], the role of other bacteria in causing cancer is controversial; studies have shown that 
some bacteria, such as Fusobacterium nucleatum[12], and Porphyromonas spp.[13,14] play a role in the 
development of colon, oral and other digestive cancers. Nevertheless, all those microorganisms can 
promote a local inflammatory status and a parallel activation of protumoral pathways.

Innate immunity represents the first barrier against pathogens, and epithelial cells of the gastric 
mucosa are the first line of immunity against, for example, an H. pylori infection. In response to an 
infection, many physiological adaptations are observed, such as an increase in vascular diameter and 
permeability along with an overexpression of cell-adhesion molecules on endothelial cells which 
promotes the extravasation of myeloid cells into the inflamed site of infection. The characteristics of an 
inflamed microenvironment are low levels of glucose and a scarcity of oxygen due to an altered 
metabolism, increased oxygen consumption by neutrophils, and a reduced oxygen supply due to 
disrupted perfusion[15]. It is within such a hypoxic microenvironment that immune cells kill and 
prevent the spread of invading microorganisms. Accumulating evidence suggests that chronic inflam-
mation, either non-infectious such as in autoimmune disorders or, as a result of a pathogen infection, is 
connected to cancer development. At the same time, the crosstalk between innate and adaptive 
immunity is critical for the successful eradication of different pathogens and tumor cells.

https://www.wjgnet.com/1007-9327/full/v29/i15/2222.htm
https://dx.doi.org/10.3748/wjg.v29.i15.2222
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The aim of this review is to provide an overview of innate immune activation in the context of 
gastrointestinal malignancies, focusing on the premalignant lesions of the epithelium and the gastric 
tumor microenvironment. During the transition from atrophic gastritis to the final carcinoma, some 
microorganisms will play a determinant role promoting the neoplastic transformation or contributing 
with a particular tumor phenotype. This work compiles studies related to Toll-like receptors (TLRs), 
neutrophils, cytokines and pathogens, as crucial players during the precancerous cascade and the cancer 
onset (Figure 1), allowing the correlation of those aspects with clinical and socioeconomic variables.

STARTERS AND MEDIATORS OF THE INNATE IMMUNE RESPONSE IN GASTRIC TISSUE 
Gastro-intestinal epithelial cells express several TLRs that can respond to exogenous infectious ligands 
or pathogen-associated molecular patterns (PAMPs). TLRs are the most important class of pattern 
recognition receptors (PRRs). These transmembrane proteins present a distinctive Leucine-Rich Repeat 
extracellular domain that confers specificity to their ligands[16], and a cytoplasmic signaling domain 
homologous to that of the interleukin 1 receptor (IL-1R), termed the toll/IL-1R homology domain[17]. 
Up to now, the TLR family consists of ten (TLR1-TLR10) and twelve (TLR1-TLR9 and TLR11-TLR13) 
members identified in humans and mice respectively[18]. These receptors are expressed in various 
immune cells, including macrophages, Dendritic cells (DCs), B cells, specific types of T cells, and even in 
non-immune cells such as fibroblasts and epithelial cells; their activation leads to the induction of 
inflammatory cytokines, chemokines, antigen-presenting molecules, and costimulatory molecules[15,17,
19].

Epithelial cells from the gastric mucosa are considered as the first line of innate immunity against 
gastrointestinal pathogens, including H. pylori infection, and the PRRs have shown a wide range of 
expression in normal and pathological tissue (Table 1).

Human gastric epithelial cells and tumor cells were found to express both TLR2 and TLR4 and both 
receptors are described as responsible for the H. pylori lipopolysaccharides (LPS) recognition. However, 
the results are contradictory and have not accurately probed the role of those receptors due both to the 
diversity of the host’s immune system and the pathogenicity of the H. pylori strain[20,21]. TLR2 is the 
most extensively expressed gene among all the TLRs in gastric tumors and high levels of TLR4 are 
associated with a higher risk of GC[22-24].

On the other hand, TLR3 and TLR4 have been implicated in several disorders related to the gastroeso-
phageal reflux disease spectrum and largely documented, including the expression of both receptors 
and expression of their downstream products, such as cyclooxygenase-2, IL-8, nuclear factor-κB (NF-
κB), and nitric oxide in human tissue samples and ex vivo cell cultures from the esophagus, the 
esophageal-gastric junction and the stomach[25].

TLR5 is expressed within the esophageal epithelium and has been shown to increase in a stepwise 
manner with progression from normal to dysplastic and eventually neoplastic states[26]. In addition, it 
is well documented that TLR5 is present in both primary gastric epithelial cells and gastric tumor cell 
lines[22,24,27]; however, the role of TLR5 during the gastric precancerous cascade is not yet clear.

TLR5 is responsible for flagellin recognition. H. pylori flagellin seems to be a less potent stimulator 
compared with other flagellins[28] but has a significant role in long-term bacterial persistence. The lack 
of TLR5 activity in response to H. pylori flagellin is caused mainly by the amino acid residues variation 
R89, L93, and E114 described as hotspots for binding TLR5 which, replaced with threonine (R89T), 
lysine (L93K), and aspartate (E114D) in H. pylori flagellin, lead to receptor evasion[29]. TLR5 instead 
recognizes CagL and CagY, two proteins from the type IV secretion system (T4SS) of H. pylori, and both 
have immunoregulatory properties[30,31]. A high TLR5 expression has been suggested to have a better 
prognosis amongst young GC patients in an early stage of disease, and this better outcome may be 
associated with a non-distant metastasis and an intestinal-type cancer[32].

TLR9, the only TLR with both anti- and pro-inflammatory roles, is involved in the recognition of H. 
pylori DNA, and the promotion or suppression role of TLR9 will depend on the gastric environment
[22]. TLR9 expression has been shown to be up-regulated in H. pylori infected gastric tissue compared 
with non-infected tissue, and it was not related to the presence of tumor cells, suggesting that increased 
TLR9 expression was specifically associated with H. pylori infection[33]. It is reported that TLR9 
interaction with H. pylori and H. pylori DNA, triggers an IL-8 secretion response mediated by the NF-κB 
pathway[34].

The role of TLR9 in cancer is not absolutely clear, but patients with stage II of GC and a high TLR9 
expression had a better prognosis than cases with lower levels[32].

Other TLRs have been described, TLR1, TLR7, TLR8, and TLR10, but further studies are required in 
order to understand their role in GC and in H. pylori infected individuals, as well as other pathogens[22,
23,35]. However, high levels of TLR10 expression have been observed in gastric biopsy samples from 
subjects with H. pylori and, when NCI-N87 gastric cells were co-cultured with the bacteria, both TLR10 
and TLR2 mRNA levels were upregulated[35]. Those results suggest that TLR10 is a functional receptor 
and that TLR2/TLR10 heterodimer functions in H. pylori LPS recognition[35].
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Table 1 Expression of Toll-like receptors in esophageal and gastric epitheliums

PRR Organ Model Method Ligand Observation Reference

TLR1/2 Esophagus Esophageal carcinoma and 
premalignant lesions 

IHQ Triacyl 
lipopeptide

Receptor upregulation in tumor and dysplasia [22,171]

TLR2 Stomach; 
esophagus

Human ADC and 
premalignant lesions; H. 
pylori infection mice model 
andin vitro culture 

IHQ; RT-
qPCR

Microbial 
lipopeptide

Receptor upregulation in tumor cores. Increased 
tumorigenesis; constitutive expression in TE-1 cell 
line 

[21,22,27,32,
172-174]

TLR3 Stomach; 
esophagus

Human gastric and 
esophageal carcinoma 

IHQ; RT-
qPCR

dsRNA Increased receptor levels correlate with poor 
prognosis; increased expression on EAC-derived cell 
lines 

[25,174-176]

TLR4 Stomach; 
esophagus

Human ADC and 
premalignant lesions; H. 
pylori infection; esophageal 
carcinoma 

IHQ; RT-
qPCR

LPS Upregulation in tumor cores; weak association with 
clinicopathologic variables; high expression correlates 
with poor prognosis; upregulation of IL-8 and COX-2 
in BE 

[21,24,25,27,32,
171,173-179,
182]

TLR5 Stomach; 
esophagus

Human ADC and 
premalignant lesions; H 
pylori infection 

IHQ Flagellin Highly expressed;  upregulation in tumor and older 
patients;  association with necrosis and tumor growth 
in the stomach; overexpression in dysplastic lesions of 
BE;  no association with EAC prognosis 

[26,27,32,177]

TLR6 Esophagus Esophageal carcinoma and 
human dysplasia

IHQ; IF Diacyl 
lipopeptide

Upregulated in tumor tissue [22,171]

TLR7 Stomach; 
esophagus

Human ADC and normal 
tissue

IHQ; WB; 
RT-qPCR

ssRNA Downregulated in gastric tumors; high levels 
correlate with a better outcome in GC; constitutive 
expression in TE-1 cell line; association between 
expression and tumor grade in ESCC

[22,32,173,174,
176,180,183]

TLR9 Stomach; 
esophagus

Human ADC IHQ; RT-
qPCR

ssDNA; 
dsDNA

Upregulated in early tumors; correlation with better 
prognosis in GC; association with histopathological 
grade in ESCC and dysplasia; high expression in EAC 
correlates with advanced tumor stage and metastasis

[24,25,32-34,
173,175,176,
181,184]

TLR10 Stomach Human biopsy RT-qPCR ssDNA; 
dsDNA

Upregulated by H. pylori [35]

ADC: Adenocarcinoma; BE: Barrett’s esophagus; EAC: Esophageal adenocarcinoma; ESCC: Esophageal squamous cell carcinoma; GC: Gastric cancer; H. 
pylori: Helicobacter pylori; IF: Immunofluorescence; IHQ: Immunohistochemistry; PRR: Pattern recognition receptor; RT-qPCR: Reverse transcription and 
quantitative PCR; TE-1: Human cell line derived from esophageal cancer; TLR: Toll-like receptors; WB: Western blot.

From a cellular perspective, neutrophils are the most abundant white blood cells in human blood and 
also considered as part of the first line of defense against infections by pathogens[36]. These cells have 
the ability to capture and destroy invading microorganisms and participate as mediators of inflam-
mation. Phagocytosis and formation of neutrophil extracellular traps are part of the cellular mechanisms 
for pathogen elimination, as well as granules releasing[36-38].

Neutrophils extracellular traps (NETs) formation, known as NETosis is a process of releasing 
extracellular web-like structures, and is described as a coat consisting of decondensed chromatin 
filaments, histones and antimicrobial proteins[39]. NETosis is a mechanism of innate immunity to 
contain and prevent microbial spread, and eliminate bacteria[40].

H. pylori can activate different cells of innate immunity, including neutrophils, and these activated 
cells recognize H. pylori infection through different receptors, such as TLR2, TLR4, and TLR9[34,41,42]. 
TLR5 has not been detected in neutrophils localized in the lamina propria during H. pylori gastritis[24]. 
The activation and recruitment of neutrophils is stimulated by H. pylori neutrophil-activating protein, or 
HP-NAP[37,43]. TLR2 interacts with HP-NAP for the secretion of IL-8[41]. However, the interaction 
between neutrophils and H. pylori appears to be complex and contradictory and shows the development 
of different mechanisms of immune evasion, including NET degradation, the increase in bacterial 
resistance mediated by the modification of proteins or surface polysaccharides, or the suppression of 
NET formation[44].

H. pylori has shown a selective alteration of neutrophils function mediated by the inactivation of 
NADPH Oxidase and superoxide release[45]. In addition, the bacterium performs lipid A modification 
mediated by lipid A phosphatases to resist the polymyxin, an antimicrobial peptide[46]. Another study 
remarked on the presence of an outer membrane-associated nuclease that can degrade extracellular 
DNA, where the ability to degrade exogenous DNA was originally proposed as a purine source uptake 
mechanism[47], but it could also have the potential role of degrading NETs[48].

Although NETosis was described as an antimicrobial process, it has been described in other 
pathologies, including cancer. The first study that provided evidence on NET in cancer was Berger-
Achituv et al[49] studying the Ewing sarcoma. The authors proposed NET as a pro-tumor effect and the 



Villarroel-Espindola F et al. Innate immunity in gastric lesions

WJG https://www.wjgnet.com 2226 April 21, 2023 Volume 29 Issue 15

Figure 1 Graphical abstract. Intersections between innate immune response and gastric cancer (GC) development is driven by common mediators, such as 
molecular pathways [nuclear factor-kappa B (NF-κB) and interferon-gamma (IFN-γ)], cellular processes (neutrophil and myeloid cells activation), and 
activators/inducers [pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), tumor-antigens]. However, universal risk 
factors are identified affecting globally to any human being, which depending on extrinsic and intrinsic host factors might facilitate the progression of the precancerous 
cascade to GC. This image is created in BioRender.com. EBV: Epstein-Barr virus; H. pylori: Helicobacter pylori; ICM: Immune checkpoint molecule; TLR: Toll-like 
receptor.

possibility of using this parameter as a poor prognostic biomarker[49].
Regarding GC, the first study was reported by Yang et al[50]. The authors found the correlation of 

NET formation with TNM status and a significant increase in the formation of fibrin and thrombin, 
however, the focus was on peripheral circulation. More recently, the formation of NETs within the 
gastric tumor microenvironment including immunofluorescent staining of Neutrophil Elastase (NE) and 
citrullinated-histone 3[51,52] showed that NETs are more abundant in the tumor core than in the 
adjacent non-tumor tissue[51,52], and the plasma from GC patients revealed the capacity of NET 
formation in vitro[52]. NETs measured in peripheral blood have been shown to be significantly 
correlated with GC and staging, and its levels decrease after surgery[50-52].

A very recent report showed that abdominal infectious complications after gastrectomy would 
stimulate neutrophils to release NETs both in peripheral blood and the abdominal cavity, facilitating GC 
metastasis in vitro and in vivo dependent on transforming growth factor (TGF)-β signaling[53]. The 
formation of NETs has an important role in the epithelial-mesenchymal transition and gastric tumor 
progression, because NETosis may induce proliferation, invasion, migration, and a mesenchymal 
phenotype, in addition to its immune role, which makes it difficult to be therapeutically targeted.

ACCOMPLICE CELLS AND MEDIATORS OF AN ANTI-TUMOR RESPONSE
Additionally, the macrophages have been demonstrated to be important cells for the innate immune 
system in healthy and tumor tissue. Within the tumor microenvironment (TME), macrophages are 
known as tumor-associated macrophages (TAMs) and play a key role in the recognition and clearance of 
foreign and damaged cells, as well as in tumor development and the response to several cancer 
therapies.

Macrophages can infiltrate solid tumors modulating T cell activity within the TME, and often 
undergo phenotype polarization in response to stimuli or inhibitory factors, either to pro-inflammatory 
(M1) or anti-inflammatory (M2) subtypes, which cause immune response or immune escape of the 
tumors respectively[54-57]. The general consensus is that TAMs are usually pro-tumorigenic. These cells 
are recruited by tumor-derived chemokines and produce low levels of inflammatory cytokines, promote 
Th2-T cell response, favor wound healing, and increase angiogenesis and metastases[55,56].

IL-6 and tumor necrosis factor (TNF)-α are both pro-inflammatory cytokines, exerting pro-tumoral 
functions, including the promotion of angiogenesis and metastasis, and these molecules can be secreted 
by myeloid cells and leukocytes under different conditions and stimuli[54-56]. In parallel to classic 
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immunomodulators such as cytokines and chemokines, some microRNAs (miR) have shown a 
significant impact on macrophages activity[57]. miR-125b, miR-127, miR-155, miR-181 and miR-451 are 
significantly upregulated in M1 macrophages, whereas miR-125a-5p, miR-146a, miR-145-5p, miR-143-3p 
are highly expressed in M2 macrophages[58,59].

miR-155 directly targets the expression of the IL-13 receptor α1, thereby inhibiting STAT6 activation 
and promoting M1 polarization[59]. miR-155 knockdown in myeloid cells induces faster tumor growth, 
reduction of M1-macrophages and enrichment of pro-tumor cytokines within the TME[60]. In addition, 
miR-125b overexpression enhanced responsiveness to interferon (IFN)-γ, through the targeting of IRF4 
and increased expression of pro-inflammatory cytokines[58,61].

miR-187, miR-146a, let-7e, and miR-92a are considered anti-inflammatory miRs because they 
downregulate IL-6 and TNF-α in human macrophages by targeting the TLRs signaling[57,62]. The NF-
κB-dependent miR-146a expression is induced in monocytes and macrophages upon triggering of TLR4 
to act as a modulator of the inflammatory response[61]. miR-155 is key to modulating genes related to 
M2/pro-Th2 phenotype in macrophages, and includes CCL18, SERPINE, CD23 and DC-SIGN[56]. In 
addition, other microRNAs will modulate directly or indirectly the NF-κB or TLR activity, such as miR9, 
miR-21, miR-29b, and those can be expressed and released by both TAMs and solid tumors in exosomes
[57,62-65]. Due to the inflammatory microenvironment and oncogenic mutations, a significant number 
of human cancers have constitutive miRs deregulation affecting NF-κB activity, cytokine production 
and hallmarks of cancer such as apoptosis, proliferation and tumor survival[57,62,65].

Previous studies demonstrated that Gastric Epithelial Cells (GECs) function as antigen presenting 
cells by constitutively expressing MHC class II[66]. Interestingly, H. pylori infection induces up-
regulation of costimulatory molecules (CD86 and CD80) among GECs[66], suggesting its potential to be 
used as a local bridge between innate and acquired immunity; however, the capacity to play a role 
secreting cytokines and polarizing macrophages requires further studies.

The inhibition of the polarization of pro-inflammatory macrophages can accelerate the development 
of precancerous lesions in GC[67]. In addition, when TAMs spread in the peritoneum of GC patients, 
these cells normally are polarized to an anti-inflammatory subtype (M2), which can promote the growth 
and progression of GC when the tumor exists[68]. In fact, high densities of TAMs are associated with 
poor survival in GC patients[68,69].

INTRINSIC AND EXTRINSIC MODULATORS OF INFLAMMATION AND PRECANCEROUS 
LESIONS
Currently, there is enough evidence based on epidemiological, molecular and pathological studies that 
persistent infection with H. pylori is a risk factor for the development of gastric adenocarcinoma[70-73], 
estimating an increment in the relative risk by 3–6 times in infected people which might represent over 
80% of all distal GC cases and some with proximal gastric tumors[1,74,75]. The prevalence of H. pylori 
infection is extraordinarily high, infecting 50% of the world’s population[1,76-78].

H. pylori is a Gram-negative bacterium which colonizes the human stomach and promotes a full 
immune response locally and sustainably[19,79,80]. Strains of H. pylori are grouped into two broad 
families tentatively named type I and type II, which are based on whether they express or not the 
vacuolating cytotoxin (VacA) and the CagA antigen (cytotoxin-associated gene A)[81].

One of the major determinants of H. pylori’s virulence is the cag pathogenicity island (cag PAI)[82-
84]. This cagPAI is a 40-kb DNA region surrounding the cagA gene that contains about 27-31 genes that 
encode a bacterial type IV secretion system acting as a syringe-like structure, which allows for the 
delivery of bacterial effector molecules into host gastric epithelial cells[85]. During infection with H. 
pylori, CagA is translocated into epithelial cells, and it is tyrosine-phosphorylated in the EPIYA motifs 
by the proto-oncogene tyrosine-protein kinase Src and the members of the Abelson family of non-
receptor tyrosine kinases[86,87], which results in the interaction with various intracellular signaling 
pathways, triggering changes in the cytoskeleton, in the morphology and in the mobility of the host cells
[86,87].

Compared with cagA– strains, H. pylori cagA+ strains significantly increase the risk of developing 
severe gastritis, atrophic gastritis, peptic ulcer disease and distal GC. In fact, people infected with cagA+ 
strains have higher degrees of gastric inflammation and epithelial cell damage than people from whom 
cagA- strains have been isolated[88]. People infected with cagA+ H. pylori strains have an enhanced 
expression of IL-1α, IL-1β, and IL-8 in gastric biopsies compared to uninfected persons or patients 
infected with cagA- strains[89]. Keeping that consideration in mind, proinflammatory cytokines will be 
up-regulated by a local infection; however, the magnitude of that systemic response and the profile of 
released cytokines and chemokines will depend also on host factors.

Regarding host factors, many polymorphisms in genes related to inflammation and innate immunity, 
such as cytokines and MHC molecules, have been reported to be associated with an increased risk of GC
[90-92]. Among the cytokines with polymorphisms that have been associated with GC are IL-1β, IL-1Rβ, 
IL-4, IL-6, IL-10, TNF-α, and TNF-β[93-97]. Based on ethnic backgrounds, two sets of haplotypes for IL-1
β and IL-10 have been related to increased risk for GC[93-95]; specifically, IL-1β-1464G/-511C/-31T and 
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IL-10-1082G/-819C/952C for Asians and IL-1β-1464C/-511T/-31C and IL-10-1082A/-819T/952T for 
Caucasians[95].

Canedo et al[96] found that IFN-γ receptor 1 -56C/T polymorphism is a relevant host susceptibility 
factor for GC development associated with H. pylori infection. Polymorphism in the promoter region of 
the gene coding for IL-10 and TGF-β has been also described in the Mexican population in relation to 
susceptibility to GC[97]. There is a need for extended studies in different populations and in larger 
patient groups, particularly in regions of Latin America where the burden of GC is more severe. In 
recent years, NF-κB has been widely studied in inflammation, immunity and cancer, but its roles are still 
unclear[98-100]. NF-κB is a master transcription factor activated downstream of the TLR and cytokines 
such as TNF-α and IL-1β[98]. In contrast to the canonical NF-κB pathway, the noncanonical NF-κB 
activation responds to specific stimuli, including ligands from the TNFR superfamily members such as 
LTβR, BAFFR, CD40 and RANK[99].

In GC, H. pylori is associated with increased expression of the proinflammatory NF-κB[101-104]. It has 
been shown that the induction of NF-κB mediated by H. pylori induces the expression of activation-
induced cytidine deaminase, which has been demonstrated to induce nucleotide modifications in the 
TP53 gene in gastric cell models[105] and suggests that the accumulation of those TP53 gene alterations 
might contribute to the development of gastric neoplasia.

As an example, in vitro studies showed that programmed death (PD)-1 is increased among gastric 
epithelial cells after H. pylori infection and its immunosuppressive functions on T-cells may contribute to 
carcinogenesis[106]. Evidence from small studies observed an up-regulation of PD-1 and programmed 
cell death-ligand 1 (PD-L1) in human H. pylori-related gastric carcinoma[107].

In addition, H. pylori has shown other effects within the gastrointestinal epithelium not associated 
with inflammation but compromising the genome stability, for example, reduced levels of transcripts 
for DNA mismatch repair (MMR) proteins such as MutS, MutL RAD51, FEN1, POLD1, and LIG1[108-
110], and this phenotype might be more severe in cases cagA+ H. pylori[110]. However, the deficiency 
MMR in gastric tumors was recently shown to predict clinical response to pembrolizumab[111], 
demonstrating also the expansion of antigen-specific T cells reactive to tumor-derived neoantigens, 
suggesting that further studies are required to understand the interaction between pathogens and 
genomic features as biomarkers.

CROSSTALK BETWEEN VIRAL INFECTION AND INNATE IMMUNITY ACTIVATION
The EBV is a ubiquitous virus and member of the subfamily of human Gammaherpesvirinae[112] and 
can infect several cell types, including B-lymphocytes, epithelial cells, and fibroblasts[113]. EBV is the 
main pathogenic factor for nasopharyngeal carcinoma. However, studies find that EBV infection is also 
associated with the development of T-cell lymphoma and EBV-associated GC[114]. Although the 
infection rate of EBV is extraordinarily high, reaching over 90% of the adult population worldwide[115,
116], the incidence rate of EBV-positive GC remains low, representing around 9% of characterized 
stomach adenocarcinomas[117], these EBV-positive tumors display recurrent PIK3CA mutations, 
extreme DNA hypermethylation, and amplification of JAK2 and both PD-L1 and PD-L2[5].

The EBV-positive GC has been characterized by an increased expression of PD-L1, and a sustained 
immune-infiltration, which is indicative of the presence of stable T-cells and supports the use of an 
immune checkpoint inhibitor for the treatment of this GC subtype[118,119]. In addition, most EBV-
positive GCs show MSI which has also been associated with inflammation and local immune activation
[120-123]. Previous groups have shown that high density of intra-tumoral or stromal CD8+ T cells with 
a high percentage of PD-L1 expression seems to be associated with a worse progression-free survival 
and overall survival[118,120,124]. However, a recent study demonstrated that EBV-positive GC patients 
treated with immunotherapy showed favorable responses[125], suggesting that viral status represents a 
potential predictive biomarker for using immune-checkpoint inhibitors; however, the balance between 
pro-inflammatory and immunosuppressive signals together with a concomitant viral infection requires 
more studies to clarify its role as a biomarker.

Type I and type II IFN are central to both combating virus infection and modulating the antiviral 
immune response[126]. The cytokine IFN-γ is mainly produced by T Cell CD4+ and natural killers to 
activate macrophages. The ligation to its receptor triggers an activation of the Janus-Activated kinases, 
JAK1 and JAK2, and subsequently the activation of STAT1 and interferon regulatory factor 1 (IRF1). 
STAT1 and IRF1 are activated by phosphorylation and translocated to the nucleus to regulate the IFN-γ 
gene expression[127].

Crucial to the induction of type I IFN is the recognition of viral PAMPs by PRRs, among which, the 
cyclic GMP-AMP synthase-stimulator of interferon genes modulates the antiviral response triggered by 
DNA viruses and retroviruses[128]. In addition, most viruses, including EBV, stimulate innate immune 
response during primary infection predominantly by activating the expression of TLRs, such as TLR2, 
TLR3, TLR4, TLR7, TLR8, and TLR9[129]. TLR2 is likely activated by EBV surface glycoprotein gp350
[130] and the nonstructural protein dUTPase[131], while EBV-encoded small RNAs released from EBV-
infected cells are detected by TLR3[132]. Furthermore, EBV can activate monocytes and plasmacytoid 
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DCs through cooperative action of TLR9 and TLR2[133].
Activation of PRRs by EBV-PAMPs triggers JAK-STAT-mediated IFN response and different 

branches of innate immune signaling including NF-κB pathway; inflammasome activation; and 
programmed cell death such as apoptosis and necroptosis[134]. However, innate immunity is a double-
edged sword as the induction of pro-inflammatory responses and activation of programmed cell death 
might release a burst of virions and may therefore facilitate the spread of infection[135].

Recently, IFN-γ has been the subject of studies due to its immune role in cancer development, 
especially in GC. There are several signaling pathways of innate immunity during GC development in 
which interferon is involved, such as in proliferation, metastasis, and advancement of GC through the 
upregulation of integrin β3-mediated NF-κB signaling[136]. Serum levels of IFN-γ are elevated in GC 
which may promote systemic and local responses[137] at the same time, for example: peroxisome prolif-
erator-activated receptor delta, a ligand involved in physiologic processes in cell metabolism, prolif-
eration, and inflammation[138] together with IFN-γ signaling creates an inflammatory tumor-promoting 
microenvironment enabling villin-expressing gastric progenitor cells transformation and gastric tumori-
genesis[139]. Furthermore, natural killer (NK) cells play a role in innate immunity against cancer cells. 
Lee et al[140] reported that IFN-γ produced by the activated NK decreases in GC patients compared 
with healthy donors. This low level of IFN-γ-NK could be used as a non-invasive biomarker for carcino-
genesis in GC[140].

Some reports including Latin American cohorts have shown that concentrations of IFN-γ and IL-10 
are significantly higher in GC than in non-oncological cases, and within the GC group, IFN-γ levels are 
increased at the early stages (I/II) and remain higher in late stage (IV)[141]. Interestingly, increased 
levels of viral capsid antigen antibodies are significantly associated with elevated serum levels of IFN-γ, 
particularly in the intestinal type of GC[142]. Therefore, IFN-γ is suggested as a biomarker for assessing 
GC risk; however, this molecule is known to mediate gastric damage or immune antipathogen 
responses, as well as the expression of some negative immune checkpoint molecules.

The PD-L1 expression is activated by several cytokines, of which IFN-γ is the strongest[143]. In a 
melanoma cell line model, PD-L1 has shown to be mainly regulated by the type II interferon receptor 
signaling pathway through JAK1 and JAK2, several STATs including STAT1/STAT2/STAT3, to 
converge on the binding of IRF1 to the PD-L1 promoter[144]. Later, Chen et al[145] treated with IFN-γ 
thirty-four cultured human tumor lines, including 18 melanomas (MEL), 12 renal cell carcinomas (RCC), 
3 squamous cell carcinomas of the head and neck (SCCHN), and 1 non-small-cell lung carcinoma, and 
as wildtype control the authors considered isolated peripheral blood monocytes. The results indicated 
that PD-L1 was constitutively expressed on 1/17 cultured MELs, 8/11 RCCs, 3/3 SCCHNs, and on 
monocytes; however, the inhibition of STAT1 but not STAT3 was more critical to reduce IFN-γ-induced 
PD-L1 protein expression on tumor cells[145]. Other authors have provided evidence of a crosstalk 
between JAK2-STAT1 and PI3K-AKT pathways in response to IFN-γ in lung adenocarcinoma[146]. 
Transcriptome analysis demonstrated that tumor tissues expressing IFN-γ display gene expression 
associated with suppressed cell cycle progression and expansion, which was not observed in PD-L1 
negative tumors. In lung adenocarcinoma cells, IFN-γ induces the activation of JAK2-STAT1 and PI3K-
AKT pathways, showing that the activation of JAK2-STAT1 is responsible for the anti-proliferative effect 
of IFN-γ, and the inhibition of PI3K downregulates PD-L1 expression and enhances the anti-prolif-
erative effect of IFN-γ[146]. In addition to the cytokine regulation, a lncRNA (long non-coding RNA) 
named Interferon-stimulated non-coding RNA 1 (INCR1) has been described as a major regulator of 
IFN-γ signaling in tumors by post-transcriptional modulation of PD-L1 and JAK2 expression[147]. 
INCR1 is expressed as an antisense RNA from the PD-L1/PD-L2 locus and has been detected in human 
samples across multiple tumor types, and its levels increase after IFN-γ stimulation, correlating with 
PD-L1 but not PD-L2 expression[147].

Regarding GC, PD-L1 has shown a wide and very variable range of expression based on technique 
and cutoff, however, it seems to be absent in non-tumor gastric tissue[148-151]. Imai et al[152] showed 
IFN-γ treatments enhanced the expression of intracellular and membranous PD-L1 expression in GC cell 
lines. This upregulation of PD-L1 induced by IFN-γ was associated with the JAK-STAT but not the 
MAPK and PI3K-AKT pathway activation[152,153]. PD-L1 overexpression mediated by IFN-γ is also 
seen in GC with positive EBV[154]. Polymorphism in PD-L1 related to GC has also been described. PD-
L1rs2297136 was positively correlated with a higher proportion of PD-L1 protein and could be 
employed as a tool of prognosis in GC patients[155,156].

A recent study suggested the role of ISG12a as a tumor suppressor in gastrointestinal tissue[157,158]. 
ISG12 or interferon alpha-inducible protein 27 promotes β-catenin proteasomal degradation by 
inhibiting the degradation of ubiquitinated Axin, thereby suppressing the canonical Wnt/β-catenin 
signaling pathway[158]. Reduced levels of ISG12a were observed in gastrointestinal cancer, such as 
hepatocellular cancer and GC, and it was associated with an immune-suppressive tumor microenvir-
onment. The authors argue that β-catenin is a transcription factor for PD-L1, and the inhibition of the 
Wnt/β-catenin signaling by ISG12a makes tumor cells more sensitive to NK cell-mediated killing[157]. 
Therefore, the balance between the induction or suppression of IFN-stimulated genes[159], such as 
ISG12a, may accelerate the malignant transformation of cancer cells and lead to a poor prognosis in 
gastrointestinal cancer[157,160].
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NON-BIOLOGICAL FEATURES AS IMMUNE AND PREMALIGNANT MODULATORS
GC is currently accepted as the consequence of a multifactorial process, involving pathogen infection 
and the virulence of some strains (as H. pylori), environmental factors, dietary habits, and host intrinsic 
factors, as we have discussed above; however, socioeconomic factors, such as education level and 
occupation, have shown to be determinant during the progression of the premalignant cascade of GC 
and the patient’s outcome after the cancer onset[161-163].

Asia accounts for 71% of GC’s worldwide, in which China’s incidence is 44.1%. The high incidence in 
China is marked by the rural population, and their exposure to carcinogens through diet, the 
environment and the H. pylori infection per se[164]. The incidence of GC in Europe is heterogeneous; 
while the highest incidence is in Central and Eastern Europe, the lowest incidence is in Western and 
Northern Europe, which correlates with a higher detection of H. pylori in Eastern Europe compared to 
Western Europe[165], as well as an observed higher consumption of red and processed meat resulting in 
an increased risk of GC[166].

After Europe, Latin American countries have shown a high incidence of gastric malignancies. The 
associated risk factors are infection with H. pylori, diet and habits such as smoking, consumption of salt, 
alcohol and meat, as well as ethnicity and age[167]. Some authors have suggested that Latin America 
has a close correlation between GC incidence and altitude which is based on the presence of a 
mountainous geography, such as the Sierra Madre, Cordillera de Centroamerica and the Cordillera de 
los Andes[168]. However, the mortality and incidence rates for gastric malignancies in the Chilean 
population is statistically higher than the average rates in the rest of Latin America, becoming the 
second cause of death from cancer in Chile, affecting 11.6 per 100000 inhabitants and causing around 
3000 deaths per year[1]. That incidence seems to correlate mainly with socioeconomic status, Mapuche 
ethnicity, and age at the primary H. pylori infection[169].

Surprisingly, most of the countries with the highest incidence of GC are not those with low incomes 
(Table 2). In fact, it seems that the vicious circle between precancerous lesions, inflammation and GC 
onset is caused by the low level of education within the population. A study performed within the 
Swedish population, that considered the economically active population, showed an increased risk 
factor of GC in workers engaged in manual-labor occupations and in industry. The statistics were 
standardized for categories of occupation and adjusted by age, period and region, and confirmed that 
overall manual-workers and farmers had the highest risk of GC, including male miners and quarry 
workers[162]. The European Prospective Investigation into Cancer and Nutrition cohort included about 
520000 participants mostly aged 35–70 years and, after an average follow-up of 6.5 years, reported 268 
cases with adenocarcinoma of the stomach. Higher education was significantly associated with a 
reduced risk of GC with a hazard ratio (HR) of 0.64 (95%CI: 0.43–0.98) and, as was expected from other 
reports, that effect was more pronounced for cancer of the cardia (HR: 0.42) as compared to non-cardia 
GC (HR: 0.66)[163].

A survey to address GC risk factors and endoscopic screening within the North American population 
showed that ethnicity, cultural habits and immigration patterns are potentially useful to identify high-
risk persons from multicultural areas within the United States[170]. The authors identified that dietary 
habits during teenage years (15-18) and education below high school level may represent signs of risk 
for GC in older people of foreign birth[170]. Most recently, based on the previous research, a secondary 
analysis showed that education level was the single most reliable measure of GC risk among three 
variables of socioeconomic status including, education, income, and occupation, which are the most 
commonly used for health outcomes such as cancer survival[171]. Similar results were observed in a 
seroepidemiologic study in Japan where the H. pylori positive rate increased at 1% per year for people 
born after 1950 but was comparatively constant for people with birth dates before 1950[171]. Based on 
the authors, the apparent decreased prevalence of H. pylori post-war was accompanied by the Western-
ization of the country and subsequently by a reduction in the frequency of atrophic gastritis and the 
incidence of gastric carcinoma during the most modern times[171,172].

The infection status in adults is considered to be influenced by socioeconomic status in childhood; 
however, given the massive improvement in hygiene and the economic environment around the world, 
it has contributed to the variation in the trends in incidence and death rates of GC among the countries 
mentioned above. Based on other authors, the education in H. pylori eradication and gastric 
malignancies is largely due to unplanned prevention caused by the widespread adoption of technology 
and improved manufacturing practices of the food industry. In a similar way, the prevalence of H. pylori 
infection may be reduced owing to improvements in sanitary and housing conditions based on 
education at early ages by primary schools and in adult life by primary health workers.

Where the intersection between education and immunity is not evident, by intuition a limited 
knowledge regarding gastrointestinal health and eradication of H. pylori infection might dramatically 
influence the development of GC. Therefore, the inflammatory process induced by a pathogen or even 
an incipient neoplasm may not receive enough attention, progressing finally to an advanced disease 
with limited therapeutic opportunities and uncertain outcome for the patient.
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Table 2 Gastric cancer incidence and socioeconomic indicators per country

Country Estimated cases Crude rate ASR, world1 Cum. risk HDI classification

Japan 138470 109.5 31.6 9.35 Very high

Korea 28713 56 27.9 6.51 Very high

Brunei Darussalam 55 12.6 13.5 5.93 Very high

Russia 37364 25.6 13.5 3.29 Very high

Chile 4208 22 13.1 4.17 Very high

Lithuania 864 31.7 13 3.4 Very high

Estonia 379 28.6 12.3 3.2 Very high

Latvia 530 28.1 12 3.01 Very high

Portugal 2950 28.9 11 2.99 Very high

Slovakia 1210 22.2 10.7 3.12 Very high

Mongolia 860 26.2 32.5 7.71 High

China 478508 33.1 20.6 5.24 High

Iran 14656 17.4 17.5 6.58 High

Kazakhstan 3357 17.9 15.8 3.47 High

Belarus 2739 29 15.4 3.5 High

Peru 6300 19.1 15.2 5.16 High

Colombia 8214 16.1 12.8 3.61 High

Costa Rica 952 18.7 12.8 4.12 High

Samoa 20 10.1 12.8 3.75 High

Azerbaijan 1453 14.3 12.7 3.42 High

Tajikistan 1301 13.6 23.4 6.96 Medium

Kyrgyzstan 1027 15.7 19.7 5.01 Medium

Cabo Verde 82 14.7 18.4 5.88 Medium

Bhutan 118 15.3 17.7 3.88 Medium

Viet Nam 17906 18.4 15.5 3.57 Medium

Sao Tome and Principe 18 8.2 14.7 2.06 Medium

Myanmar 7235 13.3 13.7 3.58 Medium

Lao 675 9.3 12.9 3.17 Medium

Guatemala 1637 9.1 12.2 3.93 Medium

Turkmenistan 583 9.7 11.8 2.37 Medium

Haiti 1184 10.4 13.5 4.58 Low

Mali 1097 5.4 12.8 2.96 Low

Afghanistan 2149 5.5 12.4 3.18 Low

Zimbabwe 641 4.3 9.4 3.24 Low

Papua New Guinea 474 5.3 9.2 3.17 Low

Rwanda 587 4.5 8.1 1.61 Low

Yemen 966 3.2 7.1 2.68 Low

Senegal 597 3.6 7 1.66 Low

Benin 429 3.5 7 2.29 Low

Mauritania 143 3.1 5.6 1.46 Low
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1Top 10 countries with the highest age-standardized incidence rates per 100000 inhabitants, per each human development index classification. Source: 
Globocan 2020, access by https://gco.iarc.fr. ASR: Age-standardized incidence rate; HDI: Human development index.

CONCLUSION
During the transition from premalignant lesions of the gastric epithelium to the final carcinoma, some 
microorganisms will play a determinant role promoting the neoplastic transformation or contributing 
with particular tumor phenotype and its heterogeneity, together with different mutagenic agents and 
genomic aberrations. This review provides an overview on innate immune activation in the context of 
gastrointestinal malignancies and compiles studies related to TLRs, neutrophils, cytokines and 
pathogens, as crucial players during the precancerous cascade and the cancer onset, allowing the 
correlation of those aspects with clinical and socioeconomic variables.

As shown in the graphical abstract, intersections between innate immune response and GC 
development is driven by common mediators, such as NF-κB and IFN-γ molecular pathways, cellular 
processes (neutrophil and myeloid cells activation), and activators/inducers (PAMP, damage-associated 
molecular patterns, tumor-antigens). However, universal risk factors are identified affecting globally 
any human being which, depending on extrinsic and intrinsic host factors, might facilitate the 
progression of the precancerous cascade to GC.

Modern therapies such as adoptive cell therapy, vaccines, and especially immunotherapy using 
checkpoint inhibitors, which have not been mentioned in this work, have shown in clinical trials the role 
of restoring the balance in favor of the immune system against GC. In the words of Dunn et al[173] the 
observed benefits in GC may be based on (1) Elimination: NK cells and T lymphocytes (helper and 
cytotoxic) secrete interferon IFN-γ leading to a reduction of angiogenesis and proliferation of cancerous 
cells; moreover, macrophages and DC secrete cytokines that activate immune cells to phagocytize dead 
tumor cells; (2) Equilibrium: Residual cancerous cells remain in a dormant state because DC and 
cytotoxic T cells secrete IFN-γ and inhibitory cytokines (IL-12) suppress them; and (3) Escape: Tumor 
cells change their features, up-regulating immune checkpoint pathways, which will be transmitted to 
the daughter cells, therefore escaping immunosuppression and proliferating, along with the apoptosis 
of the effector lymphocytes[173]. The success of those treatments relies on an efficient immune system, 
and of course an innate response able to promote priming and mobilization of newly activated immune 
cells; the presence of pathogens or their PAMPs, as well as molecules derived from the tumor itself will 
continuously modulate the tumor immune microenvironment. The shape of the tumor will also depend 
on the host background (genome stability, driver mutations and other gene variants) but in addition, the 
external environment shaped by the socioeconomic status of each person will determine the final 
outcome.

Innate immunity is the beginning, and certainly, will be part of the final response against tumors. All 
these observations require further investigation but it is clear that pathogens like H. pylori and EBV need 
to be assessed in GC based on their role as biomarkers and as potential mechanisms of resistance to 
therapy.
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